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ABSTRACT. Methodologies using restricted maximum likelihood/
best linear unbiased prediction (REML/BLUP) in combination with 
sequential path analysis in maize are still limited in the literature. 
Therefore, the aims of this study were: i) to use REML/BLUP-
based procedures in order to estimate variance components, genetic 
parameters, and genotypic values of simple maize hybrids, and ii) to 
fit stepwise regressions considering genotypic values to form a path 
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diagram with multi-order predictors and minimum multicollinearity 
that explains the relationships of cause and effect among grain yield-
related traits. Fifteen commercial simple maize hybrids were evaluated 
in multi-environment trials in a randomized complete block design with 
four replications. The environmental variance (78.80%) and genotype-
vs-environment variance (20.83%) accounted for more than 99% of the 
phenotypic variance of grain yield, which difficult the direct selection 
of breeders for this trait. The sequential path analysis model allowed 
the selection of traits with high explanatory power and minimum 
multicollinearity, resulting in models with elevated fit (R2 > 0.9 and 
ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel 
weight (TKW) are the traits with the largest direct effects on grain yield 
(r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 
and 0.89) associated with the high heritability of the average (0.732 
and 0.794) for NKE and TKW, respectively, indicated good reliability 
and prospects of success in the indirect selection of hybrids with high-
yield potential through these traits. The negative direct effect of NKE 
on TKW (r = -0.856), however, must be considered. The joint use of 
mixed models and sequential path analysis is effective in the evaluation 
of maize-breeding trials.

Key words: Genotypic values; Mixed models; Stepwise regression; 
Zea mays L.

INTRODUCTION

Maize is one of the most cultivated cereals in the world. Because of this, breeding 
programs aim to launch new hybrids with superior characteristics to those already on the 
market. Estimates of variance components (genetic and environmental), the prediction of 
genotypic values, and estimates of the interrelationships among grain yield-related traits are 
vital steps that precede the final selection and subsequent commercial launch of superior maize 
hybrids (Hallauer et al., 2010).

Due to the need to perform complex experiments (e.g., multi-sites/multi-year trials), 
procedures based on restricted maximum likelihood/best linear unbiased prediction (REML/
BLUP) have proven to be effective in assessing genotypic performance, because in many 
practical situations, local/year effects are randomly considered (Piepho et al., 2007). Since the 
1990s, the methods of mixed models have been gaining more and more space in the statistical 
evaluation of genotypes in plant-breeding trials, because they allow a most robust and accurate 
estimation of genetic and environmental parameters, as well as the prediction of genotypic 
values in a non-biased way (Smith et al., 2005). In addition, mixed model procedures reduce 
the noise of unbalanced designs as well as of the non-additive traits, features often observed 
in plant-breeding trials (Hu, 2015). In crops, such as maize (Baretta et al., 2016), sorghum 
(Almeida Filho et al., 2016), cassava (Oliveira et al., 2014), and sugar cane (Barbosa et al., 
2014), REML/BLUP-based procedures were effective in assessing the genotypic performance, 
predicting with accuracy the variance components and breeding values.
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The knowledge of the interrelationships among grain yield-related traits is valuable 
information to the breeder, because the selection for this specific trait, which is quantitatively 
inherited, can be made indirectly by traits directly associated with the grain yield; however, in 
order to get an efficient selection, these traits must present high heritability (Falconer and Mackay, 
1996). The presence of significant correlations indicates that the traits are linearly associated, thus, 
it is necessary to decompose the linear correlations into associations of cause and effect. This 
decomposition method was developed by Wright (1923), and is called path analysis.

In practice, the breeder assesses several traits in each hybrid according to the hypothesis 
and aims of the breeding program. In your paper, Wright says that “the path analysis is a method 
of evaluating logical consequences of a hypothesis as to the causal relations in a system of 
correlated traits” (Wright, 1923). In most studies involving path analysis in maize, researchers 
consider the predictor traits as first-order predictors to analyze their direct and indirect effects 
on a dependent trait, generally the grain yield (Bello et al., 2010; Toebe and Cargnelutti, 2013; 
Kumar et al., 2014; Nataraj et al., 2014; Adesoji et al., 2015; Kumar and Babu, 2015). The 
estimates, accuracy and inferential interpretation of path coefficients in this type of analysis, 
however, may be impaired due to the complex nature of the traits, which may be correlated 
(Farrar and Glauber, 1967). In this regard, studies adopting a sequential path analysis model 
with first-, second-, n-order predictors have been used to determine the interrelationships among 
grain yield-related traits in crops such as rice (Samonte et al., 1998) and maize (Agrama, 1996). 
In such studies, the multicollinearity level of multi-order predictor traits had not been tested, 
furthermore, the indirect effects were not presented. In maize crop, studies using mixed models 
or sequential path analysis are observed in the literature and have been effective in estimating 
with accuracy the variance components and genetic parameters, as well as the interrelationships 
among grain yield-related traits. However, studies using mixed models together with sequential 
path analysis to determine the relationship of cause and effect considering genotypic values are 
still limited. This approach is needed and will be welcome in the literature.

In this context, the aims of this research were, i) to use REML/BLUP-based 
procedures in order to estimate variance components, genetic parameters, and the genotypic 
performance of simple maize hybrids in multi-environment trials, and ii) to fit stepwise 
regressions considering genotypic values to form a path diagram with multi-order predictors 
and minimum multicollinearity that explains the relationship of cause and effect among grain 
yield-related traits.

MATERIAL AND METHODS

Plant material

Fifteen commercial simple maize hybrids from five companies, which represent a 
large part of the Brazilian seed market, were used. The hybrids and their respective companies 
were the following: P30F53H, P1630H, and P30B39 (Pioneer); B2A525 HX, BM915 PRO, 
and 2B655 PW (Biomatrix); AG8690, AG8780, and AG9045 (Agroceres); Velox TL, Status 
TL, Truck TL, and SX7331 (Agroceres); BG7318H and BG7648H (Biogene).

Experimental design

Three field experiments were conducted under natural rainfall conditions in 
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municipalities of the northeast region of Rio Grande do Sul State, Brazil, in 2014/2015 growing 
season. Santo Expedito do Sul (27°56'S, 51°37'W, to 728 m asl), São José do Ouro (27°44'S, 
51°32'W to 796 m asl), and Viadutos (27°33'S, 52°00'W to 628 m asl). The daily average air 
temperature was 24.5°, 23.8° and 25.2°C and the precipitation accumulated during the crop 
cycle was 823, 958, and 746 mm, respectively. All locations are inside a 70-km radius, have a 
haplustox soil, and were chosen due to similarities of soil and climatic characteristics. Thus, 
abiotic effects on plants’ response were minimized as much as possible.

Prior to installation of the experiments, each experimental area was analyzed in 
order to identify the presence of potentially disruptive characteristics. In order to reduce the 
systematic errors, a randomized complete block design with four replications was used. The 
blocks were allocated so that homogeneity was present within the block and heterogeneity 
between the blocks. A 15 × 3-factorial treatment design (15 hybrids × 3 growth environments) 
was used, totaling 180 plots. Each plot consisted of six 5-m long rows, spaced by 0.45 m. 
In all experiments, the sowing was manually carried out in pre-marked and fertilized lines. 
For all hybrids, the final plant density was equivalent to 60,000 plants/ha. Weed control was 
performed using an atrazine-based herbicide (2.5 L/ha). In all trails, covering fertilization was 
performed with urea-based fertilizer (250 kg/ha).

Assessed traits

At harvesting stage, to avoid edge effects, only the two central rows were used as useful 
plot. Data from 17 traits (Table 1) were assessed in five representative plants (observations) 
of each plot. The values of these five observations composed the average of each trait for the 
specific plot.

Code Description Assessment methodology 
PH Plant height Distance from the ground surface to the flag leaf node in m 
EH Ear height Distance from the ground surface to the support node of the highest ear at the stem in m 
EP Ear position EH/PH ratio 
LAE Leaves above ear Number of leaves above ear, including ear leaf, assessed at flowering, in units 
LBE Leaves below ear Number of leaves below ear, assessed at flowering, in units 
EL Ear length Assessed with a digital caliper, at harvesting, in cm 
ED Ear diameter Assessed with a digital caliper, at harvesting, in cm 
NRE Number of rows per ear Assessed by counting the number of rows per ear, in units 
NKR Number of kernels per row Assessed by counting the number of kernels in one row per ear, in units 
CD Cob diameter Assessed with a digital caliper, at harvesting, in cm 
CL Cob length Assessed with a digital caliper, at harvesting, in cm 
GY Grain yield Assessed by kernel mass of each plant, adjusted to 14% moisture at the equivalent 

density of 60,000 plants/ha, in Mg/ha 
CM Cob mass Assessed with a digital scale, in g. 
NKE Number of kernels per ear Assessed by counting the number of kernels per ear, in units 
CD/ED Cob diameter/ear diameter ratio CD/ED ratio, in unit 
%KER Percentage of kernel Percentage of kernel of total husked ear weight 
TKW Thousand-kernel weight Assessed in each ear by average of eight replicates of 100 seeds 
 

Table 1. Description of assessed traits in five plants/ears in each plot, which had composed the average of the plot.

Statistical analysis

Estimates of genetic parameters were obtained by REML/BLUP-based procedures 
using the statistic model 54 of the Selegen software (Resende, 2007). For each trait, the 
following mixed model was fitted for estimating genetic parameters.
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where y is the data vector; b is the vector of plot effects within different environments (fixed); g 
is the vector of genotypic effects (random); i is the vector of effects of genotype × environment 
(G×E) interaction (random); ε is the vector of random errors; and X, Z, and W represent the 
incidence matrices that fit the unknown parameters b, g, and i, respectively, to the y data vector.

Mean and variance distributions and structures

The distribution and structures of averages (A) and variances (Var) were

  b g iy WX Z ε= + + + (Equation 1)
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Mixed model equations

The model fit was obtained by the following equation of mixed model, with b estimated 
by the method of generalized least square and g and i predicted by BLUP.
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corresponds to heritability in the broad sense of the plots
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(Equation 7)

corresponds to coefficient of determination of the G×E effects, where 2ˆ gσ  is the genotypic 
variance, 2ˆ iσ  is the G×E interaction variance, and 2ˆ εσ  is the residual variance.

Iterative estimators of variance components and genetic parameters by REML via 
expectation-maximization algorithm

Variance components used in this study were estimated by REML using expectation-
maximization algorithm (Dempster et al., 1977) according to Resende (2000):
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C22 and C33 were derived from:

2

2

22ˆ ˆ' ˆ
ˆ

e
g

g g trC
q
σ

σ
 + = (Equation 9)

2

2

33ˆ ' ˆ
ˆ

e
i

i i trC
s
σ

σ
 + = (Equation 10)

1 11 12 13
11 12 13

1 21 22 23
21 22 23

31 32 33
31 32 33

C C C C C C
C C C C C C C

C C C C C C

−

−

  
  = =   
     

(Equation 11)

where C is the matrix of the coefficient of the mixed model equations, tr is the trace of a matrix 
operator, r(x) is the rank of the X matrix, N, q, and s are the total number of data, the number 
of lines, and the number of plots, respectively.

The heritability of the hybrids’ average assuming four replicates in each environment 
was estimated by:
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where b is the number of blocks.
This expression was used to estimate the selective accuracy given by:

2ˆ
mgAc h= (Equation 13)

Genotypic correlation between hybrids and environments was estimated by:
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Genetic coefficient of variation was estimated by:
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Residual coefficient of variation was estimated by:
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(Equation 16)

where µ̂  is the average of the trait.
By using the mixed model, the predictors (REML/BLUP) of genotypic values free of 

the interaction were estimated by ˆ ˆ igµ + , in which ^µ  is the overall average and ˆ ig  is the 
genotypic values free of the G×E interaction. For the j-th environment, genotypic values (Vg) 
were predicted by: ˆ ˆˆj ijiVg gegµ= + + , where ˆ jµ  is the average of j-th environment; ˆ ig  is 
the genotypic effect of i-th hybrid at the j-th environment (j = 1, 2, 3 and i = 1, 2, 3, …, 15) 
and ˆ ijge  is the effect of G×E interaction regarding i-th hybrid.

Stepwise and path analysis

In order to explain the interrelationships among GY-related traits, genotypic values 
( ˆ ˆˆj ijiVg gegµ= + + ) of the 17 assessed traits (Table 1) were used in the fitting of path analysis 
models. Path analysis was performed in two procedures: conventional path analysis and 
sequential path analysis.

Conventional path analysis

A Pearson correlation matrix with all possible combination of the 16 predictor traits 
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(PH, EH, EP, LAE, LBE, EL, ED, NRE, NKR, CD, CL, CM, NKE, CD/ED, %KER, and TKW) 
was computed, originating an X’X16x16 matrix. Correlation coefficients of each predictor trait 
with GY originated an X’Y16x1 matrix. Thus, all the 16 predictor traits were considered first-
order predictors in estimating direct and indirect effects on GY. In this methodology, the direct 
and indirect effects (indirect effects not presented) were estimated by derivation of the system 
of normal equations used to estimate the multiple-regression parameters (Quinn and Keough, 
2002). Thus, in order to estimate the values of β, a system of normal equations represented in 
the following matrix form was solved.

: : 1 :

: : 2 :

: : 16 :
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1

1
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 … 

(Equation 17)

The β estimates were given by: β = (X’X)-1 X’Y, where β is the vector of partial regression 
coefficients (b1, b2, …, bp) with p + 1 rows; (X’X)-1 is the inverse of X’X correlation matrix among 
predictor traits and X’Y is the matrix between each predictor trait with GY. Solving this model, 
it was possible to estimate the direct and indirect effects. Consider as an example the direct and 
indirect effects of PH on GY given by: rPH:GY = b1 + b2rPH:EH + ... + b16rPH:TKW. Where rPH:GY  is the 
linear correlation between PH and GY; b1 is the direct effect of PH on GY; b2rPH:EH is the indirect 
effect of PH on GY via EH, ..., b16rPH:TKW is the indirect effect of PH on GY via TKW. Equivalent 
equations were fitted to the other predictors. Multiple coefficients of determination (R2) were 
given by: R2 = b1rGY:PH + b2rGY:EH + b3rGY:EP + β4rGY:LAE + β5rGY:LBE + β6rGY:EL + β7rGY:ED + β8rGY:NRE 

+ β9rGY:NKR + b10rGY:CD + b11rGY:CL + b12rGY:CM + b13rGY:NKE + b14rGY:DSDE + b15rGY:%KER + b16rGY:TKW 

Residual effect was estimated by: 2
= R1 - ε .

The multicollinearity level of predictor trait matrix was measured by three measures: 
condition number (CN), tolerance (TOL), and variance inflation factor (VIF), as proposed by 
Mansfield and Helms (1982). The condition number was estimated by the ratio between the 
largest and smallest eigenvalue (λ) of the matrix of explanatory traits (CN = λMax/λMin). Tolerance 
value represented the variation of the independent trait not explained by the other independent 
traits of the model ( 21 iR− ), where 2

iR  is the coefficient of determination for the prediction 
of the i-th trait by the other predictor traits. The VIF values, being reciprocal of the tolerance, 
demonstrated the extent of the effects of other independent traits on the variance of the selected 
independent trait 2[1/ (1 )]iR− , being considered the diagonal elements of (X’X)-1. Severe levels 
of multicollinearity were attributed to matrices with CN > 1000, and traits with VIFs > 10 and 
TOL < 0.1 (Mansfield and Helms, 1982).

Sequential path analysis

In this methodology, stepwise regressions (Hocking, 1976) were fitted to organize 
first- and second-order predictor traits and explain the interrelationships among the GY-related 
traits. The group of first-order predictors was composed by the traits with the largest explanatory 
power (among the 16 predictors) on GY and with minimal multicollinearity. Subsequently, 
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these traits were considered as dependent traits and stepwise regressions were carried out to 
estimate the second-order predictors. A sequential path diagram was presented. In order to 
compare the multicollinearity between the two path analysis methodologies (conventional and 
sequential), estimates of CN, VIF, and TOL were carried out for this methodology as described 
in conventional path analysis.

After the formation of sequential path diagram, path analysis was performed in 
sequential model, where the first-order predictors explained the interrelationships with GY and 
then, predictors of second-order explained the interrelationships with the first-order predictors. 
The direct and indirect effects were estimated as described in conventional path analysis.

Genotypic performance

Genotypic values ( ^ ^ ^
ij g geµ + + ) of GY and of the first-order predictors selected by 

stepwise regression were shown in graphics. In order to get a better understanding of genotypic 
performance, the overall average of the environment was also presented.

RESULTS

Variance components and genetic parameters

The estimates of the variance components and genetic parameters are shown in Table 
2. The deviance analysis revealed significant differences (P ≤ 0.05) by the LTR test for the 
traits LAE, LBE, ED, NRE, GY, CM, CD/ED, and TKW, demonstrating the existence of 
significant differences between the full and reduced model. This is expected to single hybrids, 
due to narrow genetic base and quantitative traits.

The individual heritability in broad-sense (
2
gĥ ) showed values ranging from low 

(0.004) to moderate magnitude (0.568) to GY and CD/ED, respectively. Low magnitude 
estimates were also observed for PH (0.153), LAE (0.067), LBE (0.163), EL (0.076), NKR 
(0.252), CL (0.118), NKE (0.246), and TKW (0.293). The heritability of genotypic mean of 
these traits, however, showed values of moderate (

2
mgĥ  of 0.68, 0.351, 0.529, 0.403, and 0.526 

for PH, LAE, LBE, EL, and CL, respectively) to high magnitude (
2
mgĥ  of 0.799, 0.794, and 

0.732 for NKR, NKE, and TKW).
The selective accuracy was low to GY (Ac = 0.161) and moderate to LAE (0.592) 

and EL (0.635). For the other traits, the accuracy was greater than 0.7, indicating that the 
experimental design was effective in controlling potentially disruptive effects.

The correlation between environments presented magnitudes ranging from rge = 0.017 
to rge = 0.987 for GY and EH, respectively. This particularly indicates the occurrence of complex 
G×E interaction to GY, where the most productive hybrid in an environment, usually will not 
have the same performance in another environment. Thus, the selection and recommendation 
for this trait should take into consideration specific environments. The genotypic coefficient 
of variation presented magnitudes that ranged from CVg = 0.90 to CVg = 17.169, for GY and 
CM, respectively. For these same traits (CM and GY), the largest residual coefficients of 
variation (CVe = 13.309 and 15.629, respectively) were observed. The experimental quality, 
however, cannot be judged solely by estimates of CVe, being it necessary to estimate the 
relative coefficient of variation (CVr = CVg / CVe), where magnitudes close or greater than 1 
are desirable. Thus, CM presented CVr = 1.10. A similar situation was observed for NRE, CD, 



10T. Olivoto et al.

Genetics and Molecular Research 16 (1): gmr16019525

CD/ED, and %KER traits, with CVr of 1.07, 1.11, 1.22, and 1.22, respectively, indicating a 
possibility of selection gains for these traits.

Table 2. Variance components and genetic parameter of traits assessed in 15 hybrids grown in three environments.

*Significant by likelihood ratio test (LTR) at 5% probability error with 1 d.f. n.s.non-significant by the LTR test. 
2
Pσ̂  : phenotypic variance; 

2
Gσ̂  : genotypic variance; 

2
Eσ̂  : environmental variance; 

2
G Eσ̂   : variance of genotype × 

environment interaction; 
2
gĥ : heritability of individual plots in the broad sense, i.e., the total genotypic effects; 

2
mgĥ : heritability of genotype average, assuming complete survival; Ac: selective accuracy assuming no loss of 

plots; rge genotypic correlation between performance at several environments; CVg%: genotypic coefficient of 
variation; CVe%: residual coefficient of variation; µ̂ : overall average. See Table 1 for traits’ description.

Trait LRT Variance components Genetic parameters 
2
Pσ̂  2

Gσ̂  2
Eσ̂  2

G Eσ̂   2
gĥ  

2
mgĥ  

Ac rge CVg CVe ̂  

PH 0.00n.s. 0.023 0.004 0.019 1.25 × 10-4 0.153 0.680 0.825 0.966 2.397 5.625 2.468 
EH -0.02n.s. 0.022 0.010 0.012 1.25 × 10-1 0.432 0.898 0.948 0.987 7.353 8.394 1.329 
EP -0.33n.s. 0.002 0.001 0.001 6.30 × 10-6 0.365 0.859 0.927 0.927 5.293 6.821 0.535 
LAE -5.40* 0.249 0.017 0.187 0.046 0.067 0.351 0.592 0.267 1.89 6.332 6.829 
LBE -18.14* 0.451 0.074 0.241 0.136 0.163 0.529 0.727 0.350 4.402 7.975 6.159 
EL -3.58n.s. 1.591 0.121 1.247 0.223 0.076 0.403 0.635 0.351 2.286 7.353 15.187 
ED -12.61* 6.255 2.162 2.879 1.214 0.346 0.770 0.878 0.640 2.977 3.436 49.387 
NRE -6.36* 2.866 1.364 1.179 0.324 0.476 0.869 0.932 0.808 7.289 6.777 16.020 
NKR 0.00n.s. 12.398 3.121 9.232 0.045 0.252 0.799 0.894 0.986 5.487 9.438 32.194 
CD -3.06n.s. 7.012 3.620 2.915 0.477 0.516 0.900 0.949 0.884 6.568 5.893 28.970 
CL -3.44n.s. 1.502 0.177 1.126 0.198 0.118 0.526 0.725 0.472 2.634 6.636 15.991 
GY -7.45* 2.40 × 106 8.63 × 103 1.89 × 106 4.99 × 105 0.004 0.026 0.161 0.017 0.900 13.309 10324.047 
CM -9.01* 37.607 17.915 14.847 4.845 0.476 0.863 0.929 0.787 17.169 15.629 24.654 
NKE 0.00n.s. 5763.02 1419.31 4315.225 28.485 0.246 0.794 0.891 0.980 7.375 12.860 510.801 
CD/ED -2.27n.s. 1.18 × 10-3 7.70 × 10-3 4.47 × 10-4 6.30 × 10-5 0.568 0.920 0.959 0.914 4.422 3.612 0.585 
%KER -3.96* 5.227 2.906 1.951 0.370 0.556 0.910 0.954 0.887 1.950 1.598 87.415 
TKW -10.78* 1869.408 548.236 958.371 362.801 0.293 0.732 0.856 0.602 6.935 9.169 337.638 
 

The partition of phenotypic variance into genetic, environmental, and G×E interaction 
variances (Figure 1) had demonstrated that only for the traits NRE, CD, CM, CD/ED, and 
%KER, the genotypic variance was greater than the environmental variance and G×E interaction 
variance. For GY, the main goal in plant-breeding programs, the phenotypic variance was 
largely explained: 78.80% by the environmental variance, 20.83% by the variance of G×E 
interaction, and only 0.36% by the genetic variance.

Figure 1. Partitioning of phenotypic variance into genetic, environment, and interaction effects.
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Conventional path analysis

In the estimate of direct effects by the conventional path analysis method, where 
the 16 traits were used as first-order predictors (Table 3), high level of multicollinearity was 
evidenced (CN = 142,400.103). Most traits, like PH (VIF = 493.479 and TOL = 0.002), EH 
(VIF = 1052.52 and TOL = 0.001), and EP (VIF = 202.253 and TOL = 0.005), were highly 
decisive in explanation of the linear relationships.  In this procedure, only LAE presented 
satisfactory levels of multicollinearity (VIF < 10 and tolerance > 0.1). Although R2 and ε 
indicated elevated fit (Table 3), the harmful effects of multicollinearity in the estimation of the 
path coefficients can be noticed by observing the direct effects of PH (0.758) and EH (-0.682) 
on GY, both with high magnitude but with opposite directions. This result is unexpected 
since these traits tend to be positively correlated. Thus, a reliable diagnosis of the origin of 
multicollinearity of the matrix of explanatory traits should be performed, and right methods 
must be considered aiming to adjust this problem.

Table 3. Direct effects with all traits as first-order predictors on grain yield and measures of multicollinearity 
diagnosis.

Condition number = 142,400.103, R2 = 0.986, ε = 0.115. See Table 1 for traits’ description.

Predictor Direct effect TOL VIF 
PH 0.758 0.002 493.479 
EH -0.682 0.001 1052.520 
EP 0.381 0.005 202.253 
LAE -0.053 0.217 4.618 
LBE -0.130 0.051 19.671 
EL -0.024 0.031 31.904 
ED 0.123 0.021 47.433 
NRE 0.040 0.040 24.926 
NKR -0.069 0.052 19.364 
CD -0.255 0.030 33.797 
CL 0.147 0.035 28.481 
CM 0.666 0.014 70.117 
NKE 0.122 0.024 40.856 
CD/ED 0.006 0.039 25.567 
%KER 0.411 0.023 43.756 
TKW 0.200 0.032 31.741 

 

Sequential path analysis

The sequential path analysis (Table 4) had reduced the multicollinearity of 
matrices of predictor traits, where the highest CN (32.396) was observed in estimating 
the NKE. Furthermore, in all path analysis (with first- and second-order predictors), the 
predictor traits showed TOL > 0.1 and VIF < 10, providing a better understanding of 
the interrelationships between the GY-related traits. The first-order predictors selected 
in explaining GY variation were NKE, CD, and TKW. These traits have explained about 
96% of the variation of the GY. NKE and TKW showed the most significant direct effects 
on GY (r = 0.660 and 0.733, respectively), with indirect effects of low magnitude. CD had 
a negative direct effect to GY (r = -0.163), with positive indirect effect via TKW (0.542), 
indicating that selection for GY can be carried out indirectly via plants with smallest CD 
and largest NKE and TKW.
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Path analysis with the second-order predictors revealed that approximately 95% of the 
variation of the NKE was explained by five traits, i.e., PH, LAE, NRE, NKR, and TKW. NRE 
and NKR had the largest positive direct effect on NKE (0.577 and 0.670, respectively), with 
insignificant indirect effects. Indirectly, the increase in NRE and NKR can be obtained with 
largest PH and largest LAE (Table 4).

Three traits (LAE, ED, and CD/ED) have explained about 96% of the variation of the 
CD, where ED and CD/ED had the largest direct effect (0.762 and 0.653, respectively).

Five traits (PH, NKR, ED, CD/ED, and NKE) have explained approximately 91% of the 
variation of the TKW. Selection for simple hybrids with higher TKW can be indirectly carried out 
via largest PH (0.572), NKR (0.388) and ED (0.699), and lower NKE (-0.856). The indirect effects 
of PH, NKR, and ED showed negative sense of moderate magnitude via NRE, indicating that plants 
with largest height, with largest number of kernels per row, and largest ear diameter have generally 
fewer kernels per ear. Thus, this interrelationship should be considered in the simultaneous search 
for hybrids with largest number of kernels per ear and largest thousand-kernel weight.

The diagram of sequential path analysis is shown in Figure 2. The ordering of the 
predictors into first- and second-order predictors had provided a better understanding of the 
interrelationships among grain yield-related traits.

Genotypic values

The overall average of the GY was 10.32 Mg/ha. São José do Ouro had the largest GY 
among the studied environments (11.95 Mg/ha), 42% higher than Viadutos and 13% higher 
than Santo Expedito do Sul (Figure 3). The AG8780, STATUS, and VELOZ TL hybrids showed 
higher GY than the average in the three environments, featuring a good genotypic stability. 
Conversely, the AG9045, BG7318H, and SX7331 hybrids presented GY below the average in 
each environment. Regarding to other hybrids, like the BM915, a differential performance was 
observed in each environment, characterizing a complex interaction. For this hybrid (BM915), 
GY was 9% smallest than the average in Santo Expedito do Sul, 8% largest than the average 
in São José do Ouro, showing in Viadutos GY similar to the site’s average.

Table 4. Direct and indirect effects, adjusted coefficient of determination (R2), noise (ε), tolerance (TOL), and 
variance inflation factor (VIF) for grain yield-related traits grouped into first- and second-order predictors.

Response Predictor R2  TOL VIF Linear Direct effect Indirect effect by 
NKE CD TKW   

GY NKE 0.965 0.187 0.969 1.032 0.768** 0.660 - -0.013 0.122   
CD   0.451 2.219 0.434** -0.163 0.054 - 0.542   

TKW   0.441 2.266 0.722** 0.733 0.109 -0.120 -   
        PH LAE NRE NKR TKW 
NKE PH 0.956 0.209 0.143 6.991 0.718** 0.178 - -0.098 0.264 0.421 -0.046 

LAE   0.564 1.774 0.376* -0.155 0.113 - 0.148 0.305 -0.035 
NRE   0.512 1.952 0.680** 0.577 0.081 -0.040 - 0.067 -0.005 
NKR   0.374 2.674 0.754** 0.670 0.112 -0.070 0.058 - -0.014 
TKW   0.295 3.395 0.166ns -0.067 0.123 -0.080 0.046 0.143 - 

        LAE ED CD/ED   
CD LAE 0.961 0.198 0.720 1.388 0.254ns -0.061 - 0.393 -0.079   

ED   0.731 1.368 0.723** 0.762 -0.031 - -0.007   
CD/ED   0.982 1.019 0.651** 0.653 0.007 -0.009 -   

        PH NKR ED CD/ED NKE 
TKW PH 0.911 0.299 0.241 4.155 0.694** 0.572 - 0.244 0.535 -0.042 -0.615 

NKR   0.303 3.302 0.214ns 0.388 0.359 - 0.211 -0.099 -0.646 
ED   0.272 3.676 0.736** 0.699 0.438 0.117 - -0.002 -0.516 

CD/ED   0.521 1.920 0.314* 0.184 -0.130 -0.209 -0.008 - 0.476 
NKE   0.210 4.763 0.166ns -0.856 0.411 0.293 0.421 -0.102 - 

 Condition number: GY as response trait = 6.973; NKE as response trait = 32.396; CD as response trait = 3.245; 
TKW as response trait = 28.47. nsNon-significant. *,**Significant at 5 and 1% probability error, respectively. See 
Table 1 for traits’ description.
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Figure 2. Sequential path diagram illustrating the interrelationships among first- and second-order predictors 
contributing to grain yield. See Table 1 for traits’ description.

Figure 3. Estimates of genotypic average for grain yield in Santo Expedito do Sul (A), São José do Ouro (B), and 
Viadutos (C). Horizontal lines represent the average of each environment.

The overall average of NKE was approximately 510 kernels/ear. São José do Ouro 
and Santo Expedito do Sul showed NKE higher than the overall average (approximately 3 
and 8%, respectively). Conversely, Viadutos had decreased by 11% the NKE compared to the 
overall average (Figure 4). Unlike GY, NKE showed no signs of the complex interaction’s 
fraction. Thus, 2B655PC, AG8780, B2A525H, BG7648H, P1630H, P30B39, and VELOZ 
TL hybrids showed superior NKE than the average in each environment. The other hybrids 
showed inferior NKE.
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The overall average of TKW was approximately 337 g/1000 kernels. Similarly, GY 
and NKE in São José do Ouro had the largest average (365 g/1000 kernels). Santo Expedito 
do Sul showed the average equal to the overall average, while in Viadutos, the TKW was 
approximately 9% lower (Figure 5). AG8690, AG8780, STATUS, STATUS V3, and SX7331 
hybrids were higher within the three environments. The fraction of the complex interaction 
was observed for this trait, coming from the different performance of 2B655PC, AG9045, 
B2A525H, BG7648H, BM915, and P30F53H hybrids among the environments.

Figure 4. Estimates of genotypic average for number of kernels per ear in Santo Expedito do Sul (A), São José do 
Ouro (B), and Viadutos (C). Horizontal lines represent the average of each environment.

Figure 5. Estimates of genotypic average for thousand-kernel weight in Santo Expedito do Sul (A), São José do 
Ouro (B), and Viadutos (C). Horizontal lines represent the average of each environment.

The overall average of CD was 28.97 mm. Santo Expedito do Sul and São José do 
Ouro had magnitudes greater than the overall average (29.12 and 29.64 mm, respectively). 
BM915 and SX7331 hybrids have shown greater average of CD in São José do Ouro, whereas 
in Santo Expedito do Sul and Viadutos, these hybrids were lesser than the average (Figure 
6). Significant differences among the hybrids, a result that may be related to the high genetic 
variance observed for this trait, were observed. The hybrids 2B655PC, AG8690, AG8780, 
STATUS, STATUS V3, SX7331, and VELOZ TL were largest than the average of the three 
environments.
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DISCUSSION

The magnitudes of CVe observed (<16%) are similar to those found by Nardino et 
al. (2016), indicating good experimental quality. In other interpretation, CVg had presented, 
except to GY, significant contribution to phenotypic variation, revealing the existence of genetic 
variation available, especially for traits with CVg equal or greater than 1. Joint evaluation of 
CVg and CVe resulted in accuracy estimates which, according to Resende and Duarte (2007), 
ranged from high (0.70 < Ac < 0.90) to very high (Ac > 0.9), with the exception of LAE, EL, 
and GY traits.

The low estimates of 2
gĥ  for some traits related to the plant’s morphology, e.g., PH, 

LAE, LBE, and EL (Table 1), revealed that these traits are highly influenced by the growing 
environment. This is noticed by observing the contribution of 2

Eσ̂   on 2
Pσ̂   (84.16, 74.98, 53.49, 

and 78.40%, respectively). Low heritability values may indicate that: i) many are the genes 
responsible for controlling the trait’s expression; ii) a significant proportion of phenotypic 
variance is due to the environment or experimental error, and iii) genotypic variance is 
dependent on the G×E interaction (Flint-Garcia et al., 2005). As the accuracy of selection 
for these traits (PH, LAE, LBE, and EL) was moderate (Ac > 0.6), the experimental control 
was adequate, and the low values of 2

gĥ  were attributed mainly to high 2
Eσ̂   together with the 

greater contribution of 2
G Eσ̂    found for these traits (Figure 1). This resulted in low rge values, 

revealing that the magnitude of these traits in an environment will not be normally observed in 
another environment. Oppositely, previous studies have shown 2

gĥ  > 0.85 for PH, LAE, LBE, 
and EL (Flint-Garcia et al., 2005; Bello et al., 2012; Ogunniyan and Olakojo, 2014). These 
authors state that selection for these traits is effective. It is important to note, however, that the 
heritability is not a merely peculiarity of the trait, but also of the population and environmental 
conditions in which individuals are subjected. Since the magnitude of 2

gĥ  is dependent on all 
variance components (Equation 6), the change in any of these components will be affected. 
Higher environmental variation tends to reduce 2

gh , likewise that uniform environmental 
conditions tend to increase it. Thus, the heritability of a trait must refer to a certain population 
in certain growing conditions and, even if the heritability oscillates close to zero, the trait will 
be inherited if this is heritable (Falconer and Mackay, 1996).

The small contribution of the 2
Gσ   on 2

Pσ   observed for GY (0.36%) was expected, since 

Figure 6. Estimates of genotypic average for cob diameter in Santo Expedito do Sul (A), São José do Ouro (B), and 
Viadutos (C). Horizontal lines represent average of each environment.
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the hybrids used in this study are simple hybrids indicated for high-technology cultivation. 
The high environmental variation (78.80%) and, mainly of the G×E interaction (20.83%), may 
hinder the recommendation of simple hybrids with wide adaptability, stability, and high-yield 
potential, a fact that has been one of the main difficulties found by the current maize breeders 
(Tollenaar and Lee, 2002). Nardino et al. (2016), assessing pre-commercial maize hybrids in 
different locations in southern Brazil, have also shown high contribution of the environment 
(65%) in the phenotypic variation of GY; however, we were able to identify adapted and stable 
hybrids with productive potential of approximately 9.0 Mg/ha by using mixed models.

The high level of multicollinearity is out as one of the main problems in the estimates 
and inferential interpretation of the path coefficients (Blalock, 1963). Using the conventional 
method, the problems of multicollinearity of predictor traits were evident in the estimates of 
the regression coefficients, mainly due to the observation of unexpected direct effects of PH 
and EH on GY, both with high magnitudes, but with opposite directions (Table 3). Illogical 
direct effects (-25.90 ≤ direct effect ≤ 21.5) obtained in the presence of multicollinearity were 
also observed by Toebe and Cargnelutti (2013).

The high CN (142,400.103) observed in the conventional path analysis was the result 
of eigenvalues close to zero (see Material and Methods). Once the inversion of the matrix 
is required for the estimation of partial correlation coefficients, and this inversion basically 
depends on the division by the matrix determinant (MD), eigenvalues close to zero result 
in very low MD, because MD is given by the sum of products of the eigenvalues. Thus, the 
values in the inverse matrix become extremely sensitive to small differences in the data of the 
original matrix, or in other words, the inverse matrix is unstable (Quinn and Keough, 2002).

Here, we demonstrated that stepwise regressions are effective in selecting predictor 
traits with high-explanatory power (>90%) and minimum multicollinearity. In previous 
studies, multicollinearity in model of sequential path analysis was not presented (Agrama, 
1996; Samonte et al., 1998). This information, however, is needed to identify the true benefit of 
the sequential method in comparison with the conventional method. The observation of TOL, 
FIV, and CN values at satisfactory levels (Table 4) demonstrated a low dependence among 
the chosen predictor traits, so the path coefficients could be estimated without the harmful 
effects of multicollinearity. The fit statistics of the models (R2 and ε) had values   above other 
studies involving path analysis in maize and other crops (Bizeti et al., 2004; Adesoji et al., 
2015; Kumar et al., 2015; Torres et al., 2015). In another way, the observation of studies that 
have hidden fully or partially the fit statistics from its results is worrying (Olivoto et al., 2016).

The magnitude of the contribution of a trait for the GY is influenced by different ways 
that should be taken into consideration for a more efficient selection (Figure 2). This study 
showed that high grain yields are directly associated with higher number of kernels per ear and 
higher thousand-kernel weight, which are the result of higher number of row ear and kernels 
per row. Previous studies also have elected NKE (Mohammadi et al., 2003; Khameneh et al., 
2012) and TKW (Nastasić et al., 2010; Reddy et al., 2012; Adesoji et al., 2015) as the traits of 
most direct contribution to GY. Thus, more emphasis should be given to these traits in order to 
produce maize hybrids with high potential for grain yield. The reduction in the thousand-kernel 
weight observed with the increased number of grains per ear, however, should be considered. 
Fortunately, the genomic mapping has been allowing the identification of polymorphic sites 
in specific genes significantly associated with an increase in kernel weight (Chen et al., 2016). 
Simultaneous use of genomic and biometric tools in plant breeding can contribute to a faster 
and more efficient selection.
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The highest grain yield of the AG8780 hybrid observed in the three environments was 
a result of higher number of kernels per ear and higher thousand-grain weight observed in 
this hybrid, which confirms the results found in path analysis. The high genetic variance and 
low variance of the interaction observed for GY primary’s predictors (CD, NKE, and TKW) 
resulted in high heritability for these traits (Table 2). Thus, indirect selection based on these 
traits aiming to increase the GY presents prospects of success, provided that the environmental 
and experimental conditions are considered by the breeder.

In conclusion, the variance components, genetic parameters, and genotypic values 
obtained by REML/BLUP-based procedures allow a better understanding of the performance 
of the traits of simple hybrids in multi-environment trials. The sequential path analysis model 
using the genotypic values is useful in explaining the actual interrelationships among grain 
yield-related traits since the environmental effects are not considered. Compared to the 
conventional model, the sequential path analysis model provides greater reliability when 
choosing predictor traits with high explanatory power and minimum multicollinearity. The 
joint use of REML/BLUP procedures and sequential path analysis is effective and should be 
considered in statistical evaluation of maize-breeding programs as well as of other worldwide-
important crops.
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