
Splice site prediction using stochastic regular grammars 105

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

Splice site prediction using stochastic regular
grammars

A.Y. Kashiwabara1, D.C.G. Vieira2, A. Machado-Lima1 and
A.M. Durham1

1Departamento de Ciência da Computação,
Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, SP, Brasil
2Bolsa de Mercadorias e Futuros (BM&F), São Paulo, SP, Brasil
Corresponding author: A.M. Durham
E-mail: alan@ime.usp.br

Genet. Mol. Res. 6 (1): 105-115 (2007)
Received August 3, 2006
Accepted November 8, 2006
Published March 20, 2007

ABSTRACT. This paper presents a novel approach to the problem of
splice site prediction, by applying stochastic grammar inference. We used
four grammar inference algorithms to infer 1465 grammars, and used
10-fold cross-validation to select the best grammar for each algorithm.
The corresponding grammars were embedded into a classifier and used
to run splice site prediction and compare the results with those of
NNSPLICE, the predictor used by the Genie gene finder. We indicate
possible paths to improve this performance by using Sakakibara’s
windowing technique to find probability thresholds that will lower false-
positive predictions.

Key words: Splice sites, Gene prediction, Stochastic grammars,
Machine learning

Genetics and Molecular Research 6 (1): 105-115 (2007) FUNPEC-RP www.funpecrp.com.br

A.Y. Kashiwabara et al. 106

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

INTRODUCTION

The automatic annotation of DNA sequences is a pre-requisite today to keep pace with
the rate that genomic data are being generated. One of the difficulties encountered is the cor-
rect identification of new genes, especially in eukaryotic organisms. Some approaches to this
problem include HMMgene (Krogh, 1997), NetGene2 (Brunak et al., 1991), NNSPLICE (Reese
et al., 1997), SpliceView (Hubbard et al., 1999), GeneID (Guigo et al., 1992), FGENEH (Salamov
and Solovyev, 2000), Grail (Uberbacher and Mural, 1991), Genscan (Burge and Karlin, 1997),
and MZEF (Zhang and Luo, 2003). All these programs utilize intrinsic methods, that is, they are
programs that try to recognize statistical patterns in the signal sequences: promoters, start and
stop codons, splice sites, etc. Among these signals, splice sites deserve special attention, since
they are the ones that define the border between exons and introns.

The techniques utilized for statistical recognition of signals include hidden Markov mod-
els (HMM) (Hughey and Krogh, 1996; Baldi and Brunak, 1998), neural networks (Krogh and
Vedelsby, 1995; Baldi and Brunak, 1998), discriminant analysis, weight matrix method (WMM)
(Staden, 1984), weight array method (WAM) (Zhang and Marr, 1993) and decision trees (Murthy et
al., 1994). Some programs use a combination of these methods (Mathé et al., 2002). Genscan, for
example, uses WMM, WAM and decision tree to identify splice site candidates. FGENEH, another
example, uses a combination of methods based on prediction methods and genome comparison.

However, there is another stochastic technique, stochastic regular grammars (SRGs),
that is widely used in the area of computational linguistics (Abe and Warmuth, 1992) but has not
been widely applied in the area of computational molecular biology. Grammars are a formalism
to describe languages. Grammars can be described by a set of translation rules. We can con-
sider the set of sequences that describe all donor (or acceptor) sites as a language, and there-
fore use a grammar to define it. Stochastic grammars not only describe languages, but also
assign a probability value to each member of the language. SRGs are equivalent to HMMs
(Eddy and Durbin, 1994). However, in particular with SRGs, we have algorithms not only for
inferring the probabilities of the model (probability values assigned to the rules) but also for
building the topology of the machinery (that is, building the rules). This can be an advantage
when there is little biological knowledge to be embedded into the solution.

In this article, we present an approach to obtain splice site predictors based on SRG
technology, indicating how such predictors can be automatically obtained from a set of grammar
inference algorithms controlled by generalization parameters and a training set. We applied this
approach successfully to the problem of predicting splice sites in human DNA sequences, com-
paring the results with the splice site predictor NNSPLICE. The best predictor generated auto-
matically by our approach matched the best performance of NNSPLICE on their own bench-
mark, with the difference being that their results are based on algorithm parameters being set
after the training and specifically for the validation sample.

MATERIAL AND METHODS

The dataset

To train and validate the splice site algorithms, we used sequences from the human
genome. These sequences were extracted from the benchmark used at the University of Cali-

Splice site prediction using stochastic regular grammars 107

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

fornia (http://www.fruitfly.org/sequence/human-datasets.html) to train and validate the algo-
rithm NNSPLICE, the splice site predictor used by the Genie system.

The benchmark training and test sets

The training set consists of 1116 donors, 1110 acceptors, and 4139 false-donor and 4658
false-acceptor sites. The test set consists of 208 true-donor sites, 208 true-acceptor sites, 782
false-donor sites, and 881 false-acceptor sites (see Table 1). The donor splice site sequences
are all 15 bp long, where the first 7 bases are part of the exon sequence and the last 8 bases are
part of the intron. We only used donor splice sites that have the GT consensus sequence. The
acceptor splice site sequences are all 90 bp long, where the first 70 bp belong to the intronic
sequence and the last 20 bp to the exonic sequence. As with the donor sites, we only used
acceptor sites that have the AG consensus sequence. From the original benchmark we also
used two “negative” datasets, the false-donor and the false-acceptor datasets. These were
obtained, respectively, by selecting 15 and 90 bp around the consensus sequences GT and AG
that were not in a donor (acceptor) site. As a result we used 8 files: i) splice.test-real.D, with
208 donor samples; ii) splice.test-real.A, with 208 acceptor samples, iii) splice.test-false.D, with
782 “false-donor” samples; iv) splice.test-false.A, with 881 “false-acceptor” samples; v)
splice.train-real.D, with 1116 donor samples; vi) splice.train-real.A, with 1110 acceptor samples;
vii) splice.train-false.D, with 4139 “false-donor” samples, and viii) splice.train-false.A, with
4658 “false-acceptor” samples. The first four files were used in the comparison test, and the
last 4 files for training the classifiers.

Table 1. Size of the training samples.

Sample type Sample size

Donor Acceptor

Training real 1116 1110
Training false 4139 4658
Testing real 208 208
Testing false 782 881

Definitions

Learning

Let be a set of symbols called alphabet. We call word a sequence of symbols over
ΣΣΣΣΣ* (that is, any sequence with any number of symbols). The set of all possible words is called
example space, denoted by X; the elements of X are called examples. A concept c on X is a
subset of the example space. A concept c can be defined as a function c: X →→→→→ {0, 1}, where c
(x) = 1 indicates that x is positive example and c(x) = 0 indicates that x is a negative ex-
ample. In the set of all concepts, C is called concept space, and the set of all concepts that can

A.Y. Kashiwabara et al. 108

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

be learned is called hypothesis space, denoted by H. A sample of size m is a sequence of m
examples, that is, a member of Xm. A training sample of size m is an element of (X ××××× {0, 1})m.
A learning algorithm relative to a target concept c is a function L that assigns, to each training
sample, a hypothesis h ∈ ∈ ∈ ∈ ∈ H.

Grammars

A stochastic grammar is a quadruple Gs = {Vn, Vt, P, S} where: i) Vn is a set of non-
terminal symbols; ii) Vt is a set of terminal symbols; iii) S ∈∈∈∈∈ Vn is the start symbol; iv) P ∈∈∈∈∈
{(V

n
 ∪∪∪∪∪ V

t
)*V

n
(V

n
 ∪∪∪∪∪ V

t
)*→→→→→(V

n
 ∪∪∪∪∪ V

t
*), p} is the set of productions. In a stochastic grammar

we assign to each production a probability p, 0 ≤≤≤≤≤ p ≤≤≤≤≤ 1, where, to each A ∈∈∈∈∈ Vn and to each {A
→→→→→ αααααi, pi} ∈∈∈∈∈ P, ΣΣΣΣΣi pi = 1.

Automata

A stochastic finite state automaton (SFSA) is a quadruple A = (Q, ΣΣΣΣΣ, πππππ, M) where: i)
Q is a non-empty state set; ii) ΣΣΣΣΣ is an alphabet; iii) πππππ : Q →→→→→ [0, 1] is a probability distribution
over Q; iv) M : Q ××××× Q ××××× Σ →Σ →Σ →Σ →Σ → [0,1] is a probability transition matrix, where:

Automaton vs grammar

To each stochastic regular grammar there is an SFSA describing the same family of
sequences and vice-versa (Aho et al., 1986). Grammars are generally used as description for-
malism, and automata can be implemented into an efficient (linear time) recognition procedure.

Regular grammar inference

Our goal was to use stochastic regular grammars and stochastic automata to specify
concepts over the alphabet {a, c, g, and t}, that is, to characterize DNA sequence families. In
particular we wanted to characterize the concepts “donor site” and “splice site”. We used the
machine learning approach to infer candidate grammars to describe these concepts. To do so
we used grammar inference algorithms.

In the present study, we developed implementations to four different grammatical infer-
ence algorithms: i) Lapfa (Ron et al., 1998); ii) Amnesia (Ron et al., 1996); iii) Alergia (Carrasco
and Oncina, 1994); iv) RPNI (Oncina and Garcia, 1992). These algorithms were developed to
be applied in the area of computational linguistics and, to the best of our knowledge, have not
been applied to the gene prediction area. The input of these algorithms is a training sample
representing a family of DNA sequences, and the output is a stochastic grammar G describing
that family. From this grammar we generated a stochastic automaton that is a mechanism that
receives sequences and assigns to them a value indicating the probability of those sequences
belonging to the grammar, P(sequence|G).

Splice site prediction using stochastic regular grammars 109

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

The algorithms Lapfa, RPNI and Alergia work similarly. They initially build a prefix
tree T representing all prefixes of the training set. Each path from the root of the tree to a leaf
represents one example of the training set, where each edge of the tree is labeled by a letter of
the word representing the example. To each internal node of the tree, we can assign a prefix of
an example of the sample. To each edge of the tree, each algorithm also associates with a
counter indicating the number of prefixes that used that path (Figure 1 shows an example of a
prefix tree for the examples atga, atgg, atta, aaga, cgag). Each tree constitutes also an automa-
ton, where each state corresponds to a node in the tree, the root note is the start state, and the
edges are the same. Figure 1 has an example of prefix tree.

Figure 1. Prefix tree for the examples atga, atgg, atta, aaga, cgag.

In spite of the fact that the tree T corresponds to an automaton (and therefore a gram-
mar) that represents all the elements of the training sample, it does not constitute a good hypo-
thesis for our problem, since the tree describes only sequences that belong to the training
sample or that constitute a prefix of the elements of the training sample. In other words, we
have to face the problem of overfitting (Dietterich, 1995). To avoid this problem all three algo-
rithms apply a generalization process, where similar states of the automata are joined together
into a single-new state. The difference between the algorithms is the criteria for joining states,
that is, the definition of “similar states”. The algorithms Lapfa and Alergia have their generaliza-
tion process regulated by one or more generalization parameters.

The only exception to the above description is the algorithm Amnesia. In Amnesia, the
algorithm builds suffix stochastic automata, a sub-family of SFSA’s. Here, instead of building

A.Y. Kashiwabara et al. 110

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

prefix trees, the algorithm initially builds a suffix tree. The building of the hypothesis uses a top
down approach, starting with a single node and adding new children to a tree node if the se-
quences that will be represented by the new nodes fulfill some statistical conditions inferred
from the training sample. After the inference process, the resulting automaton is converted into
an SFSA. Amnesia is also controlled by a generalization parameter.

Generating a classifier

From a stochastic grammar, we can produce an automaton to recognize the same fam-
ily of sequences. To generate a classifier from grammars, we can use two approaches. We can
generate a single automaton from a positive sample and determine a threshold probability value
for a sequence to be accepted as part of the family, or we can generate two grammars, one
from a positive sample and one from a negative sample, and create a Bayesian classifier. In a
Bayesian classifier, given a sequence, we calculate the probability that the sequence belongs to
each of the two families, and decide on the family with the greatest probability. Thus, in the
donor case, we will generate two grammars Gdonor and Gfalse_donor. The classifier will
calculate P(sequence|Gdonor) and P(sequence|Gfalse_donor), and recognize the sequence
as a donor if P(sequence|Gdonor) > P(sequence|Gfalse_donor). In the work described in
this article, we decided on the second approach.

To generate, validate and test the classifiers, we used a system developed on the frame-
work by Machado-Lima (2002). This framework provides facilities to run grammar inference
algorithms from given samples, automatically generating classifiers for the given samples. On
the top of this framework, a series of scripts were added to automatically run the classifier
generation process for different samples and input parameters, running the resulting classifiers
on the test samples, and recording the results.

Choosing generalization parameters

K-fold cross-validation

As we have seen above, three of the four inference algorithms can generate innumer-
ous classifiers for the same sample, if different generalization parameters are chosen. To
choose the set of generalization parameters used, we ran various experiments using the k-
fold cross-validation technique (Blum et al., 1999) to evaluate the performance of each
parameter set. K-fold cross-validation is a method widely used to validate learning algo-
rithms, especially in the presence of limited training sets. In this method, we divide the
training set into K parts of equal size. We then use K-1 of these as a training set and the
remaining one as the “test set”. This process is repeated K times, one for each of the
possible “test sets”. In our case, we used 10-fold validation, where the sample is divided
into 10 sub-samples of the same size. The method is then repeated 10 times. At each time,
one of the sub-sets is chosen as the “test sample” and the other nine are joined together to
form the “training set”. After the 10 runs, we compute the average error rates. The advan-
tage of this methodology is that it lowers the effect of how the data are partitioned on the
final results. Each example of the set is used exactly once in the “test sample” and 9 times in
the “training sample”.

Splice site prediction using stochastic regular grammars 111

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

Parameters tested

A Perl script was written to carry out the task of generating a classifier with given
generalization parameters and performing k-fold validation of the results. The script receives as
input the training dataset, the number k to be used in the k-fold validation (we used k = 10), the
name of the algorithm to be tested, and a description of the intervals in which to test each
generalization parameter. We used the following parameter intervals: i) Alergia, p1 =
0.001,0.002,...,0.009, and p1 = 0.01, 0.02,...,0.1; ii) Amnesia, p1 = 0.1,0.2,...,0.9; p2 = 2,3,4,5,6;
p3 = 1,2; iii) Lapfa, p1 = 5; p2 = 0.1, 0.2,0.3,..,1.0; p3 = 0.01, 0.01,...,0.1 . Table 2 shows the
number of configurations tested for each algorithm.

Table 2. Number of classifiers tested in the cross-validation test.

Donor Acceptor

Lapfa 1000 1000
Alergia 190 190
Amnesia 900 900
Total 2090 2090

The best performing classifiers were used

After generating classifiers to all combinations of generalization parameters specified
above, we chose, for each algorithm, the parameters that had the lowest error rate on average
for the 10-fold validation process. These parameters were then used to generate one classifier
per algorithm, this time utilizing all the sequences of the training set of the benchmark, not only
9/10 of them, as we did in the 10-fold cross-validation process.

Evaluating results

Once we obtained one classifier for each inference algorithm, we used these classifiers
on the testing samples (datasets splice.test-real.A, splice.test-false.A, splice.test-real.D,
splice.test-false.D), and compared the results with the ones obtained by NNSPLICE using the
same benchmark. For the donor and acceptor test benchmarks we computed the false-positive
and false-negative error rates. The rates were computed using the formulas:

%False-positive = (number of false-positives)/(size of negative sample)
%False-negative = (number of false-negatives)/(size of positive sample)
The rates for NNSPLICE were obtained from the internet page http://www.fruitfly.org/

seq_tools/spliceHelp.html.

RESULTS

Cross-validation results

Tables 3 and 4 show the two best generalization parameter sets for each inference

A.Y. Kashiwabara et al. 112

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

algorithm, obtained in the donor and acceptor training datasets using the 10-fold validation pro-
cess. The algorithm that generated the classifier with the best results was Lapfa, with only
5.92% total average error rate for donor recognition and 6.38% average error rate for acceptor
recognition. The performance of classifiers generated by the other algorithms was clearly infe-
rior. The performance of Amnesia’s best classifier had an average error rate of 24.09% for
donor recognition and 40.33% for acceptor recognition. Alergia’s best classifier had better per-
formance with 10.56% average error rate for donor and 30.95% for acceptor error rate. Cross-
validation was not used in RPNI, since there were no generalization parameters.

Table 3. Performance of the algorithms in the cross-validation test for donor classifiers.

Algorithm Parameters Error (standard deviation inside parentheses)

p1 p2 p3 % total % false-positives % false-negatives

Lapfa 5.000 0.600 0.006 5.519 (1.001) 3.890 (1.072) 11.557 (3.643)
5.000 0.600 0.002 5.538 (0.932) 3.672 (1.096) 12.453 (3.773)

Alergia 0.020 - - 9.839 (1.514) 4.615 (1.282) 29.202 (7.584)
0.008 - - 9.857 (1.608) 4.639 (0.467) 29.202 (6.780)

Amnesia 0.400 5.000 2.000 24.017 (1.996) 24.137 (2.095) 23.572 (5.207)
0.700 6.000 2.000 24.017 (1.996) 24.137 (2.095) 23.572 (5.207)

Results of the best classifiers

Tables 5 and 6 show the performance of the grammar-based classifiers selected above
on the validation dataset used by NNSPLICE, comparing the results with the ones given at
NNSPLICE’s internet site. As it would be expected from the 10-fold validation step, the best
performing algorithm was Lapfa, with only 5.86% error rate for donor recognition and 6.70%
for acceptor recognition. The second best performance was by the algorithm generated by
Alergia, with 12.63% error rate for donor recognition and 27.64% error rate for acceptor recog-
nition. Amnesia’s error rates were 22.32% for donor and 32.32% for acceptor. Finally, RPNI

Table 4. Performance of the algorithms in the cross-validation test for acceptor classifiers.

Algorithm Parameters Error (standard deviation inside parentheses)

p1 p2 p3 % total % false-positives % false-negatives

Lapfa 5.000 0.900 0.010 6.398 (0.643) 5.196 (0.636) 11.441 (3.467)
5.000 1.000 0.010 6.398 (0.643) 5.196 (0.636) 11.441 (3.467)

Alergia 0.020 - - 28.051 (2.103) 18.270 (3.085) 69.099 (4.630)
0.010 - - 25.594 (2.452) 19.365 (2.858) 72.523 (5.884)

Amnesia 0.400 5.000 2.000 40.794 (4.3451) 40.898 (6.935) 40.360 (8.478)
0.700 6.000 2.000 40.794 (4.3451) 40.898 (6.935) 40.360 (8.478)

Splice site prediction using stochastic regular grammars 113

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

had the worst performance with 23.47% (donor) and 32.32% (acceptor) error rates. The re-
sults obtained by the classifier generated using Lapfa were comparable to the best results
obtained by NNSPLICE, that is 5.20% error rate for donor and 7.87% error rate for acceptor.
The difference was that NNSPLICE’s parameters were adjusted during the validation step.

Table 5. Performance of the algorithms in donor identification.

Algorithms Parameters Error

p1 p2 p3 % total % false-positives % false-negatives

Lapfa 5 0.6 0.006 5.657 3.836 12.500
Alergia 0.02 - - 10.910 4.730 34.130
Amnesia 0.40 5 2 22.320 21.995 23.558
RPNI - - - 23.470 23.920 22.440
NNSPLICE threshold = 0.40 5.20 6.80 5.54

Table 6. Performance of the algorithms in acceptor identification.

Algorithms Parameters Error

p1 p2 p3 % total % false-positives % false-negatives

Lapfa 5 0.9 0.01 5.326 4.654 8.173
Alergia 0.02 - - 29.844 1.8422 76.442
Amnesia 0.4 5 2 37.370 34.050 51.440
RPNI - - - 31.460 28.110 45.500
NNSPLICE threshold = 0.40 7.87 3.00 26.20

DISCUSSION

In the present study, we have introduced the use of SRGs and also of grammar infer-
ence, to the problem of splice site prediction. Four different grammatical inference algorithms
were used to produce 4 different splice site predictors. The performance of three of the predic-
tors was not satisfactory, with average error rates ranging from 9.839% up to 40.764%. How-
ever, the fourth predictor, the one generated by the Lapfa algorithm, produced good results with
an error rate of 5.657% for donor recognition and 5.326% for acceptor recognition. The better
performance of the Lapfa algorithm can be explained by the fact that it is the only algorithm that
does not produce “cycles” in the grammar. That means that the resulting grammar recognizes
sequences with limited size (in our case fixed size). All the other three algorithms assume in the
generalization process that the “language” being inferred can have some repetitive “stretches”.
The higher rate of failure can then be explained by overgeneralization over the larger sample
that is the negative sample.

The results of this splice site predictor were very close to those of NNSPLICE, being
more accurate for acceptor sites (5.326 vs 7.87%) and slightly less accurate for donor sites

A.Y. Kashiwabara et al. 114

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

(5.657 vs 5.20%). One advantage of our approach was that the parameters for these results
were automatically set from the training sample using the benchmark, while the results for
NNSPLICE were hand-tuned based on the results of the testing set.

The use of the k-fold validation technique, the use of a framework for inference of
grammar-based classifiers, and the development of scripts for automating the process of gener-
ating and validating classifiers with various values for up to three generalization parameters,
enabled us to generate 1465 different classifiers using 4 different inference algorithms, and to
select the best one associated with each algorithm. The whole process consumed about 5 days
of a Pentium-based Linux workstation and could now be repeated for a larger coverage of
parameter possibilities.

For three of the algorithms, we generated Bayesian classifiers, generating character-
izations of both “true-splice sites” and “false-splice sites” (DNA sequences with the consensus
di-nucleotides, but that did not correspond to true-splice sites). However, the probability value
generated by the classifiers can also be used to control the number of false-positives. That is, if
we set a threshold value, we may be able to eliminate most of the wrongly predicted sites. The
main candidate for this approach is the algorithm RPNI, where, since the algorithm uses a
positive- and a false-training set, only one grammar is generated. The threshold value can also
be used with any of the other 3 algorithms, if we change the approach from using a Bayesian
classifier to one using a single grammar and the threshold value. Sakakibara et al. (1994) devel-
oped a technique to calculate such thresholds in the presence of large negative samples, and we
are currently implementing the programs to test this alternative approach.

CONCLUSIONS

A new promising approach was applied to generate splice site predictors. This ab initio
approach can also be applied to other signals like promoters. The current results are encourag-
ing, matching those of NNSPLICE, the splice site predictor of the gene finder Genie. We have
also extended a classifier generation framework to enable massive generation of candidate
classifiers and their selection using k-fold validation. Using this environment, we intend to ex-
tend our work by also introducing the calculation of minimal thresholds using the windowing
technique, and to extend the comparison to other splice site predictors. In the future, we intend
to integrate the best performing splice site predictors into a gene finder.

ACKNOWLEDGMENTS

We would like to acknowledge CNPq for partially financing the research. We would
also like to acknowledge Ariane Machado-Lima for the use of the framework developed as part
of her Master’s thesis.

REFERENCES

Abe N and Warmuth MK (1992). On the computational complexity of approximating distributions by
probabilistic automata. Machine Learning 9: 205-260.

Aho A, Sethi J and Ullman J (1986). Compilers: principles, techniques, and tools. Addison-Wesley Longman
Publishing Co., Inc., Boston.

Baldi P and Brunak S (1998). Bioinformatics: the machine learning approach. MIT Press, Cambridge.

Splice site prediction using stochastic regular grammars 115

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br

Blum A, Kalai A and Langford J (1999). Beating the hold-out: bounds for k-fold and progressive cross-
validation. Proceedings of the Twelfth Annual Conference on Computational Learning Theory, July
7-9. ACM Press, Santa Cruz, 203-208.

Brunak S, Engelbrecht J and Knudsen S (1991). Prediction of human mRNA donor and acceptor sites from
the DNA sequence. J. Mol. Biol. 220: 49-65.

Burge C and Karlin S (1997). Prediction of complete gene structures in human genomic DNA. J. Mol. Biol.
268: 78-94.

Carrasco RC and Oncina J (1994). Learning stochastic regular grammars by means of a state merging
method. Proceedings of the Second International Colloquium. September 21-23. ICG, Alicante, 139-
152.

Dietterich T (1995). Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27: 326-327.
Eddy SR and Durbin R (1994). RNA sequence analysis using covariance models. Nucleic Acids Res. 22:

2079-2088.
Guigo R, Knudsen S, Drake N, Smith T (1992). Prediction of gene structure. J. Mol. Biol. 226: 141-157.
Hubbard T, Birney E, Bruskiewich R, Clamp M, et al. (1999). Abstracts of papers presented at the 1999

meeting on genome sequencing and biology. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor.

Hughey R and Krogh A (1996). Hidden Markov models for sequence analysis: extension and analysis of
the basic method. Comput. Appl. Biosci. 12: 95-107.

Krogh A (1997). Two methods for improving performance of a HMM and their application for gene finding.
Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology. June
21-26. AAAI Press, Halkidiki, 179-186.

Krogh A and Vedelsby J (1995). Neural network ensembles, cross validation, and active learning. In:
Advances in neural information processing systems (Tesauro G, Touretzky DS and Leen TK, eds.).
The MIT Press, Cambridge, 231-238.

Machado-Lima A (2002). Laboratório de geração de classificadores de seqüências. Master’s thesis, Insti-
tuto de Matemática e Estatística da Universidade de São Paulo, USP, São Paulo.

Mathe C, Sagot MF, Schiex T and Rouze P (2002). Current methods of gene prediction, their strengths and
weaknesses. Nucleic Acids Res. 30: 4103-4117.

Murthy SK, Kasif S and Salzberg S (1994). A system for induction of oblique decision trees. J. Artificial
Intelligence Res. 2: 1-32.

Oncina J and Garcia P (1992). Inferring regular languages in polynomial update time. In: Pattern recogni-
tion and image analysis (de la Blanca NP, Sanfeliu A and Vidal E, eds.). World Scientific Publishing,
Singapore, 49-61.

Reese MG, Eeckman FH, Kulp D and Haussler D (1997). Improved splice site detection in Genie. J. Comput.
Biol. 4: 311-323.

Ron D, Singer Y and Tishby N (1996). The power of amnesia: learning probabilistic automata with variable
memory length. Machine Learning 25: 117-150.

Ron D, Singer Y and Tishby N (1998). On the learnability and usage of acyclic probabilistic finite au-
tomata. J. Comput. Syst. Sci. 56: 133-152.

Sakakibara Y, Brown M, Underwood RC, Mian IS, et al. (1994). Stochastic context-free grammars for
modeling RNA. Proceedings of the 27th Annual Hawaii International Conference on System Sci-
ences (Hunter L), January 4-7. IEEE Computer Society Press, Honolulu, 284-293.

Salamov AA and Solovyev VV (2000). Ab initio gene finding in Drosophila genomic DNA. Genome Res.
10: 516-522.

Staden R (1984). Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res. 12:
505-519.

Uberbacher EC and Mural RJ (1991). Locating protein-coding regions in human DNA sequences by a
multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88: 11261-11265.

Zhang MQ and Marr TG (1993). A weight array method for splicing signal analysis. Comput. Appl. Biosci.
9: 499-509.

Zhang L and Luo L (2003). Splice site prediction with quadratic discriminant analysis using diversity
measure. Nucleic Acids Res. 31: 6214-6220.

