All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Characterization of Aspergillus niger ndo-1,4-�²-glucanase ENG1 secreted from Saccharomyces cerevisiae using different expression vectors

Author(s): S.M. Taipakova, I.T. Smekenov, M.K. Saparbaev and A.K. Bissenbaev

Heterologous expression of Aspergillus niger endo-1,4- β-glucanase (ENG1) in Saccharomyces cerevisiae was tested both with an episomal plasmid vector (YEGAp/eng1) and a yeast vector capable of integration into the HO locus of the S. cerevisiae chromosome (pHOGAPDH-eng1-KanMX4-HO). In both cases, eng1 gene expression in yeast, with its native signal sequence forsecretion, was under the control of the strong glyceraldehyde 3-phosphate dehydrogenase (GAPDH) promoter. We aimed to verify how each expression system affects protein expression, posttranslational modification, and biochemical properties. Expression of eng1 from the episomal plasmid vector YEGAp/eng1 significantly slowed the growth of a yeast cell culture. However, expression of eng1 from the vector integrated into the HO locus of the chromosome did not cause growth suppression, and the enzyme activity in a culture supernatant was maintained throughout the incubation time. ENG1 has optimum catalytic activity at pH 6.0, and is stable in the pH range 5.0-9.0. The enzyme’s optimum temperature for catalytic activity at pH 6.0 is 70°C; importantly, more than 95% of the enzyme’s initial activity remained after a 2-h incubation at 60°C. The biochemical characterization of ENG1 confirmed the correct expression of the protein and showed that ENG1 expressed by the pHO-GAPDH-eng1-KanMX4-HO vector, in addition to its N-linked sites, is overglycosylated at its O-glycosylation sites compared with ENG1 expressed by the YEGAp/eng1 vector. It is likely that the O-glycosylated form of the A. niger ENG1 retains more stable activity during continuous cultivation of recombinant yeasts than the form that is only N-glycosylated.