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ABSTRACT. Novelty detection techniques might be a promising way
of dealing with high-dimensional classification problems in Bioinformatics.
We present preliminary results of the use of a one-class support vector
machine approach to detect novel classes in two Bioinformatics data-
bases. The results are compatible with theory and inspire further inves-
tigation.
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INTRODUCTION

The ability to detect a new class or sub-class can be a useful feature for an artificial
intelligent learning system. Slight modifications in data distribution might indicate, for instance,
the appearance of a new class of data, or a pattern modification in a class that has already been
modeled. This ability is known as novelty detection (ND) (Marsland, 2003) or one-class classi-
fication (Schölkopf et al., 1999, 2001), in reference to the fact that the training of the system is
done based on examples of a single class representing the normal pattern.

Different approaches to the problem of ND have been proposed (Marsland, 2003),
using various artificial intelligence techniques. Most of them have been applied to classification
problems, where the system learns from labeled examples in a training phase, and later, in a test
phase, assigns a class to each new unlabeled example. We believe that an ND approach to
Bioinformatics can contribute to the solution of a variety of classification problems, by allowing
the system to identify pattern changes and novel classes.

In the present study, a support vector machine (SVM) approach to ND is applied to
Bioinformatics. In the next section, the one-class approach is presented. Initial results obtained
with two gene expression datasets are analyzed in the “Experiments” section.

ONE-CLASS SUPPORT VECTOR MACHINE

Support vector machines

SVM is a machine learning technique based on Vapnik’s Statistical Learning Theory
(Vapnik, 1995), which provides it with a strong mathematical background. It has a great capac-
ity for generalization, a very important feature in learning algorithms. As a consequence, it is
less susceptible to overfitting than other techniques, and it achieves better results when dealing
with new examples. SVMs are efficient and, since the function being optimized is convex, do
not have problems dealing with situations where there are local optimums.

But above all these qualities, SVMs have proven to be robust in high dimensions, which
make them especially interesting for applications in which the datasets consist of few examples
and a high number of attributes. This is the case of many complex problems in Bioinformatics,
including the classification problem based on gene expression data treated herein.

The one-class approach

The one-class approach was proposed by Bernhard Schölkopf (Schölkopf et al., 1999,
2001) and has been successfully applied to various problems (Campbell and Bennett, 2001;
Manevitz and Yousef, 2001; Davy et al., 2002; Desobry and Davy, 2003).

Differentiation of members of novel and known classes is achieved by a data domain
description. This is done by estimating a binary function that is positive where most of the data
are located and negative elsewhere. A hyperplane with the largest possible margin is chosen to
separate the training data from where the novel data are assumed to be.

The parameter ν (Nu) performs a trade-off between allowing more examples inside
the description and making the description more general. This is an important setting that also
makes the algorithm tolerant to noise that might be present in the training set. Figure 1 displays
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an example for different values of ν (Schölkopf et al., 1999).
Once the data domain description is known, the ND problem is reduced to a classifica-

tion task where only one class exists (i.e., the normal class), thus the name one-class SVM.
With this approach it is possible to detect examples in the test phase that are not well fitted to the
data model that has been generated in the training phase.

ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1

frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38

margin ρ/||w|| 0.84 0.70 0.62 0.48

Figure 1. One-class support vector machine decision margins from Schölkopf et al. (1999), shown as an example.

EXPERIMENTS

We present initial results of the use of one-class SVM to detect novel classes in two
Bioinformatics databases. The formulation that is used is implemented in a library called LIBSVM
(Chang and Lin, 2004). Linear kernels were used in all experiments.

Databases

To test the performance of the one-class approach, the following databases were se-
lected:

- Leukemia - identification of three types of leukemia (ALL-B, ALL-T and AML)
from values of gene expression (Golub et al., 1999). The original database is com-
posed of 72 examples (38 for training and 34 for testing) and 7,129 attributes (gene
expression values).

- Lymphoma - distinction between germinal center and activated diffuse large B-cell
lymphoma based on gene expression profiling (Alizadeh et al., 2000). The original
database has 47 examples (34 for training and 13 for testing) and 4,026 attributes.

Methodology

Initially, all attributes were normalized to the interval [-1, +1]. Then, for each dataset, an
experiment was carried out for each class considered a novelty.

In the Leukemia dataset for instance, there are three classes of the disease: ALL-B,
ALL-T and AML. The original dataset is composed of two files, one for training and another for
testing. Each file contains a few examples of each of the three classes. For the first experiment
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with this dataset, the goal is to identify the class ALL-B as novelty. In order to do that, the
following three datasets were constructed from the two original ones:

- Training dataset (normal pattern), consisting of:
• ALL-T examples from the original training dataset
• AML examples from the original training dataset

- Testing dataset for the normal pattern, consisting of:
• ALL-T examples from the original testing dataset
• AML examples from the original testing dataset

- Testing dataset for the novel pattern, consisting of:
• ALL-B examples from the original training dataset
• ALL-B examples from the original testing dataset

Then, the same procedure was used for the remaining two classes (ALL-T and AML),
generating two other experiments.

Therefore, for each class considered as novelty, three different datasets were created.
The SVM was trained with the training set, which only contains examples of the normal pattern,
and was then tested with both the normal testing set and the novel testing set.

According to the number of correct predictions, two accuracy rates were calculated:
the normal accuracy rate measures how well the algorithm recognizes new examples of the
known pattern, and the novelty accuracy rate does the same for examples of an unknown novel
pattern.

A desirable situation is one in which the SVM algorithm is able to detect new patterns
with high accuracy, but continues to classify normal examples with a good level of confidence
as well. This tuning is made possible by the parameter ν, which determines how specific the
data domain description should be, affecting the number of support vectors that are necessary.
All experiments were performed for values of ν in the interval from 0.05 to 0.95, in 0.05 steps.

Analysis of the results

With these measures, it is possible to plot the curves of the accuracy rates of both the
normal and the novel patterns with respect to the parameter ν. Figures 2, 3 and 4 display the
results for the Leukemia database, each considering one of the three classes as novelty. The
graphs include bars that show how many support vectors were used in each situation.

The first thing to notice is that the higher the value of the parameter ν, the higher the
number of support vectors needed to describe the set of data. By increasing the value of ν, we
are actually making the description more specific to the data in the training set (normal pattern),
and this has a direct impact on the accuracy rates. The reason is that being more specific by
increasing the parameter ν means gradually restricting the normal pattern to the examples of
the training set and, consequently, making it harder for new normal instances to be recognized
as such. This can be clearly seen in Figure 3, where the accuracy rate for the normal class
decreases with a higher number of support vectors.

On the other hand, the more restricted the normal pattern becomes, the easier it is to
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Figure 2. Accuracy rates for the Leukemia database considering ALL-B as novelty.

Figure 3. Accuracy rates for the Leukemia database considering ALL-T as novelty.
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have a new sample labeled as novelty. This contrary behavior can be seen in the constantly
growing curves, which represent the accuracy rates for novelty.

We obtained similar results with the Lymphoma database (Figures 5 and 6).
In all experiments, the normal accuracy rate decreased and the novelty accuracy rate

increased with growth, as parameter ν increased. In some situations (Figures 3, 5 and 6), these
curves cross each other at a point where the value of ν could be considered optimal. But, even
when there is no crossing (Figures 2 and 4), it is possible to identify the point where the best
value for ν is achieved.

With regards to the levels of accuracy obtained in these experiments, and considering
the high-dimensionality of both databases, the results are compatible. It is important to remem-
ber that the Leukemia database, for instance, is composed of 7,129 attributes and only a few
examples are available for training and constructing the model (19 in the first experiment where
ALL-B is considered novelty, 30 in the second where the novel class is ALL-T and 27 in the
third experiment where the novelty is AML).

CONCLUSIONS

From the consistent results obtained in these early experiments, we believe that the use
of SVMs to detect novel classes and perhaps even changes in the pattern of known classes has
promise for Bioinformatics problems. Further experiments should be conducted with different
learning algorithms and paradigms to allow performance comparisons with the SVM one-class
approach. This is one of our future goals.
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Figure 4. Accuracy rates for the Leukemia database considering AML as novelty.
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Figure 6. Accuracy rates for the Lymphoma database considering activated diffuse large B-cell lymphoma as novelty.

Figure 5. Accuracy rates for the Lymphoma database considering germinal center diffuse large B-cell lymphoma as
novelty.
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Bioinformatics presents a great number of new and interesting challenges to artificial
intelligence researchers. Facing these challenges with robust tools and new approaches will
lead to a higher level of understanding of multi-dimensional problems and to more effective
ways to solve them.
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