

Relationship between the HLA-G 14bp insertion/deletion polymorphism and susceptibility to autoimmune disease: a meta-analysis

S.K. Kim^{1*}, K.H. Jeong^{2*}, I.J. Kang², J.H. Chung¹, M.K. Shin² and M.H. Lee²

¹Kohwang Medical Research Institute and Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul, Korea ²Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Korea

*These authors contributed equally to this study. Corresponding author: M.H. Lee E-mail: mhlee@khmc.or.kr

Genet. Mol. Res. 14 (4): 15839-15847 (2015) Received March 31, 2015 Accepted July 10, 2015 Published December 1, 2015 DOI http://dx.doi.org/10.4238/2015.December.1.35

ABSTRACT. Numerous studies have investigated the potential relationship between the human leukocyte antigen (HLA)-G 14-bp insertion/deletion (INS/DEL) polymorphisms and autoimmune disease (AID). However, published results are inconclusive. Our aim was to determine whether the 14-bp INS/DEL polymorphism in the HLA-G gene contributes to the risk of AID. A systemic literature search of the PubMed and EMBASE databases was conducted to identify eligible studies investigating the association of the HLA-G 14-bp INS/DEL polymorphism with AID. Our analysis included 11 publications involving a total of 6462 individuals. Overall, no significant association between the HLA-G 14-bp INS/DEL polymorphism and AID was detected in any comparison model. Further subgroup analyses based on AID types and ethnicity also revealed no significant associations. Our results suggest that the HLA-G 14-bp INS/DEL polymorphism is unrelated

Genetics and Molecular Research 14 (4): 15839-15847 (2015) ©FUNPEC-RP www.funpecrp.com.br

to the development of AID. Further studies including larger sample sizes are warranted to confirm these results.

Key words: Autoimmune disease; Human leukocyte antigen-G; Indel polymorphism; Meta-analysis; Susceptibility

INTRODUCTION

The immune system plays an important role in recognizing foreign antigens and protecting against infections, facilitating species survival. However, when the body reacts to itself, immunity can become problematic. Autoimmunity is defined as a misdirected attack made by the immune system against the host as a result of a failing to recognize a self-antigen. This phenomenon is typically an innocuous finding, but has the potential to lead to a broad spectrum of complex autoimmune diseases (AIDs) (Amur et al., 2012).

AID generally refers to a clinically distinct illness caused by an immune reaction to an otherwise normal molecule or tissue component of the subject's body (Cohen, 2014). A total of 5-8% of the general population is affected by AIDs and at least 80 medical conditions are known to be associated with AIDs (Gleicher and Barad, 2007). Recurrent and chronic courses and multiple organ involvement are commonly observed in AIDs.

Human leukocyte antigen (HLA)-G, a non-classical major histocompatibility complex class I molecule, plays an important role in regulating immune responses. HLA-G expression was initially thought to be restricted to the placenta. Recently, however, HLA-G expression has been detected in thymic epithelium, pancreas, intestine, and peripheral blood monocytes (Kovats et al., 1990; Crisa et al., 1997). HLA-G molecules are generated through alternative splicing of the primary transcript of the gene (Ishitani and Geraghty, 1992); HLA-G has 7 isoforms, including 4 membrane-bound (HLA-G1-G4) isoforms and 3 secreted, soluble isoforms (HLA-G5-G7).

HLA-G exhibits immunotolerance functions, inducing apoptosis of activated CD8⁺ T cells (Fournel et al., 2000), interactions with T regulatory cells (Du et al., 2011), modulation of the activity of natural killer cells (Marchal-Bras-Goncalves et al., 2001) and dendritic cells (Liang et al., 2008), and blocking of the allo-cytotoxic T lymphocyte response (Kapasi et al., 2000).

Recent studies have revealed that HLA-G is expressed in numerous pathological conditions, such as psoriatic skin lesions, atopic dermatitis, pemphigus vulgaris, myositic lesions, multiple sclerosis, ulcerative colitis, and some cancers (Larsen and Hviid, 2009; Donadi et al., 2011).

HLA-G production is controlled by several polymorphisms in the promoter (or 5'-upstream regulatory) region as well as a 14-bp insertion (INS)/deletion (DEL) in the 3'untranslated region. These polymorphisms modify interactions between the gene and transcriptional or post-transcriptional factors, respectively (Hviid et al., 2006). Many association studies have focused on the 3'-untranslated region polymorphic sites that appear to play a pivotal role in the regulation of HLA-G expression by influencing the binding of specific microRNAs, affecting the stability of the HLA-G mRNA (Sabbagh et al., 2014). The relationships between the HLA-G 14-bp INS/DEL polymorphism and many AIDs have been previously examined. However, the results of many of the association studies published to date have been inconclusive.

In this study, we performed a meta-analysis using all data published to date to assess the statistical evidence of the association between the HLA-G 14-bp INS/DEL polymorphism and AID risk.

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

MATERIAL AND METHODS

Search strategy

Case and control studies were searched in the PubMed, EMBASE, and Korean Studies Information Service System databases up to May 2014 without language restrictions. Relevant studies were identified using the terms: "HLA-G 14-bp or HLA-G insertion or HLA-G deletion" AND "polymorphism or polymorphisms or variant" AND "autoimmune or autoimmunity or autoimmune disease". Studies were restricted to humans. Additional studies were identified by a manual search of reference lists in original or review articles. If data or data subsets were published in more than one article, only the publication with the largest sample size was included.

Inclusion criteria

Studies were included if they met the following criteria: 1) studies that evaluated the association between the HLA-G 14-bp INS/DEL polymorphism (rs66554220) and autoimmune disease, 2) case-control study design, and 3) had detailed genotype frequencies for cases and controls.

Data extraction

Two investigators independently extracted data and reached consensus on all items. If the 2 investigators generated different results, they rechecked the data and reached a consensus through discussion. Data extracted from the selected articles included the first author's name, year of publication, country of origin, ethnicity of the study population, and numbers of cases and controls. Ethnicity was divided into Asian and Caucasian populations.

Statistical analysis

Before the effect estimation of HLA-G 14-bp INS/DEL polymorphism in AID, we first calculated the Hardy-Weinberg equilibrium of the HLA-G 14-bp INS/DEL polymorphism using the χ^2 test (http://www.had2know.com/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html). The meta-analysis was performed using the Comprehensive Meta-Analysis software (BioStat, Inc., Englewood, NJ, USA). The pooled odds ratio (OR) and 95% confidence interval (CI) were used to investigate the association between autoimmune disease and the rs66554220 polymorphism in the HLA-G gene. A random-effect or fixed-effect model was used. OR, with the corresponding 95%CI, was calculated for the additive model (INS/INS *vs* INS/DEL *vs* DEL/DEL), dominant model (INS/INS and INS/DEL *vs* DEL/DEL), and recessive model (INS/INS *vs* INS/DEL and DEL/DEL), and allele (INS *vs* DEL).

A χ^2 test-based Q statistic test was performed to assess heterogeneity. We also assessed the effects of heterogeneity using the l^2 test. A significant Q test (P < 0.05) or l^2 > 50% indicated heterogeneity among the studies. The random-effect Mantel Haenszel method was used if the result of the Q test was P < 0.05 or the l^2 statistic was > 50 %, indicating statistically significant heterogeneity between studies. Otherwise, the fixed-effect Mantel Haenszel method was used. P values < 0.05 were considered to indicate statistical significance.

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

RESULTS

Study characteristics

A total of 70 studies were screened from the databases. Figure 1 shows that 11 articles, including 2704 cases and 3758 controls, were ultimately selected. The characteristics of the studies selected regarding the HLA-G 14-bp INS/DEL polymorphism and AID are summarized in Table 1. The types of AID included systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIR), multiple sclerosis, ulcerative colitis, Crohn's disease, idiopathic dilated cardiomyopathy, pemphigus vulgaris, and non-segmental vitiligo. The INS allele showed a higher frequency in AID groups in Caucasian populations than in Asian populations (INS allele frequency = 0.31 and 0.41 in Asian and Caucasian populations, respectively; Figure 2). However, in the control group, the INS allele frequencies were similar in the Caucasian and Asian populations (INS allele frequency = 0.35 and 0.40 in Asian and Caucasian populations, respectively).

Figure 1. Flow chart illustrating the search strategy used to identify relevant studies.

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

Veit et al. (2009) SLE Caucas Consiglio et al. (2011) SLE Caucas Wu et al. (2009) SLE Caucas Wu et al. (2008) SLE Caucas Rizzo et al. (2008) SLE Caucas Rizzo et al. (2008) SLE Caucas Rizzo et al. (2008) Pamphigus vulgaris Caucas Rizzo et al. (2008) JJA Caucas Veit et al. (2008) JJA Caucas	INS/INS casian 41 casian 28 in 40 casian 47 casian 11				Control		Са	se	Con	trol	HWE
Veit et al. (2009) SLE Caucas Consiglio et al. (2011) SLE Caucas Wu et al. (2009) SLE Caucas Wu et al. (2003) SLE Caucas Rizzo et al. (2004) Pemphigus vulgaris Caucas Rizzo et al. (2008) NA Caucas Veit et al. (2008) NA Caucas Veit et al. (2008) NA Caucas Veit et al. (2008) NA Caucas	casian 41 casian 28 in 40 casian 47 casian 11	INS/DEL	DEL/DEL	SNI/SNI	INS/DEL	DEL/DEL	SNI	DEL	INS	DEL	٩
Consiglio et al. (2011) SLE Caucas Wu et al. (2009) SLE Asian Arizzo et al. (2008) SLE Asian Arizzo et al. (2004) Pemphigus vulgaris Caucas Veit et al. (2008) RA Caucas Rizzo et al. (2008) JJA Caucas Veit et al. (2008) JJA Caucas	casian 28 In 40 casian 47 casian 11	161	91	20	223	167	243	343	363	557	0.44
Wu et al. (2009) SLE Asian Rizzo et al. (2008) SLE Caucas Gazzit et al. (2004) Pemphigus vulgaris Caucas Veit et al. (2008) RA Caucas Veit et al. (2008) RA Caucas Veit et al. (2008) NA Caucas Veit et al. (2008) NA Caucas Veit et al. (2008) NA Caucas	ın 40 casian 47 casian 11	114	51	21	60	40	170	216	102	140	0.85
Rizzo et al. (2008) SLE Caucas Gazit et al. (2004) Pemphigus vulgaris Caucas Veit et al. (2008) RA Caucas Rizzo et al. (2008) JIA Caucas Veit et al. (2008) JIA Caucas	casian 47 casian 11	97	94	59	171	137	177	285	289	445	0.65
Gazit et al. (2004) Pemphigus vulgaris Caucas Veit et al. (2008) RA Caucas Rizzo et al. (2006) RA Caucas Veit et al. (2008) JIA Caucas Verit et al. (2008) JIA Caucas	casian 11	97	56	65	221	165	191	209	351	551	0.51
Veit et al. (2008) RA Caucas Rizzo et al. (2006) RA Caucas Veit et al. (2008) JA Caucas veit et al. (2008) JA Mono Caucas		12	7	19	1	0	34	26	49	11	0.22
Rizzo et al. (2006) RA Caucas Veit et al. (2008) JIA Caucas	casian 49	132	84	59	175	122	230	300	293	419	0.78
Veit et al. (2008) JIA Caucas	casian 28	66	62	29	69	64	122	190	127	197	0.18
Income of all (2014) Non commental vitilization Action	casian 10	50	46	22	38	25	70	142	82	88	0.33
	n 13	62	109	17	198	276	88	280	232	750	0.01
Lin et al. (2007) IDC Asian	n 10	48	59	85	188	128	68	166	358	444	0.30
Kroner et al. (2007) Multiple sclerosis Caucas	casian 44	144	112	6	51	35	232	368	69	121	0.12
Glas et al. (2007) Ulcerative colitis Caucas	casian 27	139	91	100	373	266	193	321	573	905	0.09
Glas et al. (2007) Crohn's disease Caucas	casian 62	167	142	100	373	266	291	451	573	905	0.09

HLA-G 14-bp polymorphism and autoimmune disease

15843

Figure 2. Insertion frequency of the HLA-G 14-bp insertion/deletion polymorphism in Asian and Caucasian populations.

Quantitative synthesis

Table 2 shows the results of the overall meta-analysis. The results indicated that the HLA-G 14-bp INS/DEL polymorphism was unrelated to the risk of AID (INS/INS vs INS/DEL + DEL/DEL, OR = 0.94, 95%CI = 0.70-1.20, P = 0.67; INS/DEL + INS/DEL vs DEL/DEL, OR = 0.95, 95%CI = 0.80-1.10, P = 0.59; INS/INS vs INS/DEL, OR = 0.99, 95%CI = 0.80-1.30, P = 0.93; INS/INS vs DEL/DEL, OR = 0.95, 95%CI = 0.70-1.30, P = 0.74; INS vs DEL, OR = 0.94, 95%CI = 0.80-1.10, P = 0.39; Table 2). In subanalyses, according to AID type, SLE and RA were analyzed. No association was detected between the HLA-G 14-bp INS/DEL polymorphism and SLE or RA (Table 3). These results suggest that the HLA-G 14-bp INS/DEL polymorphism does not contribute to the development of AID.

Genetic comparison	Population	OR (95%CI)	Р	Heteroge	eneity	Model
				Р	<i>I</i> ²	
INS/INS vs INS/DEL + DEL/DEL	All	0.94 (0.70-1.20)	0.67	0.00008	69.82	Random
	Asians	0.93 (0.37-2.31)	0.87	0.0015	84.63	Random
	Caucasians	0.95 (0.72-1.27)	0.75	0.0017	66.08	Random
INS/DEL + INS/DEL vs DEL/DEL	All	0.95 (0.80-1.10)	0.59	0.002	61.69	Random
	Asians	0.72 (0.49-1.06)	0.10	0.033	70.51	Random
	Caucasians	1.06 (0.89-1.26)	0.52	0.063	44.38	Random
INS/INS vs INS/DEL	All	0.99 (0.80-1.30)	0.93	0.002	60.87	Random
	Asians	1.10 (0.48-2.51)	0.82	0.008	79.30	Random
	Caucasians	0.97 (0.74-1.26)	0.81	0.013	56.86	Random
INS/INS vs DEL/DEL	All	0.95 (0.70-1.30)	0.74	0.00002	72.18	Random
	Asians	0.79 (0.28-2.24)	0.66	0.0004	87.12	Random
	Caucasians	1.02 (0.74-1.40)	0.91	0.0023	64.89	Random
INS vs DEL	All	0.94 (0.80-1.10)	0.39	6.37E-06	74.04	Random
	Asians	0.80 (0.53-1.19)	0.27	0.0018	84.23	Random
	Caucasians	0.99 (0.85-1.16)	0.94	0.0011	67.35	Random

The random model was adopted if the result of the Q test was P < 0.05 or the l^2 statistic was > 50 %, and the fixed model was used if the result of the Q test was P > 0.05 or the l^2 statistic was <50%. OR, odds ratio; CI, confidence interval; INS, insertion; DEL, deletion.

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

©FUNPEC-RP www.funpecrp.com.br

15844

Genetic comparison	Population	OR (95%CI)	Р	Hetero	ogeneity	Model
				P	I ²	
INS/INS vs INS/DEL + DEL/DEL	All	1.13 (0.79-1.62)	0.51	0.066	58.36	Random
INS/DEL + INS/DEL vs DEL/DEL	All	1.19 (1.00-1.43)	0.05	0.154	42.85	Fixed
INS/INS vs INS/DEL	All	1.06 (0.73-1.54)	0.77	0.072	57.18	Random
INS/INS vs DEL/DEL	All	1.26 (0.86-1.83)	0.23	0.099	52.11	Random
INS vs DEL	All	1.13 (1.00-1.28)	0.05	0.114	49.64	Fixed

The random model was adopted if the result of the Q test was P < 0.05 or the *P* statistic was > 50%, and the fixed model was used if the result of the Q test was P > 0.05 or the *P* statistic was < 50%. OR, odds ratio; CI, confidence interval; INS, insertion; DEL, deletion.

DISCUSSION

Since the 14-bp INS/DEL polymorphism was first reported by Harrison et al. (1993), the association between the HLA-G 14-bp INS/DEL polymorphism and disease has been a research focus. Many studies have investigated the complications of pregnancy, such as recurrent spontaneous abortion and pre-eclampsia. Several studies have suggested that the HLA-G 14-bp INS/DEL polymorphism is associated with AIDs, such as SLE (Rizzo et al., 2008; Veit et al., 2009; Wu et al., 2009; Consiglio et al., 2011), RA (Rizzo et al., 2006; Veit et al., 2008), juvenile idiopathic arthritis (Veit et al., 2008), multiple sclerosis (Kroner et al., 2007), ulcerative colitis (Glas et al., 2007), Crohn's disease (Glas et al., 2007), idiopathic dilated cardiomyopathy (Lin et al., 2007), pemphigus vulgaris, and non-segmental vitiligo (Jeong et al., 2014).

Among polymorphisms in the HLA-G gene, the 14-bp INS/DEL polymorphism in the 3'-untranslated region of exon 8 has been shown to play an important role in the post-transcriptional regulation of HLA-G (Dahl and Hviid, 2012). The 14-bp INS/DEL polymorphism likely affects mRNA stability and expression; the presence of the 14-bp INS allele has been associated with lower levels of HLA-G mRNA and, to some extent, with lower levels of soluble HLA-G (Rebmann et al., 2001; Hviid et al., 2003, 2004). Decreased soluble HLA-G plasma concentrations may lead to chronic activation of inflammatory cells and contribute to the development of AIDs (Larsen and Hviid, 2009).

To explore the potential relationship between the HLA-G 14-bp INS/DEL polymorphism and AID risk, numerous case-control studies have been conducted. For SLE, the results obtained were inconclusive and even contradictory. Studies examining juvenile idiopathic arthritis, ulcerative colitis, Crohn's disease, idiopathic dilated cardiomyopathy, pemphigus vulgaris, and nonsegmental vitiligo showed significant associations between the 14-bp INS/DEL and disease risk, while RA and multiple sclerosis showed no association. In SLE, to date, conflicting results have been reported. Rizzo et al. (2008) reported an increased frequency of the 14-bp INS among Italian patients, and Veit et al. (2009) and Consiglio et al. (2011) reported an excess of heterozygotes in Brazilian patients. However, Wu et al. (2009) detected no association between the HLA-G 14bp INS/DEL polymorphism and SLE among Chinese patients. In the current meta-analysis, we found no association between this polymorphism and SLE. Rizzo et al. (2009) and Veit et al. (2008) studied the association between the 14-bp INS/DEL polymorphism and RA. Both studies showed consistent results: there was no difference between genotype and allelic frequencies for this polymorphism. A single study for each of the associations between this polymorphism and JIR, multiple sclerosis, ulcerative colitis, Crohn's disease, idiopathic dilated cardiomyopathy, pemphigus vulgaris, and non-segmental vitiligo has been reported (Gazit et al., 2004; Glas et al., 2007; Kroner et al., 2007; Lin et al., 2007; Veit et al., 2008; Jeong et al., 2014). Thus, we did not perform AID

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

subtype analyses of these cases, and the results should be interpreted cautiously.

This is the first meta-analysis to assess the relationship between polymorphisms in HLA-G 14-bp INS/DEL and the genetic susceptibility to AIDs. In the present meta-analysis, in total, 2704 cases and 3758 controls from 11 case control studies were included. Overall, our results showed no association between the HLA-G 14bp INS/DEL polymorphism and genetic susceptibility to AID, including SLE, RA, JIR, multiple sclerosis, ulcerative colitis, Crohn's disease, idiopathic dilated cardiomyopathy, pemphigus vulgaris, and non-segmental vitiligo.

The current meta-analysis had several limitations. First, the etiological mechanisms of AID are complex, in which gene-gene and gene-environment interactions are involved. It is possible that the current polymorphism has a partial effect of the development of AID, which would not be detected readily by meta-analysis. Second, the reports in this meta-analysis were obtained from the PubMed, EMBASE, and Korean Studies Information Service System databases. Thus, there is a possibility of publication bias. Third, the numbers of studies and individual sample sizes included in our pooled analysis were not sufficiently large for comprehensive analysis, particularly for AID subtype analyses, and further research is needed.

In conclusion, we conducted a meta-analysis of the HLA-G 14-bp INS/DEL polymorphism and the risk of AID development. Our results demonstrate that the HLA-G 14-bp INS/DEL polymorphism does not contribute to overall AID susceptibility. However, further well-designed studies with larger sample sizes are needed to confirm our results.

Conflicts of interest

The authors declare no conflict of interest.

REFERENCES

- Amur S, Parekh A and Mummaneni P (2012).Sex differences and genomics in autoimmune diseases.J. Autoimmun. 38: J254-J265.
- Cohen IR (2014). Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a comprehensive review. J. Autoimmun. 54: 112-117.
- Consiglio CR, Veit TD, Monticielo OA, Mucenic T, et al. (2011). Association of the HLA-G gene +3142C>G polymorphism with systemic lupus erythematosus. *Tissue Ant.* 77: 540-545.
- Crisa L, McMaster MT, Ishii JK, Fisher SJ, et al. (1997). Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. *J. Exp. Med.* 186: 289-298.
- Dahl M and Hviid TV (2012). Human leucocyte antigen class lb molecules in pregnancy success and early pregnancy loss. *Hum. Reprod. Update* 18: 92-109.
- Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, et al. (2011). Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. *Cell. Mol. Life Sci.* 68: 369-395.
- Du L, Xiao X, Wang C, Zhang X, et al. (2011). Human leukocyte antigen-G is closely associated with tumor immune escape in gastric cancer by increasing local regulatory T cells. *Cancer Sci.* 102: 1272-1280.
- Fournel S, Aguerre-Girr M, Huc X, Lenfant F, et al. (2000). Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164: 6100-6104.
- Gazit E, Slomov Y, Goldberg I, Brenner S, et al. (2004). HLA-G is associated with pemphigus vulgaris in Jewish patients. *Hum. Immunol.* 65: 39-46.
- Glas J, Török HP, Tonenchi L, Wetzke M, et al. (2007). The 14-bp deletion polymorphism in the HLA-G gene displays significant differences between ulcerative colitis and Crohn's disease and is associated with ileocecal resection in Crohn's disease. *Int. Immunol.* 19: 621-626.

Gleicher N and Barad DH (2007). Gender as risk factor for autoimmune diseases. J. Autoimmun. 28: 1-6.

Harrison GA, Humphrey KE, Jakobsen IB and Cooper DW (1993). A 14 bp deletion polymorphism in the HLA-G gene.*Hum. Mol. Genet.* 2: 2200.

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 14 (4): 15839-15847 (2015)

- Hviid TV, Hylenius S, Rørbye C and Nielsen LG (2003). HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. *Immunogenetics* 55: 63-79.
- Hviid TV, Rizzo R, Christiansen OB, Melchiorri L, et al. (2004). HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphisms. *Immunogenetics* 56: 135-141.
- Hviid TV, Rizzo R, Melchiorri L, Stignani M, et al. (2006). Polymorphism in the 5' upstream regulatory and 3' untranslated regions of the HLA-G gene in relation to soluble HLA-G and IL-10 expression. *Hum. Immunol.* 67: 53-62.
- Ishitani A and Geraghty DE (1992). Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. *Proc. Natl. Acad. Sci. U. S. A.* 89: 3947-3951.
- Jeong KH, Kim SK, Kang BK, Chung JH, et al. (2014). Association between an HLA-G 14 bp insertion/deletion polymorphism and non-segmental vitiligo in the Korean population. *Arch. Dermatol. Res.* 306: 577-582.
- Kapasi K, Albert SE, Yie S, Zavazava N, et al. (2000). HLA-G has a concentration-dependent effect on the generation of an allo-CTL response. *Immunology* 101: 191-200.
- Kovats S, Main EK, Librach C, Stubblebine M, et al. (1990). A class I antigen, HLA-G, expressed in human trophoblasts. Science 248: 220-223.
- Kroner A, Grimm A, Johannssen K, Mäurer M, et al. (2007). The genetic influence of the nonclassical MHC molecule HLA-G on multiple sclerosis. *Hum. Immunol.* 68: 422-425.
- Larsen MH and Hviid TV (2009). Human leukocyte antigen-G polymorphism in relation to expression, function, and disease. *Hum. Immunol.* 70: 1026-1034.
- Liang S, Ristich V, Arase H, Dausset J, et al. (2008). Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6-STAT3 signaling pathway. *Proc. Natl. Acad. Sci. U. S. A.* 105: 8357-8362.
- Lin A, Yan WH, Xu HH, Tang LJ, et al. (2007). 14 bp deletion polymorphism in the HLA-G gene is a risk factor for idiopathic dilated cardiomyopathy in a Chinese Han population. *Tissue Ant.* 70: 427-431.
- Marchal-Bras-Goncalves R, Rouas-Freiss N, Connan F, Choppin J, et al. (2001). A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. *Transplant. Proc.* 33: 2355-2359.
- Rebmann V, van der Ven K, Passler M, Pfeiffer K, et al. (2001). Association of soluble HLA-G plasma levels with HLA-G alleles. *Tissue Ant.* 57: 15-21.
- Rizzo R, Rubini M, Govoni M, Padovan M, et al. (2006). HLA-G 14-bp polymorphism regulates the methotrexate response in rheumatoid arthritis. *Pharmacogenet. Genomics* 16: 615-623.
- Rizzo R, Hviid TV, Govoni M, Padovan M, et al. (2008). HLA-G genotype and HLA-G expression in systemic lupus erythematosus: HLA-G as a putative susceptibility gene in systemic lupus erythematosus. *Tissue Ant.* 71: 520-529.
- Sabbagh A, Luisi P, Castelli EC, Gineau L, et al. (2014). Worldwide genetic variation at the 3' untranslated region of the HLA-G gene: balancing selection influencing genetic diversity. *Genes Immun.* 15: 95-106.
- Veit TD, Vianna P, Scheibel I, Brenol CV, et al. (2008). Association of the HLA-G 14-bp insertion/deletion polymorphism with juvenile idiopathic arthritis and rheumatoid arthritis. *Tissue Ant.* 71: 440-446.
- Veit TD, Cordero EA, Mucenic T, Monticielo OA, et al. (2009). Association of the HLA-G 14 bp polymorphism with systemic lupus erythematosus. *Lupus* 18: 424-430.
- Wu FX, Wu LJ, Luo XY, Tang Z, et al. (2009). Lack of association between HLA-G 14-bp polymorphism and systemic lupus erythematosus in a Han Chinese population. *Lupus* 18: 1259-1266.

Genetics and Molecular Research 14 (4): 15839-15847 (2015)