

Relationship of the *APOA5/A4/C3/A1* gene cluster and *APOB* gene polymorphisms with dyslipidemia

H.J. Ou¹, G. Huang², W. Liu³, X.L. Ma², Y. Wei⁴, T. Zhou⁵ and Z.M. Pan³

¹Department of Neurology, The First Affiliated Hospital, Medicine College, Shihezi University, Shihezi City, Xinjiang, China
²Department of Gerontology, The First Affiliated Hospital, Medicine College, Shihezi University, Shihezi City, Xinjiang, China
³Department of Biochemical Teaching and Research, Medicine College, Shihezi University, Shihezi City, Xinjiang, China
⁴Department of Clinical Laboratory, The First Affiliated Hospital, Medicine College, Shihezi University, Xinjiang, Shihezi City, Xinjiang, China
⁵Department of Medical Laboratory, The First Affiliated Hospital, Medicine College, Shihezi University, Shihezi City, Xinjiang, China

Corresponding author: G. Huang E-mail: huanggang472601@aliyun.com

Genet. Mol. Res. 14 (3): 9277-9290 (2015) Received November 6, 2014 Accepted March 18, 2015 Published August 10, 2015 DOI http://dx.doi.org/10.4238/2015.August.10.8

ABSTRACT. We determined the alleles of ten single nucleotide polymorphisms (SNPs) in the *APOA5/A4/C3/A1* gene cluster and in *APOB* in Han Chinese from Xinjiang Shihezi, China using MALDI-TOF mass spectrometry, and explored the correlation between these SNPs and dyslipidemia through a case-control study design with 250 patients and 250 normal controls. All SNPs except for *APOA5* rs2072560 conformed to Hardy-Weinberg equilibrium (all P > 0.05). *APOA5* rs651821, *APOA4* rs5104, *APOC3* rs734104, and *APOC3* rs5128 genotype and allele frequencies were significantly different between groups (all P < 0.01). For rs651821, the risks of dyslipidemia for the CC or

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

CC+CT genotypes were 9.917 or 1.859 times that of TT, and the risk of the C vs T allele was 2.027. For rs5104, the AG, GG, or AG+GG risks were 1.797, 1.861, and 1.809 times AA, and the G vs A risk was 1.427. For rs734104, the CT, CC, or CC+CT risks were 1.851, 2.570, and 1.958 times TT, and the C vs T risk was 1.610. For rs5128, the GC or CC+GC risks were 1.738 or 1.749 times GG, and the C vs G risk was 1.477. Compared with the wild-type haplotype TATG, the risks of dyslipidemia with CGCC, TGCC, or CATG haplotypes (odds ratios = 2.434, 1.503, and 2.740, respectively) were significantly higher. Our results suggested that these four SNPs were significantly associated with dyslipidemia in Xinjiang Shihezi Han Chinese, and might serve as risk factors for dyslipidemia. Individuals carrying the CGCC, TGCC, or CATG haplotypes were prone to dyslipidemia.

Key words: *APOA5/A4/C3/A1* gene cluster; Apolipoprotein B; Dyslipidemia; Gene polymorphism

INTRODUCTION

Supernormal increase of one or more of lipids in plasma is called hyperlipidemia (Zheng and Zhu 2007), and can include total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C). The first three are characterized by increased levels, whereas the latter becomes reduced. Recently, studies have found that the *APOA5/A4/C3/A1* gene cluster and *APOB* gene polymorphisms were associated with dyslipidemia, but these findings have been controversial (Dallongeville et al., 2006; Chien et al., 2008; Yin et al., 2011; Zhang et al., 2011). Important reasons for the discrepancies might be related to the limitations of the research studies to a single or a small number of single nucleotide polymorphisms (SNPs), and the relatively weak associations detected. Xinjiang Shihezi Han Chinese originate from all over China, and represent the Han people. We chose ten SNPs that had controversial results as well as relatively high mutation rates within the *APOA5/A4/C3/A1* gene cluster and the *APOB* gene. The purpose of our analysis was to reveal the genetic correlation of dyslipidemia, and to provide new opportunities for the prevention and treatment of cardiovascular disease.

MATERIAL AND METHODS

Ethical approval

This study was approved by the Ethics Committee of The First Affiliated Hospital of Shihezi University and adhered to the standards of the Declaration of Helsinki. All participants provided written informed consent.

Subjects

The patients and controls were recruited from the First Affiliated Hospital of Medical College, Shihezi University (ShiHeZi, China); after obtaining informed consent and ethical

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

approval, 500 subjects participated in this study. Inclusion criteria were taken from China's Prevention and Cure Guide of Hypertension (Joint Committee for Developing Chinese Guide-lines on Prevention and Treatment of Dyslipidemia in Adults, 2007). Characteristics of the dyslipidemia group were: TG \geq 2.26 mM, TC \geq 6.22 mM, LDL-C \geq 4.14 mM, and HDL-C < 1.04 mM; and of the control group were: TG < 1.7 mM, TC < 5.18 mM, LDL-C < 3.37 mM, and HDL-C \geq 1.04 mM. Individuals who had thyroid disease, malignant tumor, tuberculosis, multiple organ failure, or had used lipid-lowering drugs within one week prior to admission were excluded from the study.

Biochemical analyses

Venous blood samples (3 mL) were collected from each subject into tubes containing Heparin after 12 h overnight fasting. TC, TG, LDL-C, and HDL-C levels were measured using standard methods using an OLYAMPUS2700 automatic biochemical analyzer (Olympus Co. Ltd., Tokyo, Japan).

Selection of SNPs and primer design

A total of ten SNPs from five genes were selected using the HapMap database as a reference. Based on the specific RS number of each SNP locus, 10 groups of primers with a perfect match were designed using the MassARRAY Assay Design software (Sequenom Inc., San Diego, CA, USA). To avoid cross hybridization, no short tandem repeats were included within the hybridization sequence. Three primers were designed for each SNP, including a pair of primers for polymerase chain reaction (PCR) amplification and a single-base extension primer (Table 1). The primers were synthesized by the Shanghai Sangon Biological Engineering Technology Corporation (Shanghai, China).

Genotyping

DNA extraction: To determine the allele frequencies of the SNPs, blood samples were collected from 487 unrelated Han Chinese individuals. DNA was extracted from 0.3 mL blood using the RelaxGene Blood DNA System (BeiJing TIANGEN Co. Ltd., Beijing, China). The extracted DNA was qualitatively assessed using 1% agarose gel electrophoresis and quantified using UV spectrophotometry; concentrations were in the range of 10-30 ng/mL.

Multiplex PCR: PCRs were performed in 5 mL total volume, containing 1.6 μ L nuclease free water, 0.5 μ L 10X PCR buffer with 20 mM MgCl₂, 0.4 μ L 25 mM MgCl₂, 0.1 μ L 25 mM dNTP mix, and 0.2 μ L 5 U/ μ L PCR enzyme (all from Sequenom Inc.). The PCR conditions were as follows: 94°C for 4 min, followed by 45 cycles of 94°C for 20s, 56°C for 30s, 72°C for 1 min, and a final step of 72°C for 3 min. The samples were kept at 4°C until further analysis.

Shrimp alkaline phosphatase (SAP) dephosphorylation: After the PCRs were performed, the products of three reactions were treated with SAP to remove excess dNTPs. This reaction contained 0.3 μ L 1.7 U/ μ L SAP enzyme, 0.17 μ L 10X SAP buffer, and 1.53 μ L nuclease free water (all from Sequenom Inc.). The reaction conditions were 37°C for 40 min and 85°C for 5 min, and the samples were kept at 4°C until further analysis.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

H.J. Ou et al.

SNP	Primer $(5' \rightarrow 3')$	Sequence
APOA5 rs651821	F	ACG TTG GAT GTG AAA GAA GAG CCA GAG CCO
	R	ACG TTG GAT GCT CCT TCT TCC CCT AAC CAG
	Extension	GCA GCC ATG CTT GCC ATT A
APOA5 rs2072560	F	ACG TTG GAT GAC AGA TAT CCA GGC CGT CAG
	R	ACG TTG GAT GAT CAG TGC GCG ATG ACT TGG
	Extension	ctC CGT CAG ACT GCT AGC C
APOA515619054	F	ACG TTG GAT GAC CCC TGA GGA TCT ACC TG
	R	ACG TTG GAT GAA CCA TGC TAG AGG CTC AGA
	Extension	GGC TCC CCA GAC AAG
APOA4 rs5104	F	ACG TTG GAT GTA CGC GGA CCA GCT GCG CAC
	R	ACG TTG GAT GAC TCT CTC CAT GCG CTG TG
	Extension	tCT GCG CAC CCA GGT CA
APOC3 rs734104	F	ACG TTG GAT GCC CCT CAT CAT AAC CTG AAG
	R	ACG TTG GAT GAC CTG CAC TTG GAG CCA CTT
	Extension	ACT TGC CCA AAG CTA CA
APOC3 rs2070669	F	ACG TTG GAT GAT ACG GGC TCT CAG AAG GG
	R	ACG TTG GAT GGT GGG TTT TCT GCT CCA TCC
	Extension	cCC TCG ATC CCT CGC C
APOC3 rs5128	F	ACG TTG GAT GCT TTT AAG CAA CCT ACA GGG
	R	ACG TTG GAT GAG ACC TCA ATA CCC CAA GTC
	Extension	cac ccG CCT ATC CAT CCT GC
APOA1 rs5069	F	ACG TTG GAT GTC CCC AGC TCA AGG TTC AG
	R	ACG TTG GAT GAG AAG ACC TCA GGT ACC CAG
	Extension	gGG TAC CCA GAG GCC C
APOB rs693	F	ACG TTG GAT GCA CAT GAA GGC CAA ATT CCG
	R	ACG TTG GAT GGG TAT CGT TGA AGT TCC TGC
	Extension	AAG GCC AAA TTC CGA GAG AC
APOB rs1042031	F	ACG TTG GAT GGT GTT TGA TGG CTT GGT ACG
	R	ACG TTG GAT GTG AGT GAG TCA ATC AGA TGC
	Extension	Tta TTG GTA CGA GTT ACT CAA

SNP = single nucleotide polymorphism; PCR = polymerase chain reaction.

Primer extension reactions: The PCR products were then used as templates for primer extension reactions using the iPlex1 Gold reagent kit (Sequenom Inc.). The extension reactions were performed in 9 mL final volume, which contained 0.2 μ L 10X iPlex Buffer plus, 0.2 μ L iPlex terminator, 0.041 μ L iPlex enzyme (Sequenom Inc.), 0.94 μ L primer mix, and 0.619 μ L nuclease free water. The extension reaction conditions were as follows: 94°C for 30 s, followed by 40 cycles of 94°C for 5 s, followed by 5 cycles of 52°C for 5 s and 80°C for 5 s and a final step of 72°C for 3 min. The samples were kept at 4°C until further analysis.

MALDI-TOF mass spectrometry (MS): Cleaned PCR products were spotted onto a MassARRAY SpectroCHIP with an auto-spot arm (Sequenom Inc.) and air-dried. The target plate was then inserted into the MALDI-TOF mass spectrometer of the MassARRAY Compact System (Sequenom Inc.), and the analysis was performed using 1800 nitrogen laser shots for each sample. The mass range of the MS instrument was set at 3920-12,023 Da.

Statistical analysis

The data were analyzed with the statistical software package SPSS 17.0 (SPSS, Chicago, IL, USA). Quantitative variables are reported as means \pm standard deviation, and differences among two groups were analyzed with an independent sample *t*-test. Qualitative variables are reported as percentages. Hardy-Weinberg equilibrium was assessed by χ^2 analysis. Analyses of genotype and allele distributions were obtained using the χ^2 test or single factor

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

logistic regression analysis. Haplotype analysis used the SHEsis software (http://analysis.biox.cn/SHEsisMain.htm). A P value < 0.05 was considered to be statistically significant.

RESULTS

Subject characteristics

According to inclusion and exclusion criteria, 500 subjects were selected for the research program, and experimental results of 487 people were completed. There was no difference in age, gender, body mass index (BMI), smoking, drinking, hypertension, or diabetes between the two groups. Serum TC, TG, LDL-C, and HDL-C levels were significantly different between dyslipidemia and control groups (P < 0.05). General data are shown in Table 2.

Characteristics Gender (men/women, N)		Dyslipidemia (N = 241) $Control (N = 246)$		Statistic	Р	
		130/111	118/128	1.739	0.187	
Age (years)		49.07 ± 0.74	48.31 ± 0.78	0.704	0.376	
BMI (kg/m ²)		24.25 ± 0.31	24.48 ± 0.29	-0.540	0.590	
Smoker	Never (N)	122	130			
	Past (N)	51	34	4.910	0.086	
	Now (N)	68	82			
Drinker	Never (N)	95	120			
	Past (N)	11	9	4.342	0.114	
	Now (N)	135	117			
Hypertension (y	ves/no, N)	78/163	84/162	0.174	0.677	
Diabetes (yes/ne	o, N)	28/213	21/225	1.278	0.258	
TG (mM)		3.07 ± 1.28	1.17 ± 0.44	-15.090	0.001*	
TC (mM)		6.60 ± 1.20	4.22 ± 0.71	26.704	0.001*	
LDL-C (mM)		3.58 ± 1.09	2.65 ± 0.68	11.351	0.001*	
HDL-C (mM)		1.21 ± 0.43	1.36 ± 0.40	-4.965	0.001*	

BMI, body mass index. Continuous variables are reported as means \pm SD. *P < 0.05 vs control, using the t test for continuous variables and χ^2 -test for categorical variables.

Hardy-Weinberg equilibrium

We utilized the TYPER 4.0 software (Sequenom) to automatically output classification results. The observed allele frequencies for the Han Chinese population are presented in Figures 1-10. In the dyslipidemia and control groups, only rs2072560 deviated from Hardy-Weinberg equilibrium (P < 0.05).

Genotype and allele frequencies

The genotype and allele frequencies observed for the dyslipidemia and control groups are presented in Table 3. Only four (*APOA5* rs651821, *APOA4* rs5104, *APOC3* rs734104, *APOC3* rs5128) SNPs showed differences in distributions between the two groups.

Relationship between rs651821, rs5104, rs734104, rs5128, and dyslipidemia

For *APOA5* rs651821, the risks of dyslipidemia associated with carrying the CC or CC+CT genotypes were 9.917 or 1.859 times than of the TT genotype, respectively, and the

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

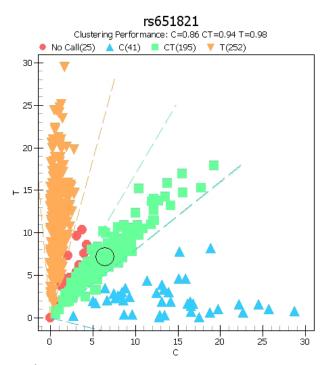


Figure 1. rs651821 scatter plot.

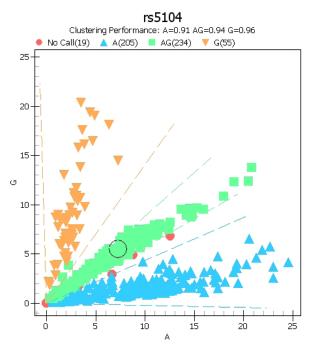


Figure 2. rs5104 scatter plot.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

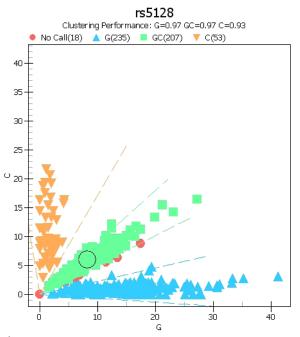


Figure 3. rs5128 scatter plot.

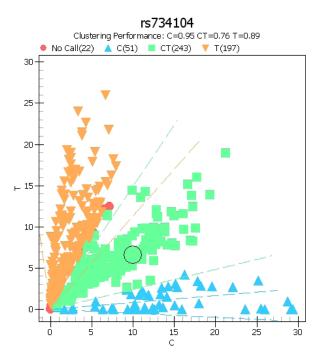


Figure 4. rs734104 scatter plot.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

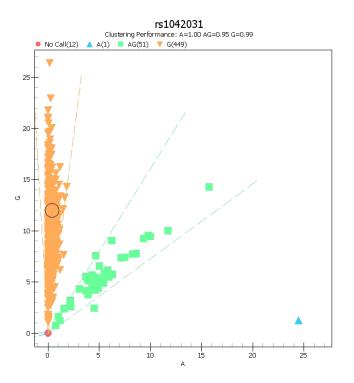


Figure 5. rs1042031 scatter plot.

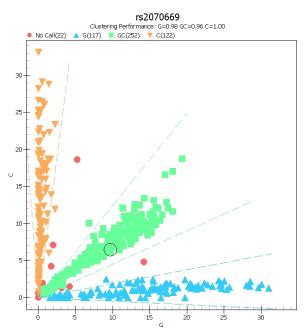


Figure6. rs2070669 scatter plot.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

APO gene polymorphisms and dyslipidemia

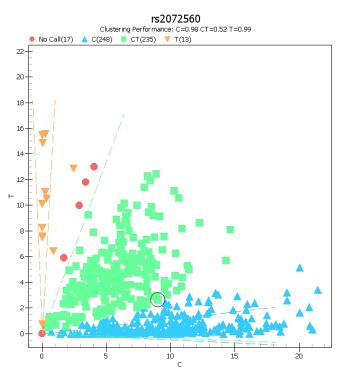


Figure 7. rs2072560 scatter plot.

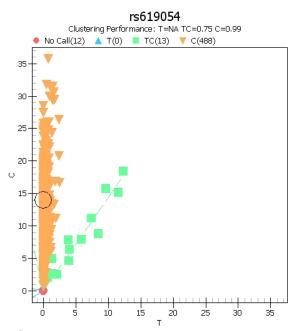


Figure 8. rs619054 scatter plot.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

Figure 9. rs5069 scatter plot.

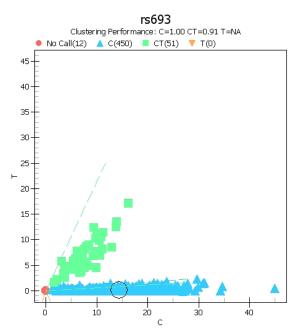


Figure 10. rs693 scatter plot.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

risk of dyslipidemia for carriers of the C allele was 2.027 times that of the T allele. For *APOA4* rs5104, the risks of dyslipidemia for the AG, GG, or AG+GG genotypes were 1.797, 1.861 or 1.809 times that of the AA genotype, and the risk of dyslipidemia for the G allele was 1.427 times that of the A allele. For *APOC3* rs734104, the risks of dyslipidemia for the CT, CC, or CC+CT genotypes were 1.851, 2.570, or 1.958 times that of the TT genotype, and the risk of dyslipidemia for the C allele was 1.610 times that of the T allele. For *APOC3* rs5128, the risks of dyslipidemia for the GC or CC+GC genotypes were 1.738 or 1.749 times that of the GG genotype, and the risk of dyslipidemia for the C allele was 1.477 times that of the G allele (Table 4).

SNP		Dyslipidemia group		Control group		χ^2	Р
		Ν	Frequencies (%)	N	Frequencies (%)		
rs651821	TT	106	43.98	146	59.35	29.823	0.001
	CT	99	41.08	95	38.62		
	CC	36	14.94	5	2.03		
	Т	311	64.52	387	78.66	23.958	0.001
	С	171	35.48	105	21.34		
rs619054	CC	236	97.93	238	96.75	0.649	0.420
	TC	5	2.07	8	3.25		
	TT	0	0.00	0	0.00		
	С	477	98.96	484	98.37	0.641	0.423
	Т	5	1.04	8	1.63		
rs5104	AA	84	34.85	121	49.19	10.272	0.006
	AG	126	52.28	101	41.06		
	GG	31	12.87	24	9.75		
	A	294	61.00	343	69.72	8.181	0.004
	G	188	39.00	149	30.28		
rs734104	TT	78	32.36	119	48.38	14.010	0.001
15751101	CT	131	54.36	108	43.9	11.010	0.001
	CC	32	13.28	19	7.72		
	Т	287	59.54	346	70.33	12.439	0.001
	Ċ	195	40.46	146	29.67	12.45)	0.001
rs2070669	GG	66	27.39	51	20.73	3.029	0.220
132070007	GC	117	48.55	133	54.07	5.027	0.220
	CC	58	24.06	62	25.20		
	G	249	51.66	235	47.76	1.478	0.224
	C	233	48.34	255	52.24	1.470	0.224
rs5128	GG	96	39.83	132	53.66	9.355	0.009
183128	GC	115	47.72	91	36.99	9.555	0.009
				23			
	CC G	30 307	12.45 63.69	23 355	9.35 72.15	8.007	0.005*
						8.007	0.005
50(0	C	175	36.31	137	27.85	0.070	0 (1(
rs5069	CC	160	66.39	171	69.51	0.968	0.616
	TC	80	33.20	73	29.67		
	TT	1	0.41	2	0.82		
	С	400	82.99	415	84.35	0.331	0.565
	Т	82	17.01	77	15.65		
rs693	CC	222	92.12	214	86.99	3.410	0.065
	CT	19	7.88	32	13.01		
	TT	0	0.00	0	0.00		
	С	463	96.06	460	93.50	3.221	0.073
	Т	19	3.94	32	6.50		
rs1042031	GG	211	87.55	224	91.06	2.298	0.317
	AG	29	12.04	22	8.94		
	AA	1	0.41	0	0.00		
	G	451	93.57	470	95.53	1.818	0.178
	А	31	6.43	22	4.47		

*P value shows genotype frequency differences in the distribution of the two groups. [#]P value shows allele frequency differences in the distributions of the two groups. SNP = single nucleotide polymorphism.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

H.J. Ou et al.

		Р	OR	95%CI
rs651821	TT	-	-	-
	CT	0.060	1.435	0.985-2.092
	CC	0.001*	9.917	3.766-26.715
	CT+CC	0.001*	1.859	1.298-2.665
	Т	0.001#	2.027	1.524-2.695
	С			
s5104	AA	-	-	-
	AG	0.003ª	1.797	1.226-2.633
	GG	0.043ª	1.861	1.020-3.394
	AG+GG	0.001ª	1.809	1.257-2.604
	А	0.004 ^b	1.472	1.129-1.920
	G			
rs734104	TT	-	-	-
	СТ	0.002**	1.851	1.262-2.713
	CC	0.004**	2.570	1.361-4.851
	CT+CC	0.001**	1.958	1.355-2.829
	Т	0.001***	1.610	1.235-2.100
	С			
s5128	GG	-	-	-
	GC	0.004°	1.738	1.188-2.542
	CC	0.058	1.793	0.981-3.279
	GC+CC	0.002°	1.749	1.221-2.506
	G	0.005 ^d	1.477	1.127-1.936
	С			

rs651821, *Compared with TT, [#]C compared with T. rs5104, ^aCompared with AA, ^bG compared with A. rs734104, **Compared with TT, ***C compared with T. rs5128, ^cCompared with GG, ^dC compared with G. OR = odds ratio; CI = confidence interval.

Haplotype	Dyslipidemia group		Control group		χ^2	Р	OR	95%CI
	Ν	%	N	%				
TATG	195	40.45	293	59.55	-	-	-	-
CGCC	81	16.80	50	10.16	19.998	0.001*	2.434	1.638-3.168
TGCC	73	15.15	73	14.84	4.643	0.032*	1.503	1.036-2.179
CATG	62	12.86	34	6.91	17.940	0.001*	2.740	1.737-4.322
TACC	9	1.87	5	1.02	3.339	0.078	2.705	0.893-8.191
TGTG	6	1.24	9	1.83	0.000	0.997	1.002	0.351-2.859
CGCG	4	0.83	10	2.03	0.738	0.395	0.601	0.186-1.943
TATC	4	0.83	5	1.02	0.074	0.786	1.202	0.319-4.532

TATG: rs651821T, rs5104A, rs734104T, rs5128G. CGCC: rs651821C, rs5104G, rs734104C, rs5128C. TGCC: rs651821T, rs5104G, rs734104C, rs5128C. CATG: rs651821C, rs5104A, rs734104T, rs5128G. TACC: rs651821T, rs5104A, rs734104T, rs5128G. TATG: rs651821T, rs5104A, rs734104T, rs5128G. CGCG: rs651821C, rs5104G, rs734104T, rs5128G. TATG: rs651821T, rs5104A, rs734104T, rs5128G. CGCG: rs651821C, rs5104G, rs734104T, rs5128G. TATG: rs651821T, rs5104A, rs734104T, rs5128G. CGCG: rs651821C, rs5104G, rs734104T, rs5128G. TATG: rs651821T, rs5104A, rs734104T, rs5128G. CGCG: rs651821C, rs5104G, rs734104T, rs5128G. TATG: rs651821T, rs5104A, rs734104T, rs5128C. *Compared with TATG. OR = odds ratio; CI = confidence interval.

Haplotype analysis

To examine the combined effect of the four SNPs (in the order of rs651821, rs5104, rs734104, and rs5128) in dyslipidemia, we conducted haplotype analysis with these SNPs on the serum lipid traits shown in Table 5. There were 16 haplotypes in our population. We combined the eight haplotypes with frequencies less than 4 into one group; the other eight

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

haplotype analyses are shown in Table 5. The risks of dyslipidemia with the CGCC [odds ratio (OR) = 2.434], TGCC (OR = 1.503), or CATG (OR = 2.740) haplotypes were significantly higher than that of the wild-type haplotype TATG (P < 0.05).

DISCUSSION

Recently, researchers across the world have examined the relationship between single SNPs in the APOA5/A4/C3/A1 gene cluster or the APOB gene and dyslipidemia, but the results have not been completely compatible.

Tan et al. (2012) found that the rs651821 C allele frequency was 27% in Han male of Guigang, China. The result of this study suggested that the C allele presented a risk factor for dyslipidemia; these results were consistent to those from our research study. Our results suggested that the rs651821 C allele frequencies in the dyslipidemia and control groups were 35.48 and 25.34%, respectively, and that the C allele posed a risk factor for dyslipidemia, as the risk incidence increased 2.027 times in individuals carrying the C allele. Brautbar et al. (2011) found that the rs651821 C allele frequency was 9% in 2228 patients with mixed dyslipidemia in the United States; this finding was inconsistent with our results, most likely due to racial diversity between studies.

Liu et al. (2009) found that the rs5104 G allele frequency was 13% in a population of European descent, and that this allele was associated with serum TG levels. We found that the rs5104 G allele frequencies were 39 and 30.28% in the dyslipidemia and control groups, respectively, and that the risk incidence increased 1.861 times in individuals with the GG genotype.

In 553 Inuit people, Rudkowska et al. (2013) found that the rs5128 C allele frequency was 56.05%; however, we found that the rs5128 C allele frequency was 36.31%. Bhanushali and Das (2010) found that rs5128 was associated with dyslipidemia from a study in the Indian population. The result of our research were identical to theirs. We suggest that the detected allele frequencies differed as a result of different ethnic groups, but that the effects on blood lipid mechanism is likely to be consistent.

Worldwide, there have been few reports about the correlation of rs734104 C alleles and dyslipidemia. It is therefore very important and necessary to examine many SNPs, and especially to perform haplotype analysis to determine the association of the APO genes with dyslipidemia. Relative to the results obtained from examination of a single SNP, the relationships detected between haplotypes and blood lipids appear to be stronger and of higher significance.

This study found that the relative risk of dyslipidemia associated with the CGCC, TGCC, and CATG haplotypes was particularly high. Considering that only rare reports exist regarding the correlation of these haplotypes with dyslipidemia, further research should be performed in this area and on different populations.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

The authors would like to acknowledge Mr. Liu for help to the experiment.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)

REFERENCES

- Bhanushali AA and Das BR (2010). Influence of genetic variants in the apolipoprotein A5 and C3 gene on lipids, lipoproteins, and its association with coronary artery disease in Indians. J. Community Genet. 1: 139-148.
- Brautbar A, Covarrubias D, Belmont J, Lara-Garduno F, et al. (2011). Variants in the *APOA5* gene region and the response to combination therapy with statins and fenofibric acid in a randomized clinical trial of individuals with mixed dyslipidemia. *Atherosclerosis* 219: 737-742.
- Chien KL, Fang WH, Wen HC, Lin HP, et al. (2008). APOA1/C3/A5 haplotype and risk of hypertriglyceridemia in Taiwanese. Clin. Chim. Acta 390: 56-62.
- Dallongeville J, Cottel D, Montaye M, Codron V, et al. (2006). Impact of *APOA5/A4/C3* genetic polymorphisms on lipid variables and cardiovascular disease risk in French men. *Int. J. Cardiol.* 106: 152-156.
- Joint Committee for Developing Chinese guidelines on prevention and treatment of dyslipidemia in adults (2007). Chinese guidelines on prevention and treatment of dyslipidemia in adults. *Chin. J. Cardiol.* 35: 390-419.
- Liu Y, Ordovas JM, Gao G, Province M, et al. (2009). Pharmacogenetic association of the APOA1/C3/A4/A5 gene cluster and lipid responses to fenofibrate: the genetics of lipid-lowering drugs and diet network study. Pharmacogenet. Genomics 19: 161-169.
- Rudkowska I, Dewailly E, Hegele RA, Boiteau V, et al. (2013). Gene-diet interactions on plasma lipid levels in the Inuit population. Br. J. Nutr. 109: 953-961.
- Tan A, Sun J, Xia N, Qin X, et al. (2012). A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population. *Hum. Mol. Genet.* 21: 1658-1664.
- Yin RX, Li YY and Lai CQ (2011). Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels. *Lipids Health Dis.* 10: 140.
- Zhang Z, Peng B, Gong RR, Gao LB, et al. (2011). Apolipoprotein A5 polymorphisms and risk of coronary artery disease: a meta-analysis. *Biosci. Trends* 5: 165-172.
- Zheng QL and Zhu W (2007). Hyperlipidemia. Chinese Medical Science Press., Beijing.

Genetics and Molecular Research 14 (3): 9277-9290 (2015)