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ABSTRACT. Glycopentalone isolated from Glycosmis pentaphylla 
(family Rutaceae) has cytotoxic and apoptosis inducing effects in 
various human cancer cell lines; however, its mode of action is not 
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known. Therefore, target fishing of glycopentalone using a combined 
approach of inverse docking and reverse pharmacophore mapping 
approach was used to identify potential targets of glycopentalone, and 
gain insight into its binding modes against the selected molecular targets, 
viz., CDK-2, CDK-6, Topoisomerase I, Bcl-2, VEGFR-2, Telomere:G-
quadruplex and Topoisomerase II. These targets were chosen based 
on their key roles in the progression of cancer via regulation of cell 
cycle and DNA replication. Molecular docking analysis revealed that 
glycopentalone displayed binding energies ranging from -6.38 to -8.35 
kcal/mol and inhibition constants ranging from 0.758 to 20.90 µM. 
Further, the binding affinities of glycopentalone to the targets were in 
the order: Telomere:G-quadruplex > VEGFR-2 > CDK-6 > CDK-2 > 
Topoisomerase II > Topoisomerase I > Bcl-2. Binding mode analysis 
revealed critical hydrogen bonds as well as hydrophobic interactions 
with the targets. The targets were validated by reverse pharmacophore 
mapping of glycopentalone against a set of 2241 known human target 
proteins which revealed CDK-2 and VEGFR-2 as the most favorable 
targets. The glycopentalone was well mapped to CDK-2 and VEGFR-2 
which involve six pharmacophore features (two hydrophobic centers 
and four hydrogen bond acceptors) and nine pharmacophore features 
(five hydrophobic, two hydrogen bond acceptors and two hydrogen 
bond donors), respectively. The present computational approach may 
aid in rational identification of targets for small molecules against large 
set of candidate macromolecules before bioassays validation.

Key words: Glycosmis pentaphylla; Glycopentalone; Molecular docking; 
Reverse pharmacophore mapping; Anticancer; Cell cycle

INTRODUCTION

The spread of abnormal cells and uncontrolled cell division, i.e., cancer, is a 
serious health issue worldwide (Greenlee et al., 2000; Gan et al., 2003; Siegel et al., 2015). 
Chemotherapy, the use of cytotoxic compounds in the treatment of cancer and radiotherapy 
have traditionally been used to kill cancer cells, but both these methods in use have also 
led to serious side effects including anemia, asthenia, leukopenia, low immunity, nausea, 
and neutropenia (DeSantis et al., 2014). Therefore, exploring natural products for effective 
drug lead for cancer is of great interest worldwide today. The discovery of a drug is a costly 
endeavor where a drug under experimentation has to be successfully passed through in-depth 
studies followed by clinical trials before it can be used as a treatment. In silico approaches 
such as molecular docking provide rapid ways to assess likely binding compounds with target 
macromolecules, and is therefore being widely practiced in pharmacology (Stark and Powers, 
2012). Inverse docking has proved to be an important computational tool in the identification 
of novel macromolecular targets for a drug or ligand pertaining to its mechanism of action and/
or side effects (Grinter et al., 2011; Chen and Ren, 2014), and involves the docking of a small 
ligand or drug in potential binding sites of a set of clinically relevant macromolecular targets 
(Kharkar et al., 2014). The second approach of target fishing is the reverse pharmacophore 
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mapping approach, which is based on the fitting and mapping of small query molecules against 
predetermined pharmacophore features of targets (Liu et al., 2010).

Glycosmis pentaphylla (Retz.) Correa (family Rutaceae), commonly known as ‘orange 
berry’ or ‘gin berry’, is used in the treatment of various ailments like anaemia, arthritis, cough, 
facial inflammation, jaundice and rheumatism (Mohammed et al., 2010). G. pentaphylla has 
also previously been reported to have variety of biological activities such as antimicrobial 
(Abbas et al., 2011; Amran et al., 2011); antioxidant (Amran et al., 2011; Gupta et al., 2011); 
cytotoxic (Amran et al., 2011); hepatoprotective (Nayak et al., 2011); apoptotic (Sreejith et 
al., 2012; Yang et al., 2014); antiarthritic (Sivakumar et al., 2014); and anti-inflammatory 
activity (Prawej et al., 2015). Recently, glycopentalone reported from G. pentaphylla has 
in vitro hepatocellular anticancer activity (Sreejith and Asha, 2015); however, the mode of 
action is unknown. Hence, in the present study, the molecular docking of glycopentalone with 
cyclin-dependent protein kinase, DNA topoisomerases, Bcl-2, VEGFR-2 and Telomere:G-
quadruplex was performed in order to investigate binding interactions of glycopentalone with 
key enzymes and receptor proteins associated with cell division and DNA replication.

MATERIAL AND METHODS

The chemical structure of glycopentalone (Figure 1) was modeled using the software 
Chemsketch (http://www.acdlabs.com/resources/freeware/), and optimized by a MMFF94 
force field using the optimization parameters (500 steepest descent algorithms, convergence 
criterion 10e-7; Halgren, 1996). The optimized compound was used to perform molecular 
docking. The three dimensional structures of a total number of seven molecular targets 
(receptors) viz., CDK-2 (PDB ID:1DI8), CDK-6 (PDB ID:1XO2), Topoisomerase II (PDB 
ID:1ZXM), Topoisomerase I (PDB ID:1T8I), Bcl-2 (PDB ID:2O2F), VEGFR-2 (PDB 
ID:2OH4) and Telomere:G-quadruplex (PDB ID: 1L1H), were obtained from Protein Data 
Bank (PDB) (www.rcsb.org), and prepared for docking following a previously described 
method (Gurung et al., 2016).

The inverse docking of glycopentalone was executed (parameters-initial population 
of randomly placed individuals: 150, maximum number of energy evaluations: 2,500,000, 
crossover rate: 0.8, mutation rate: 0.02, algorithm: lamarckian genetic, independent docking 
runs: 50) against receptors using AutoDock4.2 (Morris et al., 2009). The conformations that 

Figure 1. Chemical structure of glycopentalone selected for molecular docking.
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differ by <2.0 Å RMSD (root mean square deviation) were clustered together. The most 
favorable conformation was represented by the lowest inhibition constant (Ki) and the lowest 
free energy of binding (∆G). The conformation with the lowest ∆G was evaluated for molecular 
interaction with their receptors using LigPlot+ v 1.4.5 (Laskowski and Swindells, 2011). The 
parameters for hydrogen-bond calculations included a maximum hydrogen-acceptor distance 
of 2.70 Å and maximum donor-acceptor distance of 3.35 Å, while the non-bonded contact 
parameters included a minimum contact distance of 2.90 Å and a maximum contact distance 
of 3.90 Å. To ensure that the binding pose of the docked compound represents a favorable 
and valid potential binding mode, the docking parameters and methods were validated by 
redocking the cocrystal ligand in order to see the ability of the AutoDock program to reproduce 
the orientation and position of the ligand observed in the crystal structure. The figures for 
docking validation and binding site pockets were captured using UCSF chimera (Pettersen et 
al., 2004).

Reverse pharmacophore database screening

The PharmMapper server (http://59.78.96.61/pharmmapper/) was used to validate the 
targets of glycopentalone based on the pharmacophore mapping approach (Liu et al., 2010). 
It correctly identified some of the experimentally determined targets of Tamoxifen, used as 
an adjuvant therapy in the treatment of breast cancer (Hughes-Davies et al., 2009), indicating 
the reliability of the server for target fishing. Pharmmapper contains 7302 pharmacophore 
models (2241 annotated as human target proteins) generated using the LigandScout software 
which extract 3D pharmacophore features such as hydrophobic centre, positive charged 
centre, negative charged centre, hydrogen bond acceptor, hydrogen bond donor and aromatic 
ring. There are two steps involved in the reverse pharmacophore mapping methodology 
employed in the Pharmmapper server: a) flexible alignment of queried small molecules 
against a pharmacophore model of each target; and b) scoring of aligned poses by calculating 
fit values between the molecule and the pharmacophore models. We used default parameters 
of the PharmMapper server, such as: a) conformation generation of query molecule based 
on the MOEA-based conformation generation algorithm Cyndi (Liu et al., 2009); b) target 
set chosen as human targets; and c) genetic algorithm was used to optimize pharmacophore 
mapped poses. The pharmacophore mapped features of glycopentalone were visualized using 
Discovery Studio 4.1 Visualizer.

RESULTS AND DISCUSSION

Inverse docking analysis

The redocking of cocrystal ligands to their respective molecular targets exhibited RMSD 
of < 2 Å between the original cocrystal ligand position and docked poses as shown in Figure 2. 
This confirmed that the ligands were bound to their targets very close to the true conformation, 
indicating the reliability of the docking protocols and parameters. Glycopentalone was docked 
against seven molecular targets, viz., CDK-2, CDK-6, Topoisomerase I, Bcl-2, VEGFR-2, 
Telomere:G-quadruplex and Topoisomerase II, to gain insight into their possible binding 
modes. The active site residue(s), grid box dimensions, binding energies, and inhibition 
constants of glycopentalone against the selected targets are shown in Tables 1 and 2. The 
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lowest binding poses of the best docked ligands were selected for molecular interactions-
hydrogen bonds and hydrophobic interactions analysis. The molecular interaction results of 
glycopentalone are depicted in Figure 3.

Figure 2. A.-G. Docking validation by redocking cocrystal ligands to their corresponding molecular targets 
indicated by their PDB IDs. Original conformations of cocrystal ligands are displayed in cyan stick while docked 
poses are represented in orange stick. Root mean square deviation (RMSD) was calculated between the original 
and docked poses of cocrystal ligands.
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Figure 3. LigPlot+ results for molecular interactions between glycopentalone (purple ball and stick) and selected 
molecular targets  CDK-2 (A), CDK-6 (B),  Topoisomerase II (C), BCL-2 (D), VEGFR-2 (E), Telomere:G-
quadruplex (F), Topoisomerase I (G). Green dashed line indicates hydrogen bond with the labeled distance. Arcs 
with spikes radiating out corresponds to residues involved in hydrophobic interactions. Binding pockets on the left 
panel are displayed in white spheres with glycopentalone structure represented in pink stick.

Glycopentalone was docked to CDK-2 and CDK-6 with binding energies of -7.56 and 
-7.99 kcal/mol and inhibition constants of 2.87 and 1.39 µM, respectively. Both CDK-2 and 
CDK-6 belong to core-cell cycle machinery and exert their catalytic functions when bound to 
cyclins. They play crucial roles in cell cycle regulation, apoptosis, transcription, and neuronal 
functions (Dai and Grant, 2003; Huwe et al., 2003). The favorable binding interaction of 
glycopentalone with CDK-2 may be attributed to the formation of three hydrogen bonds with 
bond lengths of 2.76, 2.81, and 2.61 Å via backbone O atoms of Glu81 and Leu83 and N atom 
of Leu83, respectively, and hydrophobic interactions were mediated through Ile10, Val18, 
Ala31, Val64, Phe80, Phe82, His84, Gln85, Leu134, and Ala144. Interestingly, all the hydrogen 
bonds were found to be established through only backbone O and N atoms of the contributing 
residues. Similarly, glycopentalone showed good interaction with CDK-6. This interaction 
comprises of five hydrogen bonds with hydrogen-acceptor distances of 2.54, 3.05, 3.04, 2.94, 
and 3.09 Å through backbone a O atom of Glu99, side chain NE2 atom of His100, backbone 
N and O atom of Val101, and backbone N atom of Asp163, respectively, and hydrophobic 
interactions via Ile19, Ala41, Lys43, Val77, Phe98, Asp102, Gln103, Leu152, and Ala162.

Glycopentalone showed a binding energy of -6.78 kcal/mol and an inhibition constant of 
10.69 µM with Topoisomerase I and with Topoisomerase II it displayed a binding energy of -6.99 
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kcal/mol and an inhibition constant of 7.50 µM. Both DNA Topoisomerases I and II have implicated 
functions in cell survival and play critical roles in DNA metabolism and structure (Phosrithong 
and Ungwitayatorn, 2010). Glycopentalone showed fine interaction with Topoisomerase I, which 
involved five hydrogen bonds of distances 3.30, 2.97, 2.40, 2.98, and 3.05Å formed via backbone 
N atom and O atom of Asn352, backbone O atom of Tyr426, backbone N atom of Met428 and side 
chain NZ atom of Lys436 respectively, and hydrophobic interactions via Ala351, Ala356 and Ile. 
Glycopentalone also displayed good interaction with Topoisomerase II through the establishment 
of three hydrogen bonds with hydrogen-acceptor distances via side chain ND2 atom of Asn9, side 
chain ND2 atom of Asn150 and backbone N atom of Ala167, and hydrophobic interactions via 
Phe142, Ser148, Ser149, Gly161, Arg162, and Gly164.

Glycopentalone exhibited a binding energy of -6.38 kcal/mol and inhibition constant 
of 20.90 µM with Bcl-2. Bcl-2 is an anti-apoptotic oncoprotein, which affects neoplastic cell 
proliferation by preventing cell death (Reed, 1994). However, glycopentalone did not show 
a favorable interaction with Bcl-2, which may be understood by the fact that it was able to 
establish just one hydrogen bond of distance 2.67 Å with backbone O atom of Val130, while 
a major interaction was contributed by hydrophobic interactions through Phe101, Tyr105, 
Asp108, Phe109, Leu134, Ala146, Phe147, and Phe150.

Glycopentalone docked to VEGFR-2 with a binding energy of -8.14 kcal/mol and 
inhibition constant of 1.08 µM. VEGFR-2 is a cell surface receptor for VEGF, expressed highly 
on vascular endothelial cells and can modulate vascular endothelial survival, proliferation, 
migration and the formation of vascular tubes (Veikkola et al., 2000). Glycopentalone was 
able to establish three hydrogen bonds of distances measuring 2.64, 3.32, and 3.16 Å via side 
chain OE2 atom of Glu883, backbone O atom of Ile1042 and backbone O atom of Phe1045 
respectively, and hydrophobic interactions via Val846, Lys866, Leu887, Val897, Val914, 
His1024, Leu1033, Cys1043, and Asp1044.

Glycopentalone exhibited a decent binding energy of -8.35 kcal/mol and inhibition 
constant of 0.758 µM with Telomere G:quadruplex. Telomeres are highly complex nucleo-
protein structures at the end of eukaryotic chromosomes, which influence the proliferative 
capacity of cells. The mammalian telomeric DNA is composed of G-rich tandem repeats 
(TTAGGG)n. The bulk of telomeric DNA is double-stranded but the extreme terminus 
consists of 3’G-rich single stranded overhang of several hundred bases that act as substrate 
to which telomeric repeats are added by the enzyme telomerase (Henderson and Blackburn, 
1989; Satyanarayana et al., 2004). Glycopentalone was able to establish two hydrogen bonds 
of distances 2.77 and 2.87 Å via O2 atoms of a pyrimidine ring of Dg1006 and O5' atom 
of phosphate backbone of Dg1009, respectively, and hydrophobic interactions via Dg1007, 
Dg1008, Dg2001, and Dg2012.

Reverse pharmacophore mapping analysis

The reverse pharmacophore mapping approach was used to validate the possible 
targets of glycopentalone suggested by the inverse docking method. Recently, Lei et al. (2015) 
reported possible targets of 26 isoquinoline alkaloids from Macleaya cordata using the reverse 
pharmacophore mapping approach, which correlated with their experimentally determined 
antibacterial, antiparasitic, antitumor, and analgesic effects. We mapped pharmacophore features 
of glycopentalone against a set of 2241 human target proteins. Of 300 targets identified through 
Pharmmapper server, we present the top 30 ranked targets for glycopentalone in Table 3. 
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Consistent with our molecular docking results, CDK-2 and VEGFR-2 ranked 
among the top 30 targets. Glycopentalone aligned with the pharmacophore model of CDK-
2 (Rank 8) with a fit score of 3.785, Z’score of 2.96152 and displayed six pharmacophore 
features comprising of two hydrophobic centres and four hydrogen bond acceptor (Figure 
4A). Similarly, glycopentalone aligned with the pharmacophore model of VEGFR-2 (Rank 
20) with a Fit Score of 3.71, Z’score of 1.57072 and displayed nine pharmacophore features 
comprising of five hydrophobic, two hydrogen bond acceptor and two hydrogen bond donors 
(Figure 4B). Both the models are statistically significant indicated by large positive Z’-score. 
Thus, the combined approach of inverse docking and reverse pharmacophore mapping analysis 
indicates that CDK-2 and VEGFR-2 are the most favorable target for glycopentalone.

Figure 4. Pharmacophore features of glycopentalone mapped to CDK-2 (A) and VEGFR-2 (B). Structure of 
glycopentalone is represented in ball and stick model and pharmacophore features are represented in spheres-
hydrophobic centers (cyan), hydrogen bond acceptors (green), and hydrogen bond donors (pink).

CONCLUSIONS

The inverse docking analysis of glycopentalone with macromolecules involved in 
the cell cycle and DNA replication revealed good interactions with Telomere:G-quadruple, 
VEGFR-2, CDK-6, CDK-2, Topoisomerase II, and Topoisomerase I. We found that 
glycopentalone’s binding energies and inhibition constants were much higher than the bound 
cocrystal ligands against each molecular target. Glycopentalone showed binding affinities in the 
descending order as Telomere:G-quadruplex > VEGFR-2 > CDK-6 > CDK-2 > Topoisomerase 
II > Topoisomerase I > Bcl-2. Glycopentalone displayed binding energies ranging from -6.38 
to -8.35 kcal/mol and inhibition constants ranging from 0.758 to 20.90 µM, and exhibited 
favorable number of hydrogen bonds and hydrophobic interactions with the molecular targets, 
which indicates its good binding affinity towards the selected molecular targets. The inverse 
docking suggested targets were validated by a reverse pharmacophore mapping approach, 
which ranked CDK-2 and VEGFR-2 among the top 30 candidates of 300 possible targets. 
We found CDK-2 and VEGFR-2 as the most favorable targets of glycopentalone using both 
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approaches, which perhaps gives a reasonable explanation for its experimentally determined 
cytotoxic and apoptosis promoting effects. Since glycopentalone did not exhibit decent binding 
energies compared to that of cocrystal ligands, a structure-activity relationship study may 
be useful in this regard to derive more potent target specific inhibitors. The inverse docking 
coupled with reverse pharmacophore mapping approach may be of great significance in target 
fishing of newly discovered small molecules such as natural bioactive compounds.
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