

Vascular endothelial growth factor gene polymorphisms and colorectal cancer risk: a meta-analysis

L.P. Zhou, H. Luan, X.H. Dong, G.J. Jin, D.L. Man and H. Shang

Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China

Corresponding author: H. Shang E-mail: hongshang100@gmail.com

Genet. Mol. Res. 10 (4): 3674-3688 (2011) Received May 2, 2011 Accepted October 3, 2011 Published October 31, 2011 DOI http://dx.doi.org/10.4238/2011.October.31.13

ABSTRACT. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen involved in a number of pathologic processes, including angiogenesis, tumor growth and metastasis. Polymorphisms of the VEGF gene have been associated with susceptibility to colorectal cancer (CRC). However, the specific association still remains controversial. We made a meta-analysis of the association between VEGF gene polymorphisms and CRC risk. Only eight case-control studies were retrieved, with a total of 2337 CRC patients and 2032 healthy controls. Six VEGF gene polymorphisms were addressed in all studies included, +936C>T (rs3025039), -2578C>A (rs699947), -1154G>A (rs1570360), -634G>C (rs2010963), -460C>T (rs833061), and +405C>G (rs2010963). There was a significant association between -2578C>A polymorphism and susceptibility to CRC in the comparison of C allele carriers (CC + CA) versus AA (odds ratio = 0.77, 95% confidence interval = 0.62-0.96, P = 0.02). No association was found between +936C>T, -1154G>A, -634G>C, -460C>T, and +405C>G with susceptibility to CRC. We conclude that the C allele carrier (CC + CA) of VEGF -2578C>A polymorphism appears to be a protective factor for CRC.

Key words: Colorectal cancer; Polymorphism; VEGF; Meta-analysis

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

INTRODUCTION

Every year, more than 945,000 people develop colorectal cancer (CRC) worldwide, and approximately 492,000 patients die (Weitz et al., 2005). CRC is the second most common cancer in developed countries, with a lifetime risk of 5% and about 1 million new cases each year (Rothwell et al., 2010). CRC has predominantly been considered a genetic disease, characterized by sequential accumulation of genetic alterations (van Engeland et al., 2011). Growing evidence indicates that epigenetic alterations add an additional layer of complexity to the pathogenesis of CRC (Venkatachalam et al., 2010). Epigenetic dysregulation in CRC is organized at multiple levels, involving DNA methylation, histone modifications, nucleosomal occupancy and remodeling, chromatin looping, and noncoding RNAs (Taby and Issa, 2010; Venkatachalam et al., 2011). Interactions between these processes and complex associations with genetic alterations have recently been unraveled (van Engeland et al., 2011).

Angiogenesis, the formation of new capillaries from existing blood vessels, is essential for the growth and metastasis of a solid tumor (Folkman and Shing, 1992). It is generally assumed that microvessel formation around a tumor is stimulated by various angiogenic factors secreted by the tumor cells (Takahashi et al., 1995). Among them, vascular endothelial growth factor (VEGF) is considered one of the strongest promoters of tumor angiogenesis (Hanahan and Folkman, 1996). VEGF is an endothelial cell-specific mitogen involved in a number of pathologic processes, including angiogenesis, tumor growth and metastasis (Ferrara, 1999; Schott and Morrow, 1993). Numerous studies have shown that growing tumors require the establishment of a blood supply, and VEGF is often up-regulated in cancer (Carmeliet and Jain, 2000; Ferrara, 2000). VEGF plays an essential role in the development and differentiation of the cardiovascular system. Markers in the VEGF gene have been associated with increased risk of developing cancer, and recent studies have also demonstrated that the expression of the VEGF had a prognostic significance in patients with cancer (Gasparini et al., 1997). Several studies have also suggested a strong correlation between VEGF expression and both poor prognosis and metastasis in CRC (Des Guetz et al., 2006). Increased VEGF expression in CRC may predict the risk of multiple liver metastases and play a role in the spread of CRC cells to the lymph nodes (Tanigawa et al., 1997; Kuramochi et al., 2006; Saad et al., 2006).

The VEGF gene is located on chromosome 6p12 and includes a 14-kb coding region with eight exons and seven introns (Vincenti et al., 1996). At least 30 single nucleotide polymorphisms (SNP) in VEGF gene have been described in the literature (Brogan et al., 1999; Renner et al., 2000; Watson et al., 2000). Polymorphisms of VEGF gene have been associated with susceptibility to several types of cancer. Some of these polymorphisms (+936C>T rs3025039, -2578C>A rs699947, -1154G>A rs1570360, -634G>C rs2010963, -460C>T rs833061, +405C>G rs2010963) have been related to protein expression of VEGF in CRC. Despite numerous studies that have evaluated the association between VEGF gene polymorphisms and susceptibility to CRC, the specific association still remains controversial. Since VEGF is significant in the angiogenesis of CRC, it is reasonable to hypothesize that VEGF gene polymorphisms are good candidates for predicting the risk of developing CRC. The aim of this meta-analysis study was to investigate the association between VEGF gene polymorphisms and its susceptibility to CRC by conducting a meta-analysis from all eligible case-control studies published to date.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

MATERIAL AND METHODS

Literature search strategy

We performed an electronic search of the PubMed Embase and CBM to retrieve papers linking VEGF gene polymorphisms and susceptibility to CRC available until January 2011 without language restrictions, using the following query: ["VEGFs" or "VEGF" or "Vascular Endothelial Growth Factors"] and ["Polymorphism, Single Nucleotide" or "SNPs" or "Polymorphism, Genetic"] and ["Colorectal Cancer" or "Colorectal Tumors" or "Colorectal Neoplasms"]. The reference lists of major textbooks, reviews, and included articles were identified through manual searches to find other potentially eligible studies. Studies reported by the same authors, although published in different journals, were checked for possible overlapping participant groups. When pertinent data were not included, or data that were presented were unclear, the authors were contacted directly.

Inclusion and exclusion criteria

To be eligible for inclusion in this meta-analysis, the following criteria were established: i) case-control studies that addressed CRC cases and healthy controls; ii) studies that evaluated the association between VEGF gene polymorphisms and CRC risk; iii) studies that included sufficient genotype data for extraction. Studies were excluded when: i) not casecontrol studies that evaluated the association between VEGF gene polymorphisms and CRC risk; ii) case reports, letters, reviews, meta-analysis and editorial articles; iii) studies that were based on incomplete raw data and those with no usable data reported; iv) duplicate data were contained in the studies; v) family-based design was used.

Data extraction

Using a standardized form, data from published studies were extracted independently by two reviewers (Dong XH and Jin GJ) to acquire the necessary information. From each of the included articles the following information was retrieved: first author, year of publication, country, language, ethnicity, study design, diagnostic criteria, source of cases and controls, number of cases and controls, male/female ratio, mean age, sample, detection methods, polymorphisms, genotypes frequency and evidence of Hardy-Weinberg equilibrium (HWE) in controls. For conflicting evaluations, an agreement was reached following a discussion.

Quality assessment of the studies included

The quality of papers was also independently assessed by two reviewers (Dong XH and Jin GJ) based on the STROBE quality score systems (Vandenbroucke et al., 2007). Thirty items relevant to the quality appraisal were used for assessment in this meta-analysis. Quality scores ranged from 0 to 30. We defined 10, 20 and 30 scores as low, moderate and high grade respectively. Any discrepancies between the two reviewers were resolved by discussion and consultation with a third reviewer (Shang H).

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

Statistical analysis

Meta-analysis was performed using the RevMan 5.0.25 (provided by The Cochrane Collaboration) and STATA package version 9.2 (Stata Corporation, College Station, Texas). The strength of the associations between VEGF gene polymorphisms and susceptibility to CRC were estimated by odds ratio (OR) and 95% confidence interval (95%CI). Betweenstudy heterogeneities were estimated using Cochran's O test (Higgins and Thompson, 2002; Zintzaras and Ioannidis, 2005). We also quantified the effect of heterogeneity by P^2 test. I^2 ranges between 0 and 100% and represents the proportion of inter-study variability that can be attributed to heterogeneity rather than chance. I^2 values of 25, 50 and 75% were defined as low, moderate and high estimates, respectively. When a significant Q test $(P < 0.10 \text{ or } I^2 > 50\%)$ indicated heterogeneity across studies, the random effects model was used for meta-analysis, or else the fixed effects model was used (Viechtbauer, 2007). Before the effect estimation of associations between VEGF gene polymorphisms and susceptibility to CRC, we tested whether genotype frequencies of controls were in HWE using the χ^2 test. Subgroup analysis based on ethnicity was used to explore and to explain the diversity among the results of different studies. Sensitivity analysis was mainly performed by sequential omission of individual studies or non-HWE studies. Publication bias was investigated by Begg's funnel plot, and funnel plot asymmetry was assessed by Egger's linear regression test (Peters et al., 2006), statistical significance was considered when the P value of Egger's test was ≤ 0.10 . All the P values were two-sided. To ensure the reliability and the accuracy of the results, two reviewers (L.P. Zhou and H. Luan) entered the data in the statistical software programs independently and obtained the same results.

RESULTS

Characteristics of the studies included

The search strategy retrieved 29 potentially relevant studies. Base on he inclusion criteria, only 8 case-control studies (Wu et al., 2006; Park et al., 2007; Bae et al., 2008; Cacev et al., 2008; Chae et al., 2008; Hofmann et al., 2008; Dassoulas et al., 2009; Maltese et al., 2009) with full-text were included in this meta-analysis and 21 studies were excluded. The flow chart of study selection is summarized in Figure 1. These 8 case-control studies included a total of 2,337 CRC cases and 2,032 healthy controls. All included studies were case-control studies which evaluated the association between VEGF gene polymorphisms and susceptibility to CRC. The published year of the included studies ranged from 2006 to 2009. All included articles were written in English except one (Wu et al., 2006) in Chinese. The source of controls was based on a healthy population. Diverse genotyping methods mainly used polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Six VEGF gene polymorphisms were addressed in all included studies, including +936C>T, -2578C>A, -1154G>A, -634G>C, -460C>T and +405C>G. HWE test was performed on all included studies, all of them showed in HWE (P > 0.05) except one by Dassoulas et al. (2009). The baseline characteristics and methodological quality of all included studies are summarized in Table 1. The genotype distribution and frequency of are summarized in Table 2.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

Table 1. Baseline (characteri	stics of inc	luded stu	idies in meta-analysis.								
First author (year) [Ref]	Country	Ethnicity	Tumor types	VEGF gene polymorphisms	Number c	of subjects	Sex (male	e/female)	Age (mea	$in \pm SD$)	Detection method	Quality scores
					Cases	Controls	Cases	Controls	Cases	Controls		
Wu et al., 2006	German	German	CRC	+936C>T	157	117	100/57	74/43			PCR-RFLP	37
Park et al., 2007	Korea	Korean	CC	-2578C>A	246	203	128/118	71/132	59.3 ± 13.3	46.6 ± 16.5	PCR-RFLP	45
Bae et al., 2008	Korea	Korean	CC	+936C>T	262	229	136/126	112/117	60.2 ± 13.2	59.6 ± 11.8	PCR-RFLP	43
Cacev et al., 2008	Croatia	Croatian	CC	-1154G>A, -460C>T	160	160	92/86	86/74	60.1 ± 15.3	64.7 ± 10.9	RT-PCR	39
Chae et al., 2008	Korea	Korean	CRC	+936C>T, -634G>C	465	413	241/224	333/80			PCR-DHPLC	41
Hofmann et al., 2008	Austria	Austrian	CRC	+936C>T, -2578C>A, -634G>C	433	433	175/258	175/258	61.1 ± 12.1	61.0 ± 10.9		42
Dassoulas et al., 2009	Greece	Greek	CRC	+936C>T, -2578C>A, -634G>C,								
-1154G>A, -460C>T	312	362					PCR	36				
Maltese et al., 2009	Italy	Italian	CRC	-2578C>A, -460C>T, +405C>G	302	115	177/125	54/61		,	PCR-RFLP	40
VEGF = vascular en	dothelial 3	growth fact	or; CRC	= colorectal cancer; $CC = co$	olon canc	er; PCR =	= polymer	ase chain	reaction; RI	TLP = restriction	ction fragment	length
polymorphism; RT =	 real timε 	; DHPLC	= denatu	ring high-performance liquid	d chroma	tography.						
Table 2. The geno	type distri	ibution and	l frequen	cy of all included studies.								
First author (year)			Ca	Ises			Controls			H H	WE test of contr	ols

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

Table 2. The genotype	distributio	n and fre	quency o	f all incl	uded studies.							
rirst author (year)			Cases					Controls			HWE test	of controls
-936C>T polymorphism	Total	cc	CT	TT	T frequency	Total	CC	CT	TT	T frequency	γ^2	P value
Wu et al., 2006	157	123	31	С	0.118	117	88	28		0.128	0.583	0.445
Bae et al., 2008	262	170	83	6	0.193	229	169	57	ę	0.138	0.551	0.458
Chae et al., 2008	465	293	156	16	0.202	413	252	149	12	0.209	3.304	0.069
Hofmann et al., 2008	427	331	88	8	0.122	427	308	108	11	0.152	0.172	0.679
Dassoulas et al., 2009	312	135	103	74	0.402	362	185	98	79	0.354	60.197	<0.001
2578C>A polymorphism	Total	S	CA	AA	A frequency	Total	8	CA	AA	A frequency	χ^2	P value
Park et al., 2007	246	149	83	14	0.226	203	106	82	15	0.276	0.025	0.875
Hofmann et al., 2008	433	80	225	128	0.555	427	85	238	104	0.522	2.842	0.092
Dassoulas et al., 2009	312	151	116	45	0.330	362	199	121	42	0.283	11.292	0.001
Maltese et al., 2009	302	76	150	55	0.430	115	43	09	12	0.365	1.804	0.179
1154G>A polymorphism	Total	gg	GA	AA	A frequency	Total	g	GA	AA	A frequency	χ^2	P value
Cacev et al., 2008	152	09	73	19	0.365	156	52	81	23	0.407	0.892	0.345
Dassoulas et al., 2009	312	126	138	48	0.375	362	152	156	54	0.365	1.772	0.183
634G>C polymorphism	Total	GG	GC	20	C frequency	Total	gg	GC	20	C frequency	χ^2	P value
Chae et al., 2008	465	166	193	106	0.435	413	106	223	84	0.473	2.844	0.092
Hofmann et al., 2008	432	193	192	47	0.331	430	192	195	43	0.327	0.406	0.524
Dassoulas et al., 2009	312	128	125	59	0.389	362	145	141	76	0.405	13.293	< 0.001
460C>T polymorphism	Total	S	CT	ΤΤ	T frequency	Total	8	CT	ΤΤ	T frequency	χ^2	P value
Cacev et al., 2008	155	40	84	31	0.471	160	45	83	32	0.459	0.315	0.574
Dassoulas et al., 2009	312	47	104	161	0.683	362	42	121	199	0.717	11.292	0.001
Maltese et al., 2009	299	76	153	70	0.490	111	10	54	47	0.667	0.993	0.319
-405C>G polymorphism	Total	S	CG	gg	G frequency	Total	8	CG	gg	G frequency	χ^2	P value
Maltese et al., 2009	301	48	135	118	0.616	91	15	46	30	0.582	0.140	0.708

L.P. Zhou et al.

HWE = Hardy-Weinberg equilibrium.

©FUNPEC-RP www.funpecrp.com.br

3678

VEGF gene polymorphisms and colorectal cancer risk

Figure 1. Flow-chart showing study selection procedure.

Association between +936C>T polymorphism and susceptibility to CRC

There were five included studies that reported the association between VEGF +936C>T polymorphism and susceptibility to CRC (Figure 2). Meta-analysis results identified no significant association between VEGF +936C>T polymorphism and susceptibility to CRC in the comparisons of C allele versus T allele (OR = 0.95, 95%CI = 0.76-1.20, P = 0.68), C allele carrier (CC + CT) versus TT (OR = 0.87, 95%CI = 0.65-1.17, P = 0.36), and T allele carrier (CT + TT) versus CC (OR = 1.04, 95%CI = 0.79-1.38, P = 0.76).

	CRC ca	ses	Healthy co	ntrols		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
C allele versus T allele							
Wu et al.2006	277	314	204	234	12.0%	1.10 [0.66, 1.84]	
Bae et al.2008	423	524	395	458	18.3%	0.67 [0.47, 0.94]	
Chae et al. 2008	742	930	653	826	23.8%	1.05 [0.83, 1.32]	†
Hofmann et al. 2008	750	854	724	854	21.5%	1.29 [0.98, 1.71]	-
Dassoulas et al.2009	373	624	468	724	24.4%	0.81 [0.65, 1.01]	-
Total (95% CI)		3246		3096	100.0%	0.95 [0.76, 1.20]	+
Total events	2565		2444				
Heterogeneity: Tau ² = 0.0	4; Chi² =	11.72, d	lf = 4 (P = 0.0	02); I ² = 6	6%		
Test for overall effect: Z =	0.41 (P =	0.68)					
CC + CT versus TT							
Wu et al.2006	154	157	116	117	2.7%	0.44 [0.05, 4.31]	
Bae et al. 2008	253	262	226	229	8.7%	0.37 [0.10, 1.40]	
Chae et al. 2008	449	465	401	413	15.3%	0.84 [0.39, 1.80]	_ _
Hofmann et al. 2008	419	427	416	427	8.2%	1.38 [0.55, 3.48]	- -
Dassoulas et al.2009	238	312	283	362	65.2%	0.90 [0.63, 1.29]	+
Total (95% CI)		1623		1548	100.0%	0.87 [0.65, 1.17]	
Total events	1513		1442				•
Heterogeneity: Chi ² = 2.9	4 df = 4	P = 0.5	$7) \cdot l^2 = 0\%$				
Test for overall effect: Z =	= 0.92 (P =	= 0.36)	.,,. 0,0				
CT + TT versus CC							
Wu et al.2006	34	157	29	117	13.3%	0.84 [0.48, 1.48]	
Bae et al.2008	92	262	60	229	19.0%	1.52 [1.03, 2.25]	
Chae et al. 2008	172	465	161	413	23.5%	0.92 [0.70, 1.21]	•
Hofmann et al. 2008	96	427	119	427	22.0%	0.75 [0.55, 1.02]	-=-
Dassoulas et al.2009	177	312	177	362	22.2%	1.37 [1.01, 1.86]	-
Total (95% CI)		1623		1548	100.0%	1.04 [0.79, 1.38]	
Total events	571		546				
Heterogeneity: Tau ² = 0.0	6; Chi² =	12.45, d	lf = 4 (P = 0.0	01); l² = 6	8%		
Test for overall effect: Z =	0.31 (P =	0.76)					Risk decreased Risk increased

Figure 2. Forest plot showed the association between +936C>T polymorphism and CRC risk.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

L.P. Zhou et al.

Association between -2578C>A polymorphism and susceptibility to CRC

Four included studies reported the association between -2578C>A polymorphism and susceptibility to CRC (Figure 3). A significant association was found between -2578C>A polymorphism and susceptibility to CRC in the comparison of C allele carrier (CC + CA) versus AA (OR = 0.77, 95%CI = 0.62-0.96, P = 0.02). However, no association was found in the comparisons of C allele versus A allele (OR = 0.91, 95%CI = 0.74-1.11, P = 0.34) and A allele carrier (CA + AA) versus CC (OR = 1.07, 95%CI = 0.82-1.40, P = 0.63). In addition, we have also used the Fisher's exact test for re-analysis of the association between -2578C>A polymorphism and susceptibility to CRC. The results showed that C allele versus A allele (P = 0.062); CC + CA versus AA (P = 0.051); CA + AA versus CC (P = 0.273).

	CRC case	es	Healthy cor	ntrols		Odds Ratio	Odds Ratio
Study or Subgroup	Events 7	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
C allele versus A allele							
Park et al. 2007	381	492	294	406	21.7%	1.31 [0.97, 1.77]	-
Hofmann et al. 2008	385	866	408	854	30.4%	0.87 [0.72, 1.06]	
Dassoulas et al. 2009	418	624	519	724	26.9%	0.80 [0.64, 1.01]	-
Maltese et al. 2009	344	604	146	230	21.0%	0.76 [0.56, 1.04]	-
Total (95% CI)	2	2586		2214	100.0%	0.91 [0.74, 1.11]	•
Total events	1528		1367				
Heterogeneity: Tau ² = 0.0	3; Chi² = 7.9	94, df =	= 3 (P = 0.05); l² = 62	:%		
Test for overall effect: Z =	0.94 (P = 0).34)					
CC + CA versus AA							
Park et al. 2007	232	246	188	203	6.6%	1.32 [0.62, 2.81]	
Hofmann et al. 2008	305	433	323	427	54.1%	0.77 [0.57, 1.04]	=
Dassoulas et al. 2009	267	312	320	362	24.0%	0.78 [0.50, 1.22]	
Maltese et al. 2009	247	302	103	115	5 15.3%	0.52 [0.27, 1.02]	
Total (95% CI)		1293		1107	100.0%	0.77 [0.62, 0.96]	•
Total events	1051		934				
Heterogeneity: $Chi^2 = 3.2$	8. df = 3 (P	= 0.35	5): $l^2 = 8\%$				
Test for overall effect: Z =	= 2.31 (P =	0.02)	,,				
CA + AA versus CC							
Park et al. 2007	97	246	97	203	24.2%	0.71 [0.49, 1.04]	
Hofmann et al. 2008	353	433	342	427	26.5%	1.10 [0.78, 1.54]	• •
Dassoulas et al. 2009	161	312	163	362	29.0%	1.30 [0.96, 1.76]	-
Maltese et al. 2009	205	302	72	115	20.2%	1.26 [0.81, 1.98]	1-
Total (95% CI)	1	1293		1107	100.0%	1.07 [0.82, 1.40]	+
Total events	816		674				
Heterogeneity: Tau ² = 0.0	4; Chi² = 6.0	67, df =	= 3 (P = 0.08); l² = 55	%		
Test for overall effect: Z =	0.48 (P = 0	0.63)					Risk decreased Risk increased

Figure 3. Forest plot showed the association between -2578C>A polymorphism and CRC risk Fisher's-exact test suggested that C allele versus A allele (P = 0.062); CC + CA versus AA (P = 0.051); CA + AA versus CC (P = 0.273).

Association between -1154G>A polymorphism and susceptibility to CRC

There were only two included studies that reported the association of -1154G>A polymorphism and susceptibility to CRC (Figure 4). Meta-analysis results showed no association between -1154G>A polymorphism and susceptibility to CRC in the comparisons of G allele versus A allele (OR = 1.03, 95%CI = 0.85-1.23, P = 0.78), G allele carrier (GG + GA) versus AA (OR = 1.03, 95%CI = 0.72-1.47, P = 0.86), and A allele carrier (GA + AA) versus GG (OR = 0.97, 95%CI = 0.75-1.25, P = 0.79).

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

VEGF gene polymorphisms and colorectal cancer risk

Study or Subgroup	CRC ca Events	ses Total	Healthy cor Events	trols Total	Weight	Odds Ratio M-H, Fixed, 95% Cl	Odds Ratio M-H, Fixed, 95% Cl
G allele versus A allele					-		
Cacev et al. 2008	193	304	185	312	29.5%	1.19 [0.86, 1.65]	-
Dassoulas et al. 2009	390	624	460	724	70.5%	0.96 [0.77, 1.19]	–
Total (95% CI)		928		1036	100.0%	1.03 [0.85, 1.23]	•
Total events	583		645				
Heterogeneity: Chi ² = 1.22 Test for overall effect: Z =	2, df = 1 (ł 0.28 (P =	P = 0.27 0.78)	'); l² = 18%				
GG + GA versus AA							
Cacev et al. 2008	133	152	133	156	27.2%	1.21 [0.63, 2.33]	_ _
Dassoulas et al. 2009	264	312	308	362	72.8%	0.96 [0.63, 1.47]	
Total (95% CI)		464		518	100.0%	1.03 [0.72, 1.47]	
Total events	397		441				
Heterogeneity: Chi ² = 0.33 Test for overall effect: Z =	3, df = 1 (I 0.17 (P =	P = 0.57 0.86)	'); l² = 0%				
GA + AA versus GG							
Cacev et al. 2008	92	152	104	156	34.0%	0.77 [0.48, 1.22]	
Dassoulas et al. 2009	186	312	210	362	66.0%	1.07 [0.79, 1.45]	#
Total (95% CI)		464		518	100.0%	0.97 [0.75, 1.25]	
Total events	278		314				
Heterogeneity: Chi ² = 1.36	6, df = 1 (I	P = 0.24); I² = 26%				
Test for overall effect: Z =	0.27 (P =	0.79)					Risk decreased Risk increased

Figure 4. Forest plot showing the association between -1154G>A polymorphism and CRC risk.

Association between -634G>C polymorphism and susceptibility to CRC

Only three included studies reported the association between -634G>C polymorphism and susceptibility to CRC (Figure 5). No association was also found between -634G>C polymorphism and susceptibility to CRC in the comparisons of G allele versus C allele (OR = 1.07, 95%CI = 0.95-1.20, P = 0.24), G allele carrier (GG + GC) versus CC (OR = 0.96, 95%CI = 0.77-1.18, P = 0.68), C allele carrier (GC + CC) versus GG (OR = 0.85, 95%CI = 0.72-1.00, P = 0.05).

Association between -460C>T polymorphism and susceptibility to CRC

There were also only three included studies that investigated the association between -460C>T polymorphism and susceptibility to CRC (Figure 6). Unfortunately, we also found no association between -460C>T polymorphism and susceptibility to CRC in the comparisons of C allele versus T allele (OR = 1.32, 95%CI = 0.87-2.01, P = 0.19), C allele carrier (CC + CT) versus TT (OR = 1.40, 95%CI = 0.84-2.33, P = 0.19), and C allele carrier (CT + TT) versus CC (OR = 0.65, 95%CI = 0.33-1.29, P = 0.22).

Association between +405C>G polymorphism and susceptibility to CRC

There was only one study by Maltese et al. (2009) who investigated the association of between +405C>G polymorphism and susceptibility to CRC (Figure 7). Similarly, we found

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

no association between +405C>G polymorphism and susceptibility to CRC in the comparisons of C allele versus G allele (OR = 0.87, 95%CI = 0.62-1.22, P = 0.41), C allele carrier (CC + CG) versus GG (OR = 0.76, 95%CI = 0.47-1.25, P = 0.28), and G allele carrier (CG + GG) versus CC (OR = 1.04, 95%CI = 0.55-1.96, P = 0.90).

	CRC ca	ses	Healthy cor	ntrols		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H. Fixed, 95% Cl
G allele versus C allele							
Chae et al. 2008	525	930	435	826	36.6%	1.17 [0.97, 1.41]	•
Hofmann et al. 2008	578	864	579	860	35.0%	0.98 [0.80, 1.20]	•
Dassoulas et al. 2009	381	624	431	724	28.3%	1.07 [0.86, 1.33]	<u>†</u>
Total (95% CI)		2418		2410	100.0%	1.07 [0.95, 1.20]	•
Total events	1484		1445				
Heterogeneity: Chi ² = 1.5 Test for overall effect: Z =	1, df = 2 (F 1.18 (P =	P = 0.47 0.24)	'); I² = 0%				
GG + GC versus CC							
Chae et al 2008	359	465	329	413	46.3%	0.86 [0.63, 1.19]	+
Hofmann et al. 2008	385	432	387	430	24.6%	0.91 [0.59, 1.41]	-
Dassoulas et al. 2009	253	312	286	362	29.2%	1.14 [0.78, 1.67]	+
Total (95% CI)		1209		1205	100.0%	0.96 [0.77, 1.18]	+
Total events	997		1002				
Heterogeneity: Chi ² = 1.24	4, df = 2 (F	e = 0.54); I ² = 0%				
Test for overall effect: Z =	0.41 (P =	0.68)					
GC + CC versus GG							
Chae et al. 2008	299	465	307	413	38.1%	0.62 [0.46, 0.83]	-
Hofmann et al. 2008	239	432	238	430	34.9%	1.00 [0.76, 1.31]	+
Dassoulas et al. 2009	184	312	217	362	27.0%	0.96 [0.71, 1.31]	†
Total (95% CI)		1209		1205	100.0%	0.85 [0.72, 1.00]	•
Total events	722		762				
Heterogeneity: Chi ² = 6.42	2, df = 2 (F	P = 0.04); l² = 69%				
Test for overall effect: Z =	1.99 (P =	0.05)					Risk decreased Risk increased

Figure 5. Forest plot showing the association between -634G>C polymorphism and CRC risk.

	CRC ca	ses	Healthy co	ntrols		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% Cl
C allele versus T allele							
Cacev et al. 2008	164	310	173	320	32.5%	0.95 [0.70, 1.31]	+
Dassoulas et al. 2009	198	624	205	724	35.3%	1.18 [0.93, 1.49]	–
Maltese et al. 2009	305	598	74	222	32.2%	2.08 [1.51, 2.87]	-
Total (95% CI)		1532		1266	100.0%	1.32 [0.87, 2.01]	•
Total events	667		452				
Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	1; Chi² = 1 1.30 (P =	12.65, c : 0.19)	if = 2 (P = 0.	002); I² =	84%		
CC + CT versus TT							
Cacev et al. 2008	124	155	128	160	29.1%	1.00 [0.58, 1.74]	+
Dassoulas et al. 2009	151	312	163	362	38.4%	1.15 [0.85, 1.55]	†
Maltese et al. 2009	229	299	64	111	32.5%	2.40 [1.51, 3.81]	
Total (95% CI)		766		633	100.0%	1.40 [0.84, 2.33]	◆
Total events	504		355				
Heterogeneity: Tau ² = 0.1	5; Chi² = 3	8.25, df	= 2 (P = 0.0	2); l² = 7	6%		
Test for overall effect: Z =	1.30 (P =	: 0.19)					
CT + TT versus CC							
Cacev et al.2008	115	155	115	160	34.7%	1.13 [0.68, 1.85]	-
Dassoulas et al. 2009	265	312	320	362	36.0%	0.74 [0.47, 1.16]	
Maltese et al. 2009	223	299	101	111	29.4%	0.29 [0.14, 0.59]	
Total (95% CI)		766		633	100.0%	0.65 [0.33, 1.29]	◆
Total events	603		536				
Heterogeneity: Tau ² = 0.29); Chi² = 9	.66, df =	= 2 (P = 0.008	3); I² = 79	1%		
Test for overall effect: Z =	1.24 (P =	0.22)					Risk decreased Risk increased

Figure 6. Forest plot showing the association between -460C>T polymorphism and CRC risk.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

Figure 7. Forest plot showing the association between +405C>G polymorphism and CRC risk.

Subgroup analysis and sensitivity analysis

A summary of subgroup analysis of the associations between VEGF gene polymorphisms and susceptibility to CRC is provided in Table 3. In the subgroup analysis based on ethnicity, included studies were divided into Caucasian and Asian populations. Subgroup analysis results showed that the C allele and C allele carrier (CC + CA) of -2578C>A polymorphism might be protective factors for CRC in Caucasian populations (OR = 0.83, 95%CI = 0.73-0.95, P = 0.006; OR = 0.73, 95%CI = 0.58-0.92, P = 0.008; respectively). In addition, the G allele carrier (GG + GC) of -634G>C polymorphism might also be a protective factor for CRC in Asian populations (OR = 0.62, 95%CI = 0.46-0.83, P = 0.001).

Sensitivity analysis was performed by sequential omission of individual studies. The significance of pooled OR in all individuals analysis and subgroup analysis was not influenced excessively by omitting any single study. Furthermore, we also performed a sensitivity analysis by omission of one non-HWE study (Dassoulas et al., 2009). There was also no obvious influence on all individuals' analysis and subgroup analysis.

Publication bias

Publication bias in the literature was accessed by Begg's funnel plot and Egger's linear regression test. Egger's linear regression test was used to measure the asymmetry of the funnel plot. Due to the limitation in the number of included studies, the publication bias was detected on +936C>T and -2578C>A polymorphisms (Table 4, Figure 8). Results showed that there was no publication bias (all P > 0.05).

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

L.P. Zhou et al.

Comparisons	OR	95%CI	P value	Hete	rogeneity	Effects model
-				<i>I</i> ²	P value	
+936C>T						
C allele versus T allele	0.95	[0.76-1.20]	0.68	66%	0.02	Random
Caucasian	1.03	[0.74-1.44]	0.85	71%	0.03	
Asian	0.85	[0.55-1.32]	0.47	78%	0.03	
CC + CT versus TT	0.87	[0.65-1.17]	0.36	0%	0.57	Fixed
Caucasian	0.93	[0.67-1.30]	0.69	0%	0.56	
Asian	0.67	[0.35-1.28]	0.23	9%	0.30	
CT + TT versus CC	1.04	[0.79-1.38]	0.76	68%	0.01	Random
Caucasian	0.97	[0.63-1.48]	0.88	74%	0.02	
Asian	1.16	[0.71-1.90]	0.56	77%	0.04	
-2578C>A						
C allele versus A allele	0.91	[0.74-1.11]	0.34	62%	0.05	Random
Caucasian	0.83	[0.73-0.95]	0.006	0%	0.71	
Asian	1.31	[0.97-1.77]	0.08	-	-	
CC + CA versus AA	0.77	[0.62-0.96]	0.02	8%	0.35	Fixed
Caucasian	0.73	[0.58-0.92]	0.008	0%	0.56	
Asian	1.32	0.62-2.81	0.47	-	-	
CA + AA versus CC	1.07	0.82-1.40	0.63	55%	0.08	Random
Caucasian	1.22	[0.99-1.49]	0.06	0%	0.75	
Asian	0.71	0.49-1.04	0.08	-	-	
-1154G>A*						
G allele versus A allele	1.03	[0.85-1.23]	0.78	18%	0.27	Fixed
GG + GA versus AA	1.03	0.72-1.47	0.86	0%	0.57	
GA + AA versus GG	0.97	0.75-1.25	0.79	26%	0.24	
-634G>C						
G allele versus C allele	1.07	[0.95-1.20]	0.24	0%	0.47	Fixed
Caucasian	1.02	0.88-1.18	0.80	0%	0.58	
Asian	1.17	[0.97-1.41]	0.11	-	-	
GG + GC versus CC	0.96	0.77-1.18	0.68	0%	0.54	Fixed
Caucasian	1.03	0.78-1.38	0.82	0%	0.45	
Asian	0.86	[0.63-1.19]	0.38	-	-	
GC + CC versus GG	0.85	0.72-1.00	0.05	69%	0.04	Random
Caucasian	0.98	0.80-1.20	0.86	0%	0.85	
Asian	0.62	[0.46-0.83]	0.001	-	-	
-460C>T*		. ,				
C allele versus T allele	1.32	[0.87-2.01]	0.19	84%	0.002	Random
CC + CT versus TT	1.40	0.84-2.33	0.19	76%	0.02	
CT + TT versus CC	0.65	0.33-1.29	0.22	79%	0.008	
+405C>G*		r 1				
C allele versus G allele	0.87	[0.62-1.22]	0.41	-	-	Fixed
CC + CG versus GG	0.76	0.47-1.25	0.28	-	-	
		L J				

OR = odds ratio; 95%CI = 95% confidence interval; * = only included Caucasian populations.

Polymorphisms	Coefficient	SE	t	P > t	95%CI
+936C>T					
C allele versus T allele	0.20	3.35	0.06	0.96	[-10.45, 10.85]
CC + CT versus TT	-0.63	0.74	-0.84	0.46	[-3.00, 1.74]
CT + TT versus CC	0.58	4.05	0.14	0.90	[-12.32, 13.48]
-2578C>A					
C allele versus A allele	2.17	4.59	0.47	0.68	[-17.60, 21.94]
CC + CA versus AA	0.44	1.81	0.24	0.83	[-7.33, 8.21]
CA + AA versus CC	-2.43	6.35	-0.38	0.74	[-29.76, 24.91]

SE = standard error; 95%CI = 95% confidence interval.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

©FUNPEC-RP www.funpecrp.com.br

Figure 8. Funnel plot of publication bias for the association between VEGF gene polymorphisms and susceptibility to CRC (A: +936C>T polymorphism; B: -2578C>A polymorphism).

DISCUSSION

There is growing evidence that genetic variation plays an important role in the determination of individual susceptibility to complex disease traits (Knight, 2005). Functional polymorphisms, which affect the regulation of gene expression, can contribute to differences between individuals in susceptibility to various cancers (Ponder, 2001). The effect may be seen with one polymorphism alone or in combination with other polymorphisms (Clapper, 2000). Several studies have shown that polymorphisms in the promoter as well as in the 5'-

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

L.P. Zhou et al.

and 3'-untranslated regions of the VEGF gene are associated with the production of the VEGF protein in colorectal carcinogenesis (Watson et al., 2000; Bae et al., 2008). VEGF expression was associated with both poor prognosis and metastasis in CRC. In a large meta-analysis, including 27 studies (Des Gustz et al., 2006), demonstrated that VEGF over-expression is significantly correlated with poor overall survival and with an increased risk of relapse. Recently, a number of molecular epidemiological studies have been conducted to examine the association between VEGF gene polymorphisms and CRC susceptibility (Cao et al., 2010; Liu et al., 2010). However, the possible influence of VEGF gene polymorphisms on VEGF production as well as tumor development and progression in CRC still remains controversial. Therefore, the aim of this study was to investigate the influence of VEGF gene polymorphisms on susceptibility to CRC by means of meta-analysis.

Our meta-analysis quantitatively assessed the association between VEGF gene polymorphisms and susceptibility to CRC. Finally, only 8 case-control studies were included and comprised of a total of 2,337 CRC cases and 2,032 healthy controls. In this meta-analysis, six VEGF gene polymorphisms were addressed and evaluated in colorectal carcinogenesis, including +936C>T, -2578C>A, -1154G>A, -634G>C, -460C>T and +405C>G. Meta-analysis results showed that the C allele carrier (CC + CA) of -2578C>A polymorphism might be a protective factor for CRC. However, we found no association between +936C>T, -1154G>A, -634G>C, -460C>T and +405C>G with susceptibility to CRC. In addition, we performed a subgroup analysis based on ethnicity. Interestingly, subgroup analysis results showed that the C allele and C allele carrier (CC + CA) of -2578C>A polymorphism might be might be protective factors for CRC in Caucasian populations, while the G allele carrier (GG + GC) of -634G>C polymorphism might be a protective factor for CRC in Asian populations, suggesting a possible role of ethnic differences in genetic backgrounds and the environment they lived in. Although a significant association was found between -634G>C polymorphism and susceptibility to CRC, only one eligible study number was included, however this result still requires further investigation. Unfortunately, there was also no association between +936C>T, -1154G>A, -460C>T and +405C>G with susceptibility to CRC in further subgroup analysis. Between-study heterogeneity was found in meta-analysis of VEGF +936C>T, -2578C>A, -634G>C and -460C>T polymorphisms. Therefore, the random effects model was used to minimize potential bias. No evidence showed publication bias in this meta-analysis for the association between VEGF gene polymorphisms and susceptibility to CRC.

In addition, VEGF gene polymorphisms may also be associated with many clinicopathologic features of CRC. Chae et al. demonstrated that the TT genotype of 936C>T polymorphism was significantly associated with advanced stage, distant metastasis, high serum level of CA19-9 and higher grade in CRC patients (Chae et al., 2008). Park et al. (2007) found that the AA genotype and A allele carrier (CA + AA) of -2578C>A polymorphism might be protective factors for Korean women with proximal CRC. Moreover, Bae et al. (2008), confirmed that the CT genotype and T allele carrier (CT +TT) of 936C>T polymorphism were associated with increased risk for CRC in females with a distal lesion or age less than 55 yearsold. Wu et al. (2006) conducted a subgroup analysis on anastomotic leakage, and their results showed that the C allele and CC genotype were associated with less frequency of anastomotic leakage in patients with CRC. Furthermore, the -2578AA, -634CC and +936TT genotypes were found to be related with a significantly lower overall survival (Dassoulas et al., 2009).

Such evidence on the functionality of VEGF gene polymorphisms might lead to a bet-

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

ter understanding of CRC biology and behavior. Also it was also a strong rationale for the development of novel anti-angiogenesis drugs interfering with the VEGF protein production in colorectal carcinogenesis. At the same time, findings about SNPs influencing VEGF-targeted therapies as predictive markers would be of great help for doctors to choose therapies in an individual manner (Hofmann et al., 2008).

Some limitations of this meta-analysis should be acknowledged. Firstly, because of incomplete raw data or publication limitations, some relevant studies could not be included in our analysis. Secondly, the small sample size available was not ideal for detecting small genetic effects. Thirdly, we were not able to address all the sources of heterogeneity that existed among studies for most polymorphisms, although we could have made subgroup stratifications analysis for the limited number of published studies. In addition, the lack of genotype frequency information provided by some published studies did not allow the estimation of the best genetic model of inheritance to follow. Finally, although all cases and controls of each study were well defined with similar inclusion criteria, there may be potential factors that were not taken into account that may have influenced our results.

In conclusion, our meta-analysis of 8 case-control studies demonstrated that the C allele carrier (CC + CA) of VEGF -2578C>A polymorphism might be a protective factor for CRC, especially in Caucasian populations. As few studies are available in this field and current evidence remains limited, this conclusion should be further confirmed by large case-control studies with an adequate methodological quality and proper controlling for possible confounders.

ACKNOWLEDGMENTS

We would like to thank J.L. Liu (Department of Oncology, the Fourth Affiliated Hospital of China Medical University) for his valuable contribution and kind revision of the manuscript.

REFERENCES

- Bae SJ, Kim JW, Kang H, Hwang SG, et al. (2008). Gender-specific association between polymorphism of vascular endothelial growth factor (VEGF 936 C>T) gene and colon cancer in Korea. *Anticancer Res.* 28: 1271-1276.
- Brogan IJ, Khan N, Isaac K, Hutchinson JA, et al. (1999). Novel polymorphisms in the promoter and 5' UTR regions of the human vascular endothelial growth factor gene. *Hum. Immunol.* 60: 1245-1249.
- Cacev T, Loncar B, Seiwerth S, Spavanti S, et al. (2008). Vascular endothelial growth factor polymorphisms -1154 G/A and -460 C/T are not associated with VEGF mRNA expression and susceptibility to sporadic colon cancer. *DNA Cell Biol.* 27: 569-574.
- Cao C, Ying T, Fang JJ, Sun SF, et al. (2010). Polymorphism of vascular endothelial growth factor -2578C/A with cancer risk: evidence from 11263 subjects. *Med. Oncol.* [Ahead of print].

Chae YS, Kim JG, Sohn SK, Cho YY, et al. (2008). Association of vascular endothelial growth factor gene polymorphisms with susceptibility and clinicopathologic characteristics of colorectal cancer. J. Korean Med. Sci. 23: 421-427. Clapper ML (2000). Genetic polymorphism and cancer risk. Curr. Oncol. Rep. 2: 251-256.

Dassoulas K, Gazouli M, Rizos S, Theodoropoulos G, et al. (2009). Common polymorphisms in the vascular endothelial

growth G LU R P. Nichola Concertal cancer development, prognosis, and survival. *Mol. Carcinog.* 48: 563-569.

Des Guetz G, Uzzan B, Nicolas P, Cucherat M, et al. (2006). Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer 94: 1823-1832.

Duthie SJ (2011). Epigenetic modifications and human pathologies: cancer and CVD. *Proc. Nutr. Soc.* 70: 47-56. Ferrara N (1999). Molecular and biological properties of vascular endothelial growth factor. *J. Mol. Med.* 77: 527-543. Ferrara N (2000). Vascular endothelial growth factor and the regulation of angiogenesis. *Recent. Prog. Horm. Res.* 55: 15-35. Folkman J and Shing Y (1992). Angiogenesis. *J. Biol. Chem.* 267: 10931-10934.

Carmeliet P and Jain RK (2000). Angiogenesis in cancer and other diseases. Nature 407: 249-257.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)

- Gasparini G, Toi M, Gion M, Verderio P, et al. (1997). Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J. Natl. Cancer Inst. 89: 139-147.
- Hanahan D and Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. *Cell* 86: 353-364.

Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558.

Hofmann G, Langsenlehner U, Renner W, Langsenlehner T, et al. (2008). Common single nucleotide polymorphisms in the vascular endothelial growth factor gene and colorectal cancer risk. J. Cancer Res. Clin. Oncol. 134: 591-595.

Knight JC (2005). Regulatory polymorphisms underlying complex disease traits. J. Mol. Med. 83: 97-109.

- Kuramochi H, Hayashi K, Uchida K, Miyakura S, et al. (2006). Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. *Clin. Cancer Res.* 12: 29-33.
- Liu L, Liu L, Zeng F, Wang K, et al. (2010). Meta-analysis of the association between VEGF-634 G>C and risk of malignancy based on 23 case-control studies. J. Cancer Res. Clin. Oncol. 137: 1027-1036.
- Maltese P, Canestrari E, Ruzzo A, Graziano F, et al. (2009). VEGF gene polymorphisms and susceptibility to colorectal cancer disease in Italian population. *Int. J. Colorectal Dis.* 24: 165-170.
- Park HM, Hong SH, Kim JW, Oh D, et al. (2007). Gender-specific association of the VEGF -2578C > A polymorphism in Korean patients with colon cancer. *Anticancer Res.* 27: 2535-2539.
- Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in metaanalysis. JAMA 295: 676-680.
- Ponder BA (2001). Cancer genetics. Nature 411: 336-341.
- Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, et al. (2000). A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J. Vasc. Res. 37: 443-448.
- Rothwell PM, Wilson M, Elwin CE, Norrving B, et al. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. *Lancet* 376: 1741-1750.
- Saad RS, Kordunsky L, Liu YL, Denning KL, et al. (2006). Lymphatic microvessel density as prognostic marker in colorectal cancer. Mod. Pathol. 19: 1317-1323.
- Schott RJ and Morrow LA (1993). Growth factors and angiogenesis. Cardiovasc. Res. 27: 1155-1161.
- Taby R and Issa JP (2010). Cancer epigenetics. CA Cancer J. Clin. 60: 376-392.
- Takahashi Y, Kitadai Y, Bucana CD, Cleary RK, et al. (1995). Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. *Cancer Res.* 55: 3964-3968.
- Tanigawa N, Amaya H, Matsumura M, Lu C, et al. (1997). Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. *Cancer Res.* 57: 1043-1046.
- van Engeland M, Derks S, Smits KM, Meijer GA, et al. (2011). Colorectal cancer epigenetics: complex simplicity. J. Clin. Oncol. 29: 1382-1391.
- Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. *Epidemiology* 18: 805-835.
- Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, de Bruijn DR, et al. (2010). The epigenetics of (hereditary) colorectal cancer. *Cancer Genet. Cytogenet.* 203: 1-6.
- Viechtbauer W (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Stat. Med. 26: 37-52.
- Vincenti V, Cassano C, Rocchi M and Persico G (1996). Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. *Circulation* 93: 1493-1495.
- Watson CJ, Webb NJ, Bottomley MJ and Brenchley PE (2000). Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. *Cytokine* 12: 1232-1235.
- Weitz J, Koch M, Debus J, Höhler T, et al. (2005). Colorectal cancer. Lancet 365: 153-165.

Wu GY, Wang XM, Keese M, Hasenberg T, et al. (2006). Association between vascular endothelial growth factor gene 936 T/C polymorphism and colorectal cancer together with anastomotic leakage. *Zhonghua Wai Ke Za Zhi* 44: 1505-1507.

Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137.

Genetics and Molecular Research 10 (4): 3674-3688 (2011)