The phages of Acinetobacter baumannii has drawn increasing attention because of the multi-drug resistance of A. baumanni. The aim of this study was to sequence Acinetobacter baumannii phage AB3 and conduct bioinformatic analysis to lay a foundation for genome remodeling and phage therapy. We isolated and sequenced A. baumannii phage AB3 and attempted to annotate and analyze its genome. The results showed that the genome is a double-stranded DNA with a total length of 31,185 base pairs (bp) and 97 open reading frames greater than 100 bp. The genome includes 28 predicted genes, of which 24 are homologous to phage AB1. The entire coding sequence is located on the negative strand, representing 90.8% of the total length. The G+C mol% was 39.18%, without areas of high G+C content over 200 bp in length. No GC island, tRNA gene, or repeated sequence was identified. Gene lengths were 120-3099 bp, with an average of 1011 bp. Six genes were found to be greater than 2000 bp in length. Genomic alignment and phylogenetic analysis of the RNA polymerase gene showed that similar to phage AB1, phage AB3 is a phiKMV-like virus in the T7 phage family.
Genetics and Molecular Research received 74024 citations as per google scholar report