All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

E2F, HSF2, and miR-26 in thyroid carcinoma: bioinformatic analysis of RNA-sequencing data

Author(s): J.C. Lu and Y.P. Zhang

In this study, we examined the molecular mechanism of thyroid carcinoma (THCA) using bioinformatics. RNA-sequencing data of THCA (N = 498) and normal thyroid tissue (N = 59) were downloaded from The Cancer Genome Atlas. Next, gene expression levels were calculated using the TCC package and differentially expressed genes (DEGs) were identified using the edgeR package. A co-expression network was constructed using the EBcoexpress package and visualized by Cytoscape, and functional and pathway enrichment of DEGs in the co-expression network was analyzed with DAVID and KOBAS 2.0. Moreover, modules in the co-expression network were identified and annotated using MCODE and BiNGO plugins. Small-molecule drugs were analyzed using the cMAP database, and miRNAs and transcription factors regulating DEGs were identified by WebGestalt. A total of 254 up-regulated and 59 down-regulated DEGs were identified between THCA samples and controls. DEGs enriched in biological process terms were related to cell adhesion, death, and growth and negatively correlated with various small-molecule drugs. The co-expression network of the DEGs consisted of hub genes (ITGA3, TIMP1, KRT19, and SERPINA1) and one module (JUN, FOSB, and EGR1). Furthermore, 5 miRNAs and 5 transcription factors were identified, including E2F, HSF2, and miR-26. miR-26 may participate in THCA by targeting CITED1 and PLA2R1; E2F may participate in THCA by regulating ITGA3, TIMP1, KRT19, EGR1, and JUN; HSF2 may be involved in THCA development by regulating SERPINA1 and FOSB; and small-molecule drugs may have anti-THCA effects. Our results provide novel directions for mechanistic studies and drug design of THCA. In this study, we examined the molecular mechanism of thyroid carcinoma (THCA) using bioinformatics. RNA-sequencing data of THCA (N = 498) and normal thyroid tissue (N = 59) were downloaded from The Cancer Genome Atlas. Next, gene expression levels were calculated using the TCC package and differentially expressed genes (DEGs) were identified using the edgeR package. A co-expression network was constructed using the EBcoexpress package and visualized by Cytoscape, and functional and pathway enrichment of DEGs in the co-expression network was analyzed with DAVID and KOBAS 2.0. Moreover, modules in the co-expression network were identified and annotated using MCODE and BiNGO plugins. Small-molecule drugs were analyzed using the cMAP database, and miRNAs and transcription factors regulating DEGs were identified by WebGestalt. A total of 254 up-regulated and 59 down-regulated DEGs were identified between THCA samples and controls. DEGs enriched in biological process terms were related to cell adhesion, death, and growth and negatively correlated with various small-molecule drugs. The co-expression network of the DEGs consisted of hub genes (ITGA3, TIMP1, KRT19, and SERPINA1) and one module (JUN, FOSB, and EGR1). Furthermore, 5 miRNAs and 5 transcription factors were identified, including E2F, HSF2, and miR-26. miR-26 may participate in THCA by targeting CITED1 and PLA2R1; E2F may participate in THCA by regulating ITGA3, TIMP1, KRT19, EGR1, and JUN; HSF2 may be involved in THCA development by regulating SERPINA1 and FOSB; and small-molecule drugs may have anti-THCA effects. Our results provide novel directions for mechanistic studies and drug design of THCA.