Previously, we isolated two strains of spontaneous oxidative (SpOx2 and SpOx3) stress mutants of Lactococcus lactis subsp cremoris. Herein, we compared these mutants to a parental wild-type strain (J60011) and a commercial starter in experimental fermented milk production. Total solid contents of milk and fermentation temperature both affected the acidification profile of the spontaneous oxidative stress-resistant L. lactis mutants during fermented milk production. Fermentation times to pH 4.7 ranged from 6.40 h (J60011) to 9.36 h (SpOx2); Vmax values were inversely proportional to fermentation time. Bacterial counts increased to above 8.50 log10 cfu/mL. The counts of viable SpOx3 mutants were higher than those of the parental wild strain in all treatments. All fermented milk products showed post-fermentation acidification after 24 h of storage at 4ºC; they remained stable after one week of storage. Previously, we isolated two strains of spontaneous oxidative (SpOx2 and SpOx3) stress mutants of Lactococcus lactis subsp cremoris. Herein, we compared these mutants to a parental wild-type strain (J60011) and a commercial starter in experimental fermented milk production. Total solid contents of milk and fermentation temperature both affected the acidification profile of the spontaneous oxidative stress-resistant L. lactis mutants during fermented milk production. Fermentation times to pH 4.7 ranged from 6.40 h (J60011) to 9.36 h (SpOx2); Vmax values were inversely proportional to fermentation time. Bacterial counts increased to above 8.50 log10 cfu/mL. The counts of viable SpOx3 mutants were higher than those of the parental wild strain in all treatments. All fermented milk products showed post-fermentation acidification after 24 h of storage at 4ºC; they remained stable after one week of storage.
Genetics and Molecular Research received 74024 citations as per google scholar report