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ABSTRACT. The purpose of this study was to examine the hypothesis 
that a transcriptome network can be developed through a set of 
transcription factors regulated by the expression of various genes 
induced by dilated cardiomyopathy can be identified and modulated to 
respond to heart failure. We searched for significant pathways related to 
dilated cardiomyopathy using the GSE4172 microarray data to identify 
potential genes related to heart failure. We mapped differentially 
expressed genes to pathways and constructed a regulation network to 
investigate the regulatory relationships between transcription factors and 
pathways. Some transcription factors and target genes in the networks 
have been clearly linked to heart failure in previous studies. We also 
found new transcription factors and target genes, such as CCAAT/
enhancer-binding protein delta and JunB, responsible for inflammatory 
cardiomyopathy. Transcriptome network analysis was useful in the 
identification of candidate genes in heart failure. This method is well 
suited for microarray data and therefore is proposed as a powerful tool 
in the search for new pathways related to disease.
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INTRODUCTION

Heart failure (HF) is generally defined as the inability of the heart to supply sufficient 
blood flow to meet bodily needs. In different contexts, HF is often called congestive HF or 
acute decompensated HF. Several diseases are closely related to and may cause HF - for ex-
ample, dilated cardiomyopathy (DCM). Inflammatory cardiomyopathy (DCMi) is an impor-
tant DCM subtype often found in conjunction with cardiac viral infections and characterized 
by dilation and dysfunction of the ventricles (Wittchen et al., 2007).

Recently the mechanism of HF has been summarized as follows. A variety of neuro-
hormonal proteins, including norepinephrine, angiotensin II, endothelin, aldosterone, and tumor 
necrosis factor (TNF), have been implicated as some of the biologically active molecules that 
contribute to disease progression in the failing heart. Oxidant signaling is increased in HF-for 
example, that of superoxide, hydrogen peroxide, hydroxyl radical, and nicotinamide adenine di-
nucleotide phosphate-oxidase. Furthermore, TNF-α exerts strong direct effects on cardiomyocytes, 
inducing apoptosis, depressing contractility, and downregulating sarcomeric proteins. Cardiopro-
tection mechanisms are mediated by interleukin (IL)-6, glycoprotein 130, and signal transducer 
and activator of transcription 3 signaling (Mann and Bristow, 2005; Hilfiker-Kleiner, et al., 2006).

DNA microarray analysis is a global approach to investigating physiological mecha-
nisms in health and disease (Spies et al., 2002). A high-throughput microarray experiment has 
been designed to analyze genetic expression patterns and identify potential genes to target HF 
(Xu et al., 2011). Genomic expression profiling has also evolved as a useful tool for identify-
ing novel pathomechanisms in human cardiac disorders (Verducci et al., 2006).

The purpose of this study was to examine the hypothesis that a transcriptome network 
can be developed in which a set of transcription factors (TFs) regulating the expression of vari-
ous genes induced by DCM can be identified and modulated to respond to HF. Further analysis 
of these genes and pathways in the network was carried out to identify potential mechanisms 
that respond to HF. This study did not address the regulation network but searched for the 
significant pathways related to DCM.

MATERIAL AND METHODS

Data

Affymetrix microarray data

Transcription profiles of ischemic cardiomyopathy GSE4172 (Wittchen et al., 2007) were 
obtained from the public functional genomics data repository Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/). Only 12 chips were usable. Samples derived from 8 DCMi and 4 
healthy control patients were hybridized onto Affymetrix U133 Plus arrays (Wachi et al., 2005).

Pathway data

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of online 
databases of with genomes, enzymatic pathways, and biological chemicals (Kanehisa, 2002). 
The PATHWAY database records networks of molecular interactions in cells and variants spe-



4689

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 12 (4): 4687-4697 (2013)

Potential candidate genes for heart failure

cific to particular organisms (http://www.genome.jp/kegg/). A total of 130 pathways involving 
2287 genes were collected from KEGG.

Regulation data

Approximately 2600 proteins in the human genome contain DNA-binding domains, 
and most are presumed to function as TFs (Kanehisa, 2002; Wachi et al., 2005). The combinato-
rial use of a subset of the approximately 2000 human TFs easily accounts for the unique regula-
tion of each gene in the human genome during development (Brivanlou and Darnell Jr., 2002).

These TFs are grouped into 5 superclass families based on the presence of conserved 
DNA-binding domains. The Transcription Factor (TRANSFAC; http://www.gene-regulation.
com/pub/databases.html) database contains data on TFs, their experimentally proven binding 
sites, and regulated genes (Wingender, 2008).

The Transcriptional Regulatory Element Database (TRED; http://rulai.cshl.edu/
TRED/) was built in response to increasing needs for an integrated repository for both cis and 
trans-regulatory elements in mammals (Jiang et al., 2007). TRED supplies curation for tran-
scriptional regulation information, including TF binding motifs and experimental evidence. 
The curation is currently focusing on target genes of 36 cancer-related TF families.

A total of 774 pairs of regulatory relationships between 219 TFs and 265 target genes 
were collected from TRANSFAC and 5722 pairs of regulatory relationships between 102 TFs 
and 2920 target genes were collected from TRED. Combining the data from both data sets 
yielded 6328 regulatory relationships between 276 TFs and 3002 target genes (Table 1).

Source Regulation TFs Targets Link

TRANSFAC 774 219 265 http://www.gene-regulation.com/pub/databases.html
TRED 5722 102 2920 http://rulai.cshl.edu/TRED/
Total 6328 276 3002

Table 1. Regulation data form Transcription Factor (TRANSFAC) and Transcription Regulatory Element 
Database (TRED).

Methods

Differentially expressed gene (DEG) analysis

Because the original CEL file did not exist for the GSE4172 data set, we analyzed only 
processed data. All statistical analyses were accomplished using R program. We compared 
the disease group with the control group. A t-test (Koch and Spörl, 2007) was used to identify 
DEGs. A P value of 0.05 was chosen as the cut-off significance level. DEGs with fold change 
values larger than 2 were selected.

Co-expression analysis

To demonstrate potential regulatory relationships, we calculated the Pearson correlation 
coefficient (PCC) for all pairwise comparisons of gene expression values between TFs and DEGs. 
The regulatory relationships with absolute PCCs larger than 0.6 were considered significant.

TFs = transcription factors.
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Gene Ontology (GO) analysis

The Biological Networks Gene Ontology tool is an open-source Java tool to deter-
mine which GO terms are significantly overrepresented in a set of genes. The Biological Net-
works Gene Ontology analysis (Maere et al., 2005) was used to identify over-represented GO 
categories in biological processes.

Regulation network construction

Using the regulation data collected from the TRANSFAC and TRED databases, we 
matched the relationships between differentially expressed TFs and their target DEGs. Using 
the data from the 2 regulation data sets and the pathway relationships of the target genes, we 
constructed the regulation networks using Cytoscape (Shannon et al., 2003). Bases on the 
significant relationships (PCC > 0.6 or PCC < -0.6) between TFs and target genes, 33 putative 
regulatory relationships were predicted between 7 TFs and 22 target genes.

Significance analysis of pathway

We adopted an impact analysis that not only included the statistical significance of the 
set of pathway genes but also considered other crucial factors such as the magnitude of each 
gene expression change, the topology of the signaling pathway, genes and signaling pathways 
interactions, and others (Draghici et al., 2007). In this model, the impact factor (IF) of a path-
way Pi was calculated as the sum of 2 terms:

The 1st term is probabilistic and captures the significance of the given pathway, Pi, 
from the perspective of the set of genes contained in it. It is obtained using the hyper geomet-
ric model in which pi is the probability of obtaining at least the observed number of DEGs 
(Nde) by chance (Tavazoie et al., 1999; Draghici et al., 2003). The 2nd term is functional and 
depends on the identity of the DEGs as well as the interactions described by the pathway (i.e.; 
its topology). This term sums up the absolute values of the perturbation factors (PFs) for all 
genes g on the given pathway Pi.

The PF of a gene g is calculated as follows:

Where the 1st-term ΔE (g) captures the quantitative information measured in the gene 
expression experiment. The factor ΔE (g) represents the normalized measured expression 
change of a gene g. The 1st-term ΔE (g) in the above equation is a sum of all PFs of genes 
u directly upstream of the target gene g, normalized by the number of downstream genes of 
each such gene, Nds(u), and weighted by the factor βug, which reflects the type of interaction: 
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βug = 1 for induction, βug = -1 for repression (KEGG supplies this information about the type 
of interaction of 2 genes in descriptions of pathway topology). USg is the set of all such genes 
upstream of g. We normalized the calculation with respect to the size of the pathway by divid-
ing the total perturbation by the number of DEGs on the given pathway, Nde(Pi). To make the 
IFs as independent as possible from the technology and also comparable between investiga-
tions, we divided the 2nd term in equation 1 by the mean absolute fold change, ΔE, calculated 
across all DEGs. The result of the significance analysis of the pathways is shown in Table 2.

Database name Pathway name Impact factor % Pathway genes in input P

KEGG ANKRD1 191.843 11.765 0.07426
KEGG ANKRD1   58.047   8.209   0.447219
KEGG Antigen processing and presentation   42.358   5.618   0.773023
KEGG Adherens junction   37.643 10.256   0.267516
KEGG Phosphatidylinositol signaling system   32.239 14.474   0.040482
KEGG Regulation of actin cytoskeleton   10.907 15.207   1.21E-04
KEGG Thyroid cancer     8.015 17.241   0.079416
KEGG Tight junction     6.779 12.593   0.034159
KEGG Melanoma     6.766 15.493 0.02602
KEGG Gap junction     6.353 11.458   0.127498

Table 2. Significant pathway analysis.

Regulation network between TFs and pathways

To investigate further the regulatory relationships between TFs and pathways, we mapped 
DEGs to pathways and obtained a regulation network between TFs and pathways (Figure 1).

Figure 1. Regulation network construction in heart failure.
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RESULTS

Regulation network construction in HF

To get pathway-related DEGs for HF, we obtained the publicly available microarray 
data set GSE4172 from the Gene Expression Omnibus. After microarray analysis, the DEGs with 
fold change values larger than 2 and P values less than 0.05 were used. We selected 2156 genes 
as DEGs from GSE4172. To determine the regulatory relationships, we chose the co-expressed 
value PCC ≥ 0.6 as the threshold. Finally, we obtained 37 regulatory relationships between 13 
differentially expressed TFs and their 36 target DEGs. By integrating the regulatory relationships 
above, a regulation network of HF was built between TFs and their target genes (Figure 2). In 
this network, E2F transcription factor 2 (E2F2), CCAAT/enhancer binding protein (CEBPD), 
and POU class 2 homeobox 1(POU2F1) with higher PCC value formed a local network, which 
suggests that these TFs may play important roles in HF. Furthermore, the integrin alpha M (IT-
GAM) target gene regulated by specificity protein 1 was observed in this network.

Figure 2. Regulation network between transcription factor and PATHWAY.
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GO analysis of the regulation network in HF

Several GO categories were enriched among these genes in the regulatory network, 
including regulation of transcription from RNA polymerase II promoter, positive regulation of 
transcription, regulation of transcription, DNA-dependent and regulation of RNA metabolic 
process. Table 3 lists the top 10 categories.

GO-ID Description Count P Corr P

6357 Regulation of transcription from RNA polymerase II promoter 14 5.02E-08 6.72E-05
45941 Positive regulation of transcription 12 1.77E-07 8.57E-05
6355 Regulation of transcription, DNA-dependent 20 2.06E-07 8.57E-05
10628 Positive regulation of gene expression 12 2.96E-07 8.57E-05
51252 Regulation of RNA metabolic process 20 3.20E-07 8.57E-05
45935 Positive regulation of nucleobase, nucleoside, nucleotide, and nucleic 12 7.27E-07 1.51E-04
 acid metabolic process
10604 Positive regulation of macromolecule metabolic process 14 8.53E-07 1.51E-04
10557 Positive regulation of macromolecule biosynthetic process 12 9.83E-07 1.51E-04
51173 Positive regulation of nitrogen compound metabolic process 12 1.01E-06 1.51E-04
31328 Positive regulation of cellular biosynthetic process 12 1.94E-06 2.53E-04

Table 3. Gene Ontology (GO) biological process analysis.

Significant pathways in HF

To identify the relevant pathways changed in HF, we used a statistical approach on the 
pathway level. Significance analysis at the single-gene level can be disadvantaged by the lim-
ited number of samples and experimental noise, which severely reduce the power of the cho-
sen statistical test. Pathways can provide an alternative way to relax the significance threshold 
applied to single genes and may lead to a better biological interpretation. Therefore, we adopt-
ed a pathway-based impact analysis method with many factors, including the statistical signifi-
cance of the set of DEGs in the pathway, the magnitude of each gene expression change, the 
topology of the signaling pathway, their interactions, and others. The impact analysis method 
yielded many significant pathways containing leukocyte transendothelial migration, cell adhe-
sion molecules (CAMs), antigen processing and presentation, and others (Table 2).

Regulation network between TFs and pathways in HF

To investigate further the regulatory relationships between TFs and pathways, we 
mapped DEGs to pathways and constructed a regulation network between the TFs and the 
pathways (Figure 1). In the network, CEBPD, E2F2, upstream transcription factor 2, spleen 
focus forming virus (SFFV) proviral integration oncogene spi1 (SPI1), and POU2F1 were hub 
nodes linked to many HF pathways.

DISCUSSION

Much of the biological diversity of disease is the result of variation in transcriptional 
programs. Transcriptional profiling of disease using microarrays has revolutionized the field 
by allowing researchers to discover tumor subclasses and target genes for diagnosis and thera-
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py. Network and pathway analysis can be used interrogate gene expression data to understand 
the biological processes affected by a particular manipulation or disease/condition of interest. 
Transcriptome network analysis using a TF-target gene relationship has suggested, for ex-
ample, that the genes upregulated in squamous lung carcinomas are rich in hubs. These hubs 
include E2F2, CEBPD, POU2F1, purine-rich element binding protein B (PURB), ITGAM, 
insulin-like growth factor binding protein 3 (IGFBP3), core-binding factor beta (CBFbeta), 
and ankyrin repeat domain-containing protein 1.

E2F2 protein is a member of the E2F family of TFs. It has an extra cyclin-binding 
domain and plays a crucial role in the control of the cell cycle. The expression of E2F2 has 
been mediated in the hearts of mice using adenoviral vectors, and E2F2 induces proliferation 
of cardiomyocytes, which may be used for HF treatment (Ebelt et al., 2008).

CEBPD protein is a bZIP TF that binds as a homodimer to certain DNA regulatory 
regions to regulate genes involved in immune and inflammatory responses. Atrial fibrillation 
is the most frequently encountered arrhythmia in the clinical setting. However, arrhythmia 
often leads to acute HF. CEBPD messenger RNA expression has been induced in the atria of 
AF patients (Ohki et al., 2005). Transgenic mice major histocompatibility complex (MHC)- 
CEBPDΔ with inhibited CEBPD splicing activity in the heart leads to a severe form of cardio-
myopathy characterized by specific defects in the splicing of CEBPD targets, cardiac hyper-
trophy, DCM, myocytolysis, fibrosis, changes in gene expression associated with HF, severe 
cardiac dysfunction, and premature death (Terenzi et al., 2009).

POU2F1, also known as organic cation transporter 1, is a TF that was among the first 
identified members of the POU TF family. Increased organic cation transporter 1 activity in-
hibits heart inflammation in heart shock treatment (Chen and Currie, 2005).

PURB is a single-stranded nucleic acid-binding protein. In humans, considerable loss 
of α-myosin heavy chain (α-MHC) content has been implicated in reduced myocardial con-
tractility during HF. PURB can participate in transcriptional as well as translational regulation 
of α-MHC gene expression. Furthermore, robust expression of PURB has been expressed 
robustly in the myocardium of humans with HF. Therefore, PURB may play the role in the 
downregulation of α-MHC expression in HF (Gupta et al., 2003).

The ITGAM gene encodes the integrin alpha M chain. Alpha M beta 2 integrin is 
important in the adherence of neutrophils and monocytes to stimulated endothelium and in 
the phagocytosis of complement-coated particles. Depletion of macrophages through treat-
ment with anti-ITGAM monoclonal antibodies prevents encephalomyocarditis virus-induced 
myocarditis completely and inhibits viral growth in target organs (Hirasawa et al., 1996). 
When ITGAM monoclonal antibody is applied to heart interstitial dendritic cells, myocarditis 
subsides (Portella and Andrade, 2009).

IGFBP3 is a member of the IGFBP family and forms a ternary complex with insulin-
like growth factor (IGF) acid-labile subunit and either IGF I or II. In this form, it circulates 
in the plasma, prolonging the half-life of IGFs and altering their interaction with cell surface 
receptors. IGFBP3 messenger RNA is abundantly expressed in patients with HF such as car-
diomyopathy (Granata et al., 2000). The ratio of IGF-I to IGFBP3 is a predictor of clinical 
outcomes in HF. HF patients display significantly decreased serum IGF axis values (Watanabe 
et al., 2010).

In muscle cells, a complex network of Z-disc proteins allows proper reception, transduc-
tion, and transmission of mechanical and biochemical signals. Mutations in genes encoding vari-
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ous Z-disc proteins have recently been implicated in HF. CBFbeta is an essential component for 
maintaining sarcomeric Z-disc and myofilament organization in heart muscle. Transcription of the 
gene encoding CBFbeta mainly depends on JunB activity. JunB-morphant zebrafish show a heart-
failure phenotype similar to that of CBFbeta-deficient zebrafish (Meder et al., 2010).

Ankyrin repeat domain-containing protein 1 functions as a TF localized to the nucleus 
of endothelial cells and induced by IL-1 and TNF-α stimulation. This protein interacts with 
the sarcomeric proteins myopalladin and titin in the myofibrillar stretch-sensor system. It 
is upregulated in cardiac failure, causing contractile dysfunction that in turn causes DCM 
(Moulik et al., 2009).

The regulation network between TFs and pathways in HF showed that many pathways 
closely related to the disease were linked using our method. These pathways included CAMs 
and antigen processing and presentation pathways. In DCM hearts, the phenotypic pattern of 
endothelial cells is reportedly altered with respect to CAMs, such as selectins, immunoglobu-
lin, and integrins. Selectins induce the rolling and sticking of leukocytes to endothelial cells. 
Adhesion molecules interact with specific integrins on various types of leukocytes and estab-
lish firm attachments to endothelial cells. These adhesion molecule-integrin interactions fa-
cilitate the migration of leukocytes through the endothelial layer into regions of inflammation.

In general, leukocyte transendothelial migration and CAM expression are associated 
with HF, which is a cascade process (Devaux et al., 1997; Noutsias et al., 1999; Golias et al., 
2007). DCMi often results from cardiotropic viral infections such as parvovirus B19 and hu-
man herpesvirus 6. Autoimmune events are initiated under these conditions. A pathogen-in-
duced breakdown in the control mechanisms protecting against autoimmune reactions through 
both the presentation of normal self-antigens and bystander activation leads to the formation 
of autoreactive antibodies and T cells. The auto-reactive antibodies interact directly with heart 
tissue, altering signal transduction or complement activation, whereas T-cell-mediated mecha-
nisms include direct attack by cytotoxic T cells or indirect effects of cytotoxic cytokines re-
leased by stimulated T cells or macrophages (Kallwellis-Opara et al., 2007).

A deeper understanding of TFs and their regulated genes remains an area of intense 
future research activity. Our regulation network will be useful in the investigation of complex 
interacting mechanisms of TFs and their regulated genes in disease. However, further experi-
ments are still needed to confirm our conclusions.

Cardiomyopathy is one of the most frequent causes of HF and a leading indication 
for cardiac transplantation in the era of modern treatment. A search for new therapeutic tar-
gets in DCMi seems worthwhile owing to the high prevalence of this condition and the still 
unsatisfactory long-term outcome. The identification of HF-associated genes and their related 
pathways is essential to the opening of new avenues in the prevention of this disease. In this 
research, a transcriptome network was used to identify HF-associated genes and pathways. We 
also used factor analysis to determine whether a pathway is significantly changed in a microar-
ray experiment. This method is well suited for microarray data and therefore is proposed as a 
powerful tool in the search for new pathways related to other diseases.

REFERENCES

Brivanlou AH and Darnell Jr JE (2002). Signal transduction and the control of gene expression. Science 295: 813-818.
Chen Y and Currie RW (2005). Heat shock treatment suppresses angiotensin II-induced SP-1 and AP-1 and stimulates 

Oct-1 DNA-binding activity in heart. Inflamm. Res. 54: 338-343.



4696

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 12 (4): 4687-4697 (2013)

J. Chen et al.

Devaux B, Scholz D, Hirche A, Klovekorn WP, et al. (1997). Upregulation of cell adhesion molecules and the presence of 
low grade inflammation in human chronic heart failure. Eur. Heart J. 18: 470-479.

Draghici S, Khatri P, Martins RP, Ostermeier GC, et al. (2003). Global functional profiling of gene expression. Genomics 
81: 98-104.

Draghici S, Khatri P, Tarca AL, Amin K, et al. (2007). A systems biology approach for pathway level analysis. Genome 
Res. 17: 1537-1545.

Ebelt H, Zhang Y, Kampke A, Xu J, et al. (2008). E2F2 expression induces proliferation of terminally differentiated 
cardiomyocytes in vivo. Cardiovasc. Res. 80: 219-226.

Golias C, Tsoutsi E, Matziridis A, Makridis P, et al. (2007). Review. Leukocyte and endothelial cell adhesion molecules 
in inflammation focusing on inflammatory heart disease. In Vivo 21: 757-769.

Granata R, Broglio F, Migliorino D, Cutrupi S, et al. (2000). Neonatal and adult human heart tissues from normal subjects 
and patients with ischemic, dilated or hypertrophic cardiomyopathy express insulin-like growth factor binding 
protein-3 (IGFBP-3). J. Endocrinol. Invest. 23: 724-726.

Gupta M, Sueblinvong V, Raman J, Jeevanandam V, et al. (2003). Single-stranded DNA-binding proteins PURalpha 
and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control 
transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin 
heavy chain during heart failure. J. Biol. Chem. 278: 44935-44948.

Hilfiker-Kleiner D, Landmesser U and Drexler H (2006). Molecular mechanisms in heart failure: focus on cardiac 
hypertrophy, inflammation, angiogenesis, and apoptosis. J. Am. Coll. Cardiol. 48: A56-A66.

Hirasawa K, Tsutsui S, Takeda M, Mizutani M, et al. (1996). Depletion of Mac1-positive macrophages protects DBA/2 
mice from encephalomyocarditis virus-induced myocarditis and diabetes. J. Gen. Virol. 77 (Pt 4): 737-741.

Jiang C, Xuan Z, Zhao F and Zhang MQ (2007). TRED: a transcriptional regulatory element database, new entries and 
other development. Nucleic Acids Res. 35: D137-D140.

Kallwellis-Opara A, Dorner A, Poller WC, Noutsias M, et al. (2007). Autoimmunological features in inflammatory 
cardiomyopathy. Clin. Res. Cardiol. 96: 469-480.

Kanehisa M (2002). The KEGG database. Novartis Found. Symp. 247: 91-101.
Koch R and Spörl E (2007). Statistical methods for comparison of two measuring procedures and for calibration: analysis 

of concordance, correlation and regression in the case of measuring intraocular pressure. Klin. Monbl. Augenheilkd. 
224: 52-57.

Maere S, Heymans K and Kuiper M (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology 
categories in biological networks. Bioinformatics 21: 3448-3449.

Mann DL and Bristow MR (2005). Mechanisms and models in heart failure: the biomechanical model and beyond. 
Circulation 111: 2837-2849.

Meder B, Just S, Vogel B, Rudloff J, et al. (2010). JunB-CBFbeta signaling is essential to maintain sarcomeric Z-disc 
structure and when defective leads to heart failure. J. Cell Sci. 123: 2613-2620.

Moulik M, Vatta M, Witt SH, Arola AM, et al. (2009). ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a 
novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 54: 325-333.

Noutsias M, Seeberg B, Schultheiss HP and Kuhl U (1999). Expression of cell adhesion molecules in dilated 
cardiomyopathy: evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 99: 2124-2131.

Ohki R, Yamamoto K, Ueno S, Mano H, et al. (2005). Gene expression profiling of human atrial myocardium with atrial 
fibrillation by DNA microarray analysis. Int. J. Cardiol. 102: 233-238.

Portella RS and Andrade SG (2009). Trypanosoma cruzi: parasite antigens sequestered in heart interstitial dendritic cells 
are related to persisting myocarditis in benznidazole-treated mice. Mem. Inst. Oswaldo Cruz 104: 1023-1030.

Shannon P, Markiel A, Ozier O, Baliga NS, et al. (2003). Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res. 13: 2498-2504.

Spies M, Dasu MR, Svrakic N, Nesic O, et al. (2002). Gene expression analysis in burn wounds of rats. Am. J. Physiol. 
Regul. Integr. Comp. Physiol. 283: R918-R930.

Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, et al. (1999). Systematic determination of genetic network architecture. 
Nat. Genet. 22: 281-285.

Terenzi F, Brimacombe KR, Penn MS and Ladd AN (2009). CELF-mediated alternative splicing is required for cardiac 
function during early, but not later, postnatal life. J. Mol. Cell. Cardiol. 46: 395-404.

Verducci JS, Melfi VF, Lin S, Wang Z, et al. (2006). Microarray analysis of gene expression: considerations in data mining 
and statistical treatment. Physiol. Genomics 25: 355-363.

Wachi S, Yoneda K and Wu R (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially 
expressed in lung cancer tissues. Bioinformatics 21: 4205-4208.

Watanabe S, Tamura T, Ono K, Horiuchi H, et al. (2010). Insulin-like growth factor axis (insulin-like growth factor-I/



4697

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 12 (4): 4687-4697 (2013)

Potential candidate genes for heart failure

insulin-like growth factor-binding protein-3) as a prognostic predictor of heart failure: association with adiponectin. 
Eur. J. Heart Fail. 12: 1214-1222.

Wingender E (2008). The TRANSFAC project as an example of framework technology that supports the analysis of 
genomic regulation. Brief. Bioinform. 9: 326-332.

Wittchen F, Suckau L, Witt H, Skurk C, et al. (2007). Genomic expression profiling of human inflammatory cardiomyopathy 
(DCMi) suggests novel therapeutic targets. J. Mol. Med. 85: 257-271.

Xu J, Nie HG, Zhang XD, Tian Y, et al. (2011). Down-regulated energy metabolism genes associated with mitochondria 
oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart. Mol. Biol. Rep. 38: 4007-
4013.


