All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

MiR-200c inhibits metastasis of breast tumor via the downregulation of Foxf2

Author(s): T. Zhang, J.G. Wan, J.B. Liu and M. Deng

The forkhead box F2 (Foxf2) gene suppresses epithelial-mesenchymal transition via the modulation of transcription of zinc finger E-box-binding homeobox 1 (Zeb1) and epithelial (E)-cadherin, thereby inhibiting tumor metastasis. Additionally, the specific binding of microRNA (miR)-200c to Foxf2 mRNA impedes metastatic pulmonary cancer. However, the role of miR-200c in breast cancer is still unknown. Therefore, in this study, miR-200c mimics were transfected into the highly metastatic breast cancer cell line MDA-MB-231. Their invasion and migration abilities were observed by scratch and transwell migration assays. Real-time PCR was used to detect mRNA levels of Foxf2, Zeb1, and E-cadherin, whereas Foxf2 protein level was determined by western blot analysis. Our results showed that, compared to the control group, miR-200c inhibited the migration or invasion of MDA-MB-231 cells. Real-time PCR and western blot analysis exhibited significant decreases in Foxf2 expression in the presence of miR-200c, along with a decrease in Zeb1 and increase in E-cadherin mRNA expressions. Thus, our preliminary data demonstrated that miR-200c could inhibit the metastasis of breast cancer cells by downregulating Foxf2 expression, providing leads for the discovery of a novel breast cancer treatment.


Stay informed on our latest news!