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ABSTRACT. Since the first assembled genomes, gene sequences alone 
have not been sufficient to understand complex metabolic processes 
involving several genes, each playing distinct roles. To identify their 
roles, a network of interactions, wherein each gene is a node, should 
be created. Edges connecting nodes are evidence of interaction, for 
instance, of gene products coexisting in the same cellular component. 
Such interaction networks are called protein-protein interactions (PPIs). 
After genome assembling, PPI mapping is used to predict the possibility 
of proteins interacting with other proteins based on literature evidence 
and several databases, thus enriching genome annotations. Identifying 
PPIs involves analyzing each possible protein pair for a set of features, 
for instance, participation in the same biological process and having the 
same function and status in a cellular component. Here, we investigated 
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using the three categories of the Gene Ontology (GO) database for 
efficient PPI prediction, because it provides data about the three 
features exemplified here. For a broader conclusion, we investigated the 
genomes of ten different human pathogens, looking for commonality 
regarding the GO hierarchical relationship-denominated IS_A. The 
plasmids were examined separately from their main genomes. Protein 
pairs sharing at least one IS_A value were considered as interacting 
proteins. STRING results certified the probed interactions as sensitivity 
(score >0.75) and specificity (score <0.25) analysis. The average areas 
under the receiver operating characteristic curve for all organisms were 
0.66 and 0.53 for their genomes and plasmids, respectively. Thus, GO 
categories alone could not potentially provide reliable PPI prediction. 
However, using additional features can improve predictions.

Key words: UniprotKB; Gene ontology; String-DB; CpDB; 
Protein interaction; Interlog-free

INTRODUCTION

Proteins are the building blocks of life. They play multiple roles in the structural and 
enzymatic functions of a cell by interacting with each other. Determining the role of proteins is a 
difficult task. An example of this fact is that almost half of the prokaryote genes have unknown 
function (Hanson et al., 2009). Despite the lack of information about the role of novel genes, 
we can glimpse possible interactions between the unknown proteins and the known ones. Such 
annotation could help us to focus on a particular set of genes when trying to understand biological 
processes. To achieve this objective, we used certain possible evidence features of the gene, 
for instance, evolution, conserved neighborhood, expression, a biological process involved, 
function, and cellular component (Snel et al., 2000). Each feature creates an edge between the 
nodes representing genes in a network called Protein-Protein Interaction (PPI) network. It should 
be noted that such a network is just an automated prediction because only by looking at the 
genome of an organism we cannot guarantee the expression of its predicted genes. Even so, it 
is a valuable prediction for biologists. PPI networks have been developed in various organisms, 
allowing the comprehension of numerous biological processes. The assembled set of associations 
allows the investigation of the structural and functional protein singularities within the pathways 
of interest. PPI maps have helped to investigate new disease-related proteins (Stelzl et al., 2005).

The search tool for the retrieval of interacting genes/proteins (STRING) database 
comprises millions of predicted protein associations for more than 2000 organisms. These 
protein associations are predicted based on the literature and various databases, as well as 
genomic context (Szklarczyk et al., 2015). The STRING PPI prediction tool considers the 
Gene Ontology (GO) database (String-DB.org, 2016). GO systematically tags different 
attributes within the three master domains: biological process, molecular function, and cellular 
component (Gene Ontology Consortium, 2015). Each GO domain is crucial for predicting the 
gene functionality, adding novel insights about gene clustering, and better comprehending 
the complex biological mechanisms (Chen et al., 2007). Even though the STRING prediction 
tool considers GO, it solely imports the GO protein complexes to infer interaction, not the GO 
terms by themselves (String-DB.org, 2016).
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Since the GO term categories are supposed to contain accurate biological information 
about different proteins, we hypothesized that by estimating the number of shared-IS_A 
GO terms among protein pairs, we can predict the positive PPIs. To test this hypothesis, we 
compared STRING protein association predictions with a GO-based semantic measurement 
approach in different microorganisms using the area under the receiver operating characteristic 
curve (AUC) (Sing et al., 2005). Despite performing this investigation in several organisms, 
we got a similar result confirming the inability of GO-IS_A relationship for creating strong 
PPI predictions.

MATERIAL AND METHODS

Genomes

The complete genome sequences of the following microorganisms were downloaded 
from the National Center for Biotechnology Information (NCBI) GenBank database: Bacillus 
anthracis (NC_003997.3), Clostridium botulinum A2 Kyoto (NC_012563.1), Clostridium 
botulinum F Langeland (Chromosome NC_009495.1, plasmid NC_009496.1), Clostridium 
perfringens (NC_003366.1), Clostridium tetani E88 (Chromosome NC_004557.1, Plasmid 
NC_004565.1), Corynebacterium diphtheriae (NC_002935.2), Escherichia coli ED1a 
(NC_011745.1), Escherichia coli S88 (Chromosome CU928161.2, plasmid CU928146.1) 
Mycobacterium tuberculosis (NC_000962.3), Streptococcus pneumoniae Taiwan 19F14 
(NC_012469).

Pipeline

Given the studied genomes, we linked the GO terms for protein identifiers before 
inferring PPI probabilities. We opted to link the protein identifiers to their appropriate GO 
terms using solely the local processing, avoiding the utilization of the interolog method 
commonly provided by current PPI annotation services, including STRING, which transfers 
predictions according to the sequence similarity of protein pairs. As shown in Figure 1, the 
Corynebacterium pseudotuberculosis DataBase (CpDB) genome tools (Santos, 2012) were 
employed to store all data, including genes, GO, and link tables, in the form of BLAST (basic 
local alignment search tool) results for genes and their respective GO terms. A STRING 
database dump was filtered, using scripting tools. True positive and true negative interactions 
for scores above 0.750 and below 0.250, respectively, were considered per studied organism. 
The filtered set of STRING proteins was analyzed as a golden standard. The annotated protein 
sequences of the genome samples were exported for performing GO tag association. The data 
from the UniProtKB database (UniProt Consortium, 2015) were dumped to provide the GO 
terms for the proteins of the genomes under study. Since the protein identifiers listed in the 
STRING database dump were different from those presented in the UniProtKB database, a 
similarity analysis, using the BLASTp program for filtering the higher scores, was performed 
to access the predicted GO term values. Considering the low chances of two proteins having 
the same GO term, we used a GO hierarchical relationship, which encompasses the closely 
related GO terms and the IS_A relationship. The IS_A was employed as the main point to infer 
protein interaction using the three GO term categories. Besides, the categories obtained from 
the GO database (molecular function, biological process, and cellular component), the gene 
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neighborhood was considered in the second round of analyses. The neighboring genes were 
empirical, and were admitted as a positive feature when the distance between them was equal 
or lower than five genes way in the DNA strands.

Figure 1. Workflow pipeline and the tools utilized in this study. The green forms represent the compiled programs. 
The CpDB genome tools comprise a database schema and a parser written in C language. The yellow arrows 
represent the input and output in the form of structured query language (SQL) commands. A local Postgres server 
maintains the CpDB schema.
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RESULTS AND DISCUSSION

Using STRING-based protein interactions as a golden standard, we attempted to 
validate the small plasmid and whole genome PPIs using a de novo approach for identifying 
the GO relationship with IS_A commonality. The average AUC of all organisms was 0.62 and 
0.53 for genomes and their plasmids, respectively. These values were not significant because 
the AUC values of 0.50 were random chance, and the obtained values were marginally above 
the random chances. Due to the low AUC achievements associated with the use of only the 
GO terms categories, the distance between the neighboring genes led further predictions 
culminating into AUC averaged values summed up to 0.79 for genomes and 0.80 for 
plasmids; these values were considered significantly different from the random chance values. 
Furthermore, the contemplation of the four categories of PPI predictions caused an average 
increment of 29 and 51% in the AUC of the whole genomes (Table 1) and plasmids (Table 
2), respectively. These average increments in the AUC were significant, and demonstrated a 
notable PPI prediction ability using only those four features. Our result opens the possibility 
of creating a standalone PPI predictor, based on a few features and benefits of the high-level 
result, independently of the external servers.

Table 1. Area under the receiver operating characteristic (ROC) curve (AUC) values of bacterial genomes 
created by a de novo PPI prediction comprising the common Gene Ontology (GO)-IS_A relationships of 
protein-protein pairs.

N = sample size; GO = AUC values for the three GO categories; GO + Distance = AUC values for GO categories 
plus the neighborhood gene distance; Improvement = percentage increase after packing the distance feature within 
the GO categories for an extra round of predictions.

Microorganism N GO GO + Distance Improvement (%) 
Bacillus anthracis 167,072 0.6688 0.7396 10.58 
Clostridium botulinum A2 Kyoto 133,380 0.5122 0.8749 70.82 
Clostridium botulinum F Langeland 124,911 0.5603 0.8671 54.75 
Clostridium perfringens 94,145 0.6595 0.7564 14.68 
Clostridium tetani E88 73,828 0.6619 0.7539 13.9 
Corynebacterium diphtheriae 59,717 0.5625 0.7266 29.17 
Escherichia coli ED1a 197,455 0.7045 0.7911 12.3 
Escherichia coli S88 73,828 0.6598 0.7681 16.41 
Mycobacterium tuberculosis 148,893 0.5282 0.8090 53.16 
Streptococcus pneumoniae Taiwan 19F14 67,159 0.6693 0.7935 18.57 

 

Table 2. Area under the receiver operating characteristic (ROC) curve (AUC) values of bacterial plasmids, 
listed in Table 1 as whole genomes, generated by a de novo PPI prediction comprising the common GO-IS_A 
relationships of protein-protein pairs.

N = sample size; GO = AUC values for the three Gene Ontology (GO) categories; GO + Distance = AUC values for 
GO categories plus the neighborhood gene distance; Improvement = percentage increase after packing the distance 
feature within the GO categories for an extra round of predictions.

Microorganism N GO GO + Distance Improvement (%) 
Bacillus anthrax p1 80 0.5122 0.8749 70.82 
Bacillus anthrax p2 107 0.5603 0.8671 54.75 
Clostridium botulinum F Langeland p1 16 0.5625 0.7266 29.17 
Clostridium tetani E88 p1 76 0.5282 0.8090 53.16 
Escherichia coli S88 p1 389 0.4999 0.7448 48.99 
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Furthermore, no significant difference was observed between the average AUC values 
for genomes and their respective plasmids. However, significant improvements were observed 
in the average AUC of the specific plasmids of B. anthracis (70%) and C. tetani (54%). A 
relatively higher improvement in the average AUC observed for these two plasmids sequences, 
as compared to their whole genomes, was likely due to their evolutionary function. As a small 
and adopted DNA sequence for the synthesis of specific products, for instance, antibiotic-
resistance and heavy-metal-resistance genes, plasmids can increase the chances for bacterial 
fitness under toxic conditions. Such evolutionary advantage could also explain a conservative 
gene neighborhood in these plasmids as compared to their whole genomes (MacLean and San 
Millan, 2015).

The overall AUC increments provided by the gene neighborhood compensated for 
the lack of common IS_A terms. Even so, considering the AUC values, we can assume the 
augmented PPI prediction ability supported by the GO categories plus gene neighboring. We 
hypothesize that such outcomes are because GO does not tag some products of the known 
biological pathways as belonging to the same biological process. For instance, consider 
the thiamine pyrophosphate (TPP) synthesis pathway. TPP is also known as vitamin B1, an 
essential coenzyme for the catabolism of sugars and amino acids in aerobes. Within the TPP 
synthesis pathway, the enzyme thiamine biosynthesis oxidoreductase (thiO) participates in 
the production of dehydroglycine from glycine. In the next step, another enzyme, thiazole 
synthase (thiG), is required for the production of thiazole phosphate carboxylate tautomer 
from dehydroglycine (catalyzed from thiO) and 1-deoxyxylulose 5-phosphate (Broderick 
et al., 2014). Both these enzymes are known to interact with each other in their biological 
functions and processes, for instance, in the TPP metabolic process of B. subtilis (Settembre et 
al., 2003; Du et al., 2011). However, GO tags thiO with five IS_A values and thiG with 11 IS_A 
values, with none of them in commonality (Table 3). Besides, by using the GO enrichment 
analysis tool, it is possible to generate thiG as thiazole synthase and thiO as a member of a 
subfamily not named.

Table 3. A sample of GO terms and their corresponding IS_A relationships for two genes known to interact. 
In this sample, no common GO-IS_A value was obtained, configuring a pair of non-interacting proteins in 
accordance with the three GO categories.

DIP0031 IS A thiO product DIP0033 IS A thiG product 
(GO:0016491 IS A GO:0003824) (GO:0005737 IS A GO:0044424) 
(GO:0050660 IS A GO:0000166) (GO:0009228 IS A GO:0006772) 
(GO:0050660 IS A GO:0043168) (GO:0009228 IS A GO:0042724) 
(GO:0050660 IS A GO:0050662) (GO:0009229 IS A GO:0009108) 
(GO:0055114 IS A GO:0044710) (GO:0009229 IS A GO:0019438) 
 (GO:0009229 IS A GO:0042357) 

(GO:0009229 IS A GO:0044272) 
(GO:0009229 IS A GO:0072528) 
(GO:0009229 IS A GO:0090407) 
(GO:0016783 IS A GO:0016782) 
(GO:0036355 IS A GO:0016830) 

 

Our results do not intend to reduce the significance of GO, but point out its limitations 
for a de novo PPI prediction strategy.

As a limitation of the method used here to predict PPI, it entirely depends on the 
UniProtKB predictions, mostly automatically made by the Interproscan application. If the 
UniProtKB database fails to provide the GO terms for the studied proteins, the PPI predictions 
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based on the three GO characteristics sharing IS_A terms will also fail. However, the extensive 
use of the Interproscan tool by the scientific community makes it a reliable tool. Another 
possible limitation of this study is the chosen organisms. In our study, we used four distinct 
classes of organisms, namely, four Clostridia, two Bacilli, two Actinobacteria, and two 
Gammaproteobacteria. We made these choices based on the organisms present in both database 
dumps, STRING and UniprotKB. It was a practical decision because we could not apply 
additional efforts for mapping the protein identifiers to the GO terms. Due to this limitation, 
we selected the organisms causing human diseases. Our study demonstrated the potential of a 
de novo PPI prediction in microorganisms important in the context of public health.

CONCLUSION

A de novo PPI prediction employing only three GO categories was proven unable 
to generate a reliable result according to the golden standard of the STRING database. The 
addition of a fourth PPI prediction feature, the gene neighborhood, significantly improved the 
GO PPI predictions, but still with fairly significant AUC values. Our study points out the need 
for several complementary features to achieve accurate PPI predictions.
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