Cloning and expression of ethylene receptor ERS1 at various developmental and ripening stages of mango fruit
Author(s): C.A. Contreras-Vergara
N.A. Stephens-Camacho
G. Yepiz-Plascencia
G.A. Gonz�¡lez-Aguilar
A.A. Arvizu-Flores
E. Sanchez-Sanchez
M.A. Islas-Osuna
Ethylene induces characteristic ripening reactions in climacteric fruits through its binding to histidine-kinase (HK) receptors, activating the expression of ripening genes. Ethylene receptors have been found in Arabidopsis thaliana (Brassicaceae) and some fruits; number and expression patterns differ among species. In mango, only ethylene receptor ETR1 was known. We cloned ERS1 cDNA from mango, and evaluated the expression of Mi-ERS1 and Mi-ETR1 by qPCR in developmental and ripening stages of this fruit. The Mi-ERS1 coding sequence is 1890 bp long and encodes 629 amino acids, similar to ERS1 from other fruits. Also, the amino acid sequence of ERS1 C-terminal HK domain shows the cognate fold after molecular modeling. Mi-ERS1 expression levels increased as mangoes ripened, showing the highest levels at the climacteric stage, while Mi-ETR1 levels did not change during development and ripening. We conclude that the patterns of expression of Mi-ERS1 and Mi-ETR1 differ in mango fruit.
Ethylene induces characteristic ripening reactions in climacteric fruits through its binding to histidine-kinase (HK) receptors, activating the expression of ripening genes. Ethylene receptors have been found in Arabidopsis thaliana (Brassicaceae) and some fruits; number and expression patterns differ among species. In mango, only ethylene receptor ETR1 was known. We cloned ERS1 cDNA from mango, and evaluated the expression of Mi-ERS1 and Mi-ETR1 by qPCR in developmental and ripening stages of this fruit. The Mi-ERS1 coding sequence is 1890 bp long and encodes 629 amino acids, similar to ERS1 from other fruits. Also, the amino acid sequence of ERS1 C-terminal HK domain shows the cognate fold after molecular modeling. Mi-ERS1 expression levels increased as mangoes ripened, showing the highest levels at the climacteric stage, while Mi-ETR1 levels did not change during development and ripening. We conclude that the patterns of expression of Mi-ERS1 and Mi-ETR1 differ in mango fruit.