Random amplified polymorphic DNA molecular marker was utilized as a means of analyzing genetic variability in seven bat species: Molossus molossus, M. rufus, Eumops glaucinus, E. perotis, Myotis nigricans, Eptesicus furinalis, and Artibeus planirostris. The determination of genetic diversity was based on 741 bands produced by a 20-random primer set. Only eight bands were considered monomorphic to one species. The greatest number of bands and the most polymorphic condition were exhibited by M. molossus, followed by M. nigricans, A. planirostris, E. furinalis, E. glaucinus, M. rufus, and E. perotis. Nei’s genetic diversity index in the seven species considering the 20 primers was not greater than 0.22, but some primers were capable of detecting values between 0.39 and 0.49. Nei’s unbiased genetic distance values and the UPGMA clustering pattern show that M. molossus and M. rufus have a close genetic relationship, unlike that observed between E. perotis and E. glaucinus. The latter was clustered with A. planirostris and E. furinalis. The low values for genetic diversity and distance observed indicate a genetic conservatism in the seven species.The fluorescent in situ hybridization experiments did not confirm a monomorphic condition for the eight bands identified, demonstrating that the monomorphic bands obtained by random amplified polymorphic DNA are insufficient for the identification of bat species.
Genetics and Molecular Research received 74024 citations as per google scholar report