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ABSTRACT. This paper presents anovel approach to the problem of
splicesite prediction, by applying stochastic grammar inference. We used
four grammar inference algorithms to infer 1465 grammars, and used
10-fold cross-validation to select the best grammar for each algorithm.
The corresponding grammars were embedded into a classifier and used
to run splice site prediction and compare the results with those of
NNSPLICE, the predictor used by the Genie gene finder. We indicate
possible paths to improve this performance by using Sakakibara's
windowing techniqueto find probability thresholdsthat will lower fal se-
positive predictions.

Key words: Splice sites, Gene prediction, Stochastic grammars,
Machinelearning

Genetics and Molecular Research 6 (1): 105-115 (2007) ©FUNPEC-RP www.funpecrp.com.br



A.Y.Kashiwabaraet al. 106
INTRODUCTION

The automatic annotation of DNA sequencesisapre-requisite today to keep pace with
the rate that genomic data are being generated. One of the difficulties encountered is the cor-
rect identification of new genes, especially in eukaryotic organisms. Some approaches to this
probleminclude HMMgene (Krogh, 1997), NetGene2 (Brunak et al., 1991), NNSPLICE (Reese
etal., 1997), SpliceView (Hubbard et al ., 1999), Genel D (Guigo et al., 1992), FGENEH (Salamov
and Solovyev, 2000), Grail (Uberbacher and Mural, 1991), Genscan (Burge and Karlin, 1997),
and MZEF (Zhang and Luo, 2003). All these programs utilize intrinsic methods, that is, they are
programs that try to recognize statistical patternsin the signal sequences: promoters, start and
stop codons, splice sites, etc. Among these signals, splice sites deserve special attention, since
they are the ones that define the border between exons and introns.

Thetechniques utilized for statistical recognition of signalsinclude hidden Markov mod-
els (HMM) (Hughey and Krogh, 1996; Baldi and Brunak, 1998), neural networks (Krogh and
Vedel shy, 1995; Baldi and Brunak, 1998), discriminant analysis, weight matrix method (WMM )
(Staden, 1984), weight array method (WAM) (Zhang and Marr, 1993) and decision trees(Murthy et
al., 1994). Some programs use a combination of these methods (Mathé et al., 2002). Genscan, for
example, usssWMM, WAM and decision treeto identify splice sSite candidates. FGENEH, another
example, uses acombination of methods based on prediction methods and genome comparison.

However, there is another stochastic technique, stochastic regular grammars (SRGS),
that iswidely used in the areaof computational linguistics (Abe and Warmuth, 1992) but has not
been widely applied in the area of computational molecular biology. Grammarsareaformalism
to describe languages. Grammars can be described by a set of trandation rules. We can con-
sider the set of sequences that describe all donor (or acceptor) sites as a language, and there-
fore use a grammar to define it. Stochastic grammars not only describe languages, but also
assign a probability value to each member of the language. SRGs are equivalent to HMMs
(Eddy and Durbin, 1994). However, in particular with SRGs, we have agorithms not only for
inferring the probabilities of the model (probability values assigned to the rules) but also for
building the topology of the machinery (that is, building the rules). This can be an advantage
whenthereislittle biological knowledgeto be embedded into the solution.

In this article, we present an approach to obtain splice site predictors based on SRG
technol ogy, indicating how such predictors can be automatically obtained from aset of grammar
inference algorithms controlled by generalization parameters and atraining set. We applied this
approach successfully to the problem of predicting splice sitesin human DNA sequences, com-
paring the results with the splice site predictor NNSPLICE. The best predictor generated auto-
matically by our approach matched the best performance of NNSPLICE on their own bench-
mark, with the difference being that their results are based on algorithm parameters being set
after the training and specifically for the validation sample.

MATERIALAND METHODS
The dataset

To train and validate the splice site algorithms, we used sequences from the human
genome. These sequences were extracted from the benchmark used at the University of Cali-
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fornia (http://www:.fruitfly.org/sequence/human-datasets.html) to train and validate the algo-
rithm NNSPLICE, the splice site predictor used by the Genie system.

The benchmark training and test sets

Thetraining set consists of 1116 donors, 1110 acceptors, and 4139 fal se-donor and 4658
false-acceptor sites. The test set consists of 208 true-donor sites, 208 true-acceptor sites, 782
false-donor sites, and 881 false-acceptor sites (see Table 1). The donor splice site sequences
areall 15 bp long, where thefirst 7 bases are part of the exon sequence and the last 8 bases are
part of the intron. We only used donor splice sites that have the GT consensus sequence. The
acceptor splice site sequences are all 90 bp long, where the first 70 bp belong to the intronic
sequence and the last 20 bp to the exonic sequence. As with the donor sites, we only used
acceptor sites that have the AG consensus sequence. From the original benchmark we also
used two “negative’ datasets, the false-donor and the false-acceptor datasets. These were
obtained, respectively, by selecting 15 and 90 bp around the consensus sequences GT and AG
that were not in a donor (acceptor) site. As aresult we used 8 files: i) splice.test-real.D, with
208 donor samples; ii) splice.test-real .A, with 208 acceptor samples, iii) splice.test-false.D, with
782 “false-donor” samples; iv) splice.test-false.A, with 881 “false-acceptor” samples; v)
splicetrain-real.D, with 1116 donor samples; vi) splice.train-real.A, with 1110 acceptor samples,
vii) splice.train-false.D, with 4139 “false-donor” samples, and viii) splice.train-false.A, with
4658 “false-acceptor” samples. The first four files were used in the comparison test, and the
last 4 filesfor training the classifiers.

Table 1. Size of the training samples.

Sample type Samplesize
Donor Acceptor
Training real 1116 1110
Trainingfalse 4139 4658
Testing real 208 208
Testing false 782 881
Definitions

Learning

Let X be aset of symbols called alphabet. We call word a sequence of symbols over
X (that is, any sequence with any number of symbols). The set of all possible wordsis called
example space, denoted by X; the elements of X are called examples. A concept con X isa
subset of the example space. A concept ¢ can be defined as afunction c: X — {0, 1}, where c
(x) = 1 indicates that x is positive example and c(x) = O indicates that x is a negative ex-
ample. In the set of all concepts, C is called concept space, and the set of all conceptsthat can
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be learned is called hypothesis space, denoted by H. A sample of size m is a sequence of m
examples, that is, amember of X™. A training sample of sizem isan element of (X x {0, 1})™.
A learning algorithmrelative to atarget concept cisafunction L that assigns, to each training
sample, a hypothesish € H.

Grammars

A stochastic grammar isaquadruple G_={V ,V,, P, S} where: i) V_isaset of non-
terminal symbols; ii) V, isaset of terminal symboals; iii) Se V  isthe start symboal; iv) P e
{(V,uV)*V (V UV )=V UV*),p}isthe set of productions. In a stochastic grammar
we assign to each production a probability p, 0< p <1, where, toeach A € V_andto each {A
- a,ple PZp =L

Automata

A stochastic finite state automaton (SFSA) isa quadruple A = (Q, Z, =, M) where: i)
Q isanon-empty state set; ii) X is an alphabet; iii) w: Q — [0, 1] isaprobability distribution
over Q;iv) M : QxQx X — [0,1] isaprobability transition matrix, where:

> m=landVieQ Y M(,j.0)=1

icQ JEQ.,0€8

Automaton vs grammar

To each stochastic regular grammar there is an SFSA describing the same family of
sequences and vice-versa (Aho et al., 1986). Grammars are generally used as description for-
malism, and automata can beimplemented into an efficient (linear time) recognition procedure.

Regular grammar inference

Our goal was to use stochastic regular grammars and stochastic automata to specify
concepts over the alphabet { a, ¢, g, and t}, that is, to characterize DNA sequence families. In
particular we wanted to characterize the concepts “donor site” and “ splice site”. We used the
machine learning approach to infer candidate grammars to describe these concepts. To do so
we used grammar inference algorithms.

In the present study, we devel oped implementationsto four different grammatical infer-
enceagorithms: i) Lapfa(Ronet a., 1998); ii) Amnesia(Ron et a., 1996); iii) Alergia(Carrasco
and Oncina, 1994); iv) RPNI (Oncina and Garcia, 1992). These algorithms were devel oped to
be applied in the area of computational linguistics and, to the best of our knowledge, have not
been applied to the gene prediction area. The input of these algorithms is a training sample
representing afamily of DNA sequences, and the output is a stochastic grammar G describing
that family. From this grammar we generated a stochastic automaton that is a mechanism that
receives sequences and assigns to them a value indicating the probability of those sequences
belonging to the grammar, P(sequencelG).
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The agorithms Lapfa, RPNI and Alergia work similarly. They initially build a prefix
tree T representing all prefixes of the training set. Each path from the root of the tree to a leaf
represents one example of the training set, where each edge of the treeislabeled by aletter of
the word representing the example. To each internal node of the tree, we can assign a prefix of
an example of the sample. To each edge of the tree, each algorithm also associates with a
counter indicating the number of prefixes that used that path (Figure 1 shows an example of a
prefix tree for the examples atga, atgg, atta, aaga, cgag). Each tree constitutes also an automa-
ton, where each state corresponds to a node in the tree, the root note is the start state, and the
edges are the same. Figure 1 has an example of prefix tree.

Figure 1. Prefix tree for the examples atga, atgg, atta, aaga, cgag.

In spite of the fact that the tree T corresponds to an automaton (and therefore a gram-
mar) that represents all the elements of the training sample, it does not constitute a good hypo-
thesis for our problem, since the tree describes only sequences that belong to the training
sample or that constitute a prefix of the elements of the training sample. In other words, we
haveto face the problem of overfitting (Dietterich, 1995). To avoid this problem all three algo-
rithms apply a generalization process, where similar states of the automata are joined together
into asingle-new state. The difference between the algorithmsisthe criteriafor joining states,
that is, thedefinition of “similar states’. ThealgorithmsLapfaand Alergiahavetheir generaliza-
tion process regulated by one or more generalization parameters.

The only exception to the above description isthe algorithm Amnesia. In Amnesia, the
algorithm builds suffix stochastic automata, a sub-family of SFSA’s. Here, instead of building
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prefix trees, the algorithm initially builds asuffix tree. The building of the hypothesisusesatop
down approach, starting with a single node and adding new children to a tree node if the se-
guences that will be represented by the new nodes fulfill some statistical conditions inferred
from the training sample. After the inference process, the resulting automaton is converted into
an SFSA. Amnesiais aso controlled by a generalization parameter.

Generating a classifier

From a stochastic grammar, we can produce an automaton to recognize the same fam-
ily of sequences. To generate a classifier from grammars, we can use two approaches. We can
generate asingle automaton from apositive sampl e and determine athreshold probability value
for a sequence to be accepted as part of the family, or we can generate two grammars, one
from a positive sample and one from a negative sample, and create a Bayesian classifier. Ina
Bayesian classifier, given asequence, we cal cul ate the probability that the sequence belongsto
each of the two families, and decide on the family with the greatest probability. Thus, in the
donor case, we will generate two grammars Gdonor and Gfalse_donor. The classifier will
calculate P(sequencelGdonor) and P(sequence|lGfalse_donor), and recognize the sequence
as a donor if P(sequencelGdonor) > P(sequence|lGfalse_donor). In the work described in
this article, we decided on the second approach.

To generate, validate and test the classifiers, we used asystem devel oped on the frame-
work by Machado-Lima (2002). This framework provides facilities to run grammar inference
algorithms from given samples, automatically generating classifiersfor the given samples. On
the top of this framework, a series of scripts were added to automatically run the classifier
generation process for different samples and input parameters, running the resulting classifiers
on the test samples, and recording the results.

Choosing generalization parameters
K-fold cross-validation

As we have seen above, three of the four inference algorithms can generate innumer-
ous classifiers for the same sample, if different generalization parameters are chosen. To
choose the set of generalization parameters used, we ran various experiments using the k-
fold cross-validation technique (Blum et al., 1999) to evaluate the performance of each
parameter set. K-fold cross-validation is a method widely used to validate learning algo-
rithms, especially in the presence of limited training sets. In this method, we divide the
training set into K parts of equal size. We then use K-1 of these as a training set and the
remaining one as the “test set”. This process is repeated K times, one for each of the
possible “test sets’. In our case, we used 10-fold validation, where the sampleis divided
into 10 sub-samples of the same size. The method is then repeated 10 times. At each time,
one of the sub-setsis chosen as the “test sample” and the other nine are joined together to
formthe “training set”. After the 10 runs, we compute the average error rates. The advan-
tage of this methodology isthat it lowers the effect of how the data are partitioned on the
final results. Each example of the set is used exactly oncein the “test sample”’ and 9 timesin
the“training sample’.

Genetics and Molecular Research 6 (1): 105-115 (2007) www.funpecrp.com.br



Splicesite prediction using stochastic regular grammars 111
Parameters tested

A Perl script was written to carry out the task of generating a classifier with given
generalization parameters and performing k-fold validation of the results. The script receives as
input the training dataset, the number k to be used in the k-fold validation (we used k = 10), the
name of the algorithm to be tested, and a description of the intervals in which to test each
generalization parameter. We used the following parameter intervals: i) Alergia, pl =
0.001,0.002,...,0.009, and p1=0.01, 0.02,...,0.1; ii) Amnesia, p1 =0.1,0.2,...,0.9; p2=2,3,4,5,6;
p3=1,2;iii) Lapfa, p1=5; p2=0.1, 0.2,0.3,..,1.0; p3 = 0.01, 0.01,...,0.1 . Table 2 shows the
number of configurationstested for each algorithm.

Table 2. Number of classifiers tested in the cross-validation test.

Donor Acceptor
Lapfa 1000 1000
Alergia 190 190
Amnesia 900 900
Total 2090 2090

The best performing classifiers were used

After generating classifiersto all combinations of generalization parameters specified
above, we chose, for each algorithm, the parameters that had the lowest error rate on average
for the 10-fold validation process. These parameters were then used to generate one classifier
per algorithm, thistime utilizing all the sequences of thetraining set of the benchmark, not only
9/10 of them, aswe did in the 10-fold cross-validation process.

Evaluating results

Oncewe aobtained one classifier for each inference algorithm, we used these classifiers
on the testing samples (datasets splice.test-real.A, splice.test-false.A, splice.test-real.D,
splice.test-false.D), and compared the results with the ones obtained by NNSPLICE using the
same benchmark. For the donor and acceptor test benchmarks we computed the false-positive
and false-negative error rates. The rates were computed using the formulas:

%Fal se-positive = (number of false-positives)/(size of negative sample)

%Fal se-negative = (number of false-negatives)/(size of positive sample)

Theratesfor NNSPL | CE were obtained from the internet page http://www.fruitfly.org/
seq_toolg/spliceHe p.html.

RESULTS
Cross-validation results

Tables 3 and 4 show the two best generalization parameter sets for each inference
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algorithm, obtained in the donor and acceptor training datasets using the 10-fold validation pro-
cess. The algorithm that generated the classifier with the best results was Lapfa, with only
5.92% total average error rate for donor recognition and 6.38% average error rate for acceptor
recognition. The performance of classifiers generated by the other algorithmswas clearly infe-
rior. The performance of Amnesia's best classifier had an average error rate of 24.09% for
donor recognition and 40.33% for acceptor recognition. Alergia s best classifier had better per-
formance with 10.56% average error rate for donor and 30.95% for acceptor error rate. Cross-
validation was not used in RPNI, since there were no generalization parameters.

Table 3. Performance of the algorithms in the cross-validation test for donor classifiers.

Algorithm Parameters Error (standard deviation inside parentheses)
pl p2 p3 % total % false-positives % fase-negatives
Lapfa 5.000 0.600 0.006 5.519 (1.001) 3.890 (1.072) 11.557 (3.643)
5.000 0.600 0.002 5.538 (0.932) 3.672 (1.096) 12.453 (3.773)
Alergia 0.020 - - 9.839 (1.514) 4,615 (1.282) 29.202 (7.584)
0.008 - - 9.857 (1.608) 4.639 (0.467) 29.202 (6.780)
Amnesia 0.400 5.000 2.000 24.017 (1.996) 24.137 (2.095) 23.572 (5.207)
0.700 6.000 2.000 24.017 (1.996) 24.137 (2.095) 23.572 (5.207)

Table 4. Performance of the algorithms in the cross-validation test for acceptor classifiers.

Algorithm Parameters Error (standard deviation inside parentheses)
pl p2 p3 % total % false-positives % false-negatives
Lapfa 5.000 0.900 0.010 6.398 (0.643) 5.196 (0.636) 11.441 (3.467)
5.000 1.000 0.010 6.398 (0.643) 5.196 (0.636) 11.441 (3.467)
Alergia 0.020 - - 28.051 (2.103) 18.270 (3.085) 69.099 (4.630)
0.010 - - 25.594 (2.452) 19.365 (2.858) 72.523 (5.884)
Amnesia 0.400 5.000 2.000 40.794 (4.3451) 40.898 (6.935) 40.360 (8.478)
0.700 6.000 2.000 40.794 (4.3451) 40.898 (6.935) 40.360 (8.478)

Results of the best classifiers

Tables 5 and 6 show the performance of the grammar-based classifiers selected above
on the validation dataset used by NNSPLICE, comparing the results with the ones given at
NNSPLICE's internet site. Asit would be expected from the 10-fold validation step, the best
performing algorithm was Lapfa, with only 5.86% error rate for donor recognition and 6.70%
for acceptor recognition. The second best performance was by the algorithm generated by
Alergia, with 12.63% error rate for donor recognition and 27.64% error rate for acceptor recog-
nition. Amnesia’s error rates were 22.32% for donor and 32.32% for acceptor. Finally, RPNI
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had the worst performance with 23.47% (donor) and 32.32% (acceptor) error rates. The re-
sults obtained by the classifier generated using Lapfa were comparable to the best results
obtained by NNSPLICE, that is 5.20% error rate for donor and 7.87% error rate for acceptor.
The difference was that NNSPLICE’s parameters were adjusted during the validation step.

Table 5. Performance of the algorithmsin donor identification.

Algorithms Parameters Error

pl p2 p3 % total % false-positives % false-negatives
Lapfa 5 0.6 0.006 5.657 3.836 12.500
Alergia 0.02 - - 10.910 4.730 34.130
Amnesia 0.40 5 2 22.320 21.995 23.558
RPNI - - - 23.470 23.920 22.440
NNSPLICE threshold = 0.40 5.20 6.80 554

Table 6. Performance of the algorithmsin acceptor identification.

Algorithms Parameters Error

pl p2 p3 % total % false-positives % false-negatives
Lapfa 5 0.9 0.01 5.326 4.654 8.173
Alergia 0.02 - - 29.844 1.8422 76.442
Amnesia 04 5 2 37.370 34.050 51.440
RPNI - - - 31.460 28.110 45.500
NNSPLICE threshold = 0.40 7.87 3.00 26.20
DISCUSSION

In the present study, we have introduced the use of SRGs and also of grammar infer-
ence, to the problem of splice site prediction. Four different grammatical inference algorithms
were used to produce 4 different splice site predictors. The performance of three of the predic-
tors was not satisfactory, with average error rates ranging from 9.839% up to 40.764%. How-
ever, thefourth predictor, the one generated by the Lapfaalgorithm, produced good resultswith
an error rate of 5.657% for donor recognition and 5.326% for acceptor recognition. The better
performance of the Lapfaa gorithm can be explained by thefact that it isthe only algorithm that
does not produce “cycles’ in the grammar. That means that the resulting grammar recognizes
sequenceswith limited size (in our casefixed size). All the other three algorithms assumein the
generalization processthat the“language” being inferred can have some repetitive “ stretches’.
The higher rate of failure can then be explained by overgeneralization over the larger sample
that is the negative sample.

The results of this splice site predictor were very close to those of NNSPLICE, being
more accurate for acceptor sites (5.326 vs 7.87%) and dlightly less accurate for donor sites
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(5.657 vs 5.20%). One advantage of our approach was that the parameters for these results
were automatically set from the training sample using the benchmark, while the results for
NNSPLICE were hand-tuned based on the results of the testing set.

The use of the k-fold validation technique, the use of a framework for inference of
grammar-based classifiers, and the devel opment of scriptsfor automating the process of gener-
ating and validating classifiers with various values for up to three generalization parameters,
enabled us to generate 1465 different classifiers using 4 different inference algorithms, and to
select the best one associated with each algorithm. The whol e process consumed about 5 days
of a Pentium-based Linux workstation and could now be repeated for a larger coverage of
parameter possibilities.

For three of the algorithms, we generated Bayesian classifiers, generating character-
izations of both “true-splice sites” and “false-splice sites” (DNA sequences with the consensus
di-nucleotides, but that did not correspond to true-splice sites). However, the probability value
generated by the classifiers can also be used to control the number of false-positives. That is, if
we set athreshold value, we may be able to eliminate most of the wrongly predicted sites. The
main candidate for this approach is the algorithm RPNI, where, since the algorithm uses a
positive- and afalse-training set, only one grammar is generated. The threshold value can also
be used with any of the other 3 algorithms, if we change the approach from using a Bayesian
classifier to oneusing asingle grammar and thethreshold value. Sakakibaraet al. (1994) devel -
oped atechniqueto cal culate such thresholdsin the presence of large negative samples, and we
are currently implementing the programs to test this alternative approach.

CONCLUSIONS

A new promising approach was applied to generate splice site predictors. Thisab initio
approach can also be applied to other signals like promoters. The current results are encourag-
ing, matching those of NNSPLICE, the splice site predictor of the gene finder Genie. We have
also extended a classifier generation framework to enable massive generation of candidate
classifiersand their selection using k-fold validation. Using this environment, we intend to ex-
tend our work by also introducing the calculation of minimal thresholds using the windowing
technique, and to extend the comparison to other splice site predictors. In the future, we intend
to integrate the best performing splice site predictors into a gene finder.
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