

Prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis

Y.Y. Shi^{1,2} and H. Jiang¹

¹Reproductive Medicine Center,
Clinical College of People's Liberation Army Affiliated to Anhui Medical University, Hefei, China
²Department of Obstetrics and Gynecology,
The Second People's Hospital of Hefei Affiliated to Anhui Medical University, Hefei, China

Corresponding author: H. Jiang E-mail: hongjiang62@foxmail.com

Genet. Mol. Res. 15 (3): gmr.15038325 Received December 22, 2015 Accepted February 16, 2016 Published August 12, 2016 DOI http://dx.doi.org/10.4238/gmr.15038325

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. This meta-analysis study aimed to investigate the correlation between CD44-positive cancer stem cells (CSCs) and clinicopathological features and its effect on the survival of ovarian cancer patients. A comprehensive literature search in the electronic databases, including PubMed, EMBASE, and Wanfang (up to December 1, 2015), was conducted. Publications assessing the clinical or prognostic significance of CD44 expression in ovarian cancer were identified and reviewed until December 1, 2015. A meta-analysis was then performed to examine the association between CD44 expression and clinical outcomes of ovarian cancer. A total of 8 publications comprising 957 cases satisfied the criteria and were included for this meta-analysis. Our results show that CD44 expression was not significantly associated with the tumor grade (OR = 2.31, 95%CI =

Genetics and Molecular Research 15 (3): gmr.15038325

0.61-8.73, P = 0.22), age of the patients (OR = 0.89, 95%CI = 0.32-2.53, P = 0.83), residual tumor size (OR = 1.01, 95%CI = 0.30-3.40, P = 0.99), or response to chemotherapy (OR = 3.49, 95%CI = 0.51-23.65, P = 0.20). However, our meta-analyses of the data from the identified studies demonstrate that CD44 expression was significantly correlated with tumor lymphatic metastasis (OR = 2.66, 95%CI = 1.36-5.22, P = 0.004), tumor TNM stage (OR = 2.34, 95%CI = 1.76-3.12, P < 0.00001), and decreased overall survival for ovarian cancer patients (RR = 1.47, 95%CI = 1.23-1.74, P < 0.0001). In conclusion, our findings show that CD44-positive ovarian cancer patients exhibit worse prognosis, which was associated with common clinicopathological features and poor prognostic factors.

Key words: Ovarian cancer; Cancer stem cells; CD44; Outcome; Meta-analysis

INTRODUCTION

Ovarian cancer usually occurs in women over age 50 and is the leading cause of death from gynecological malignancy worldwide (Holschneider and Berek, 2000). The frequent recurrence and quick metastasis of ovarian cancer throughout the peritoneal cavity result in extremely low 5-year survival for patients with ovarian cancer (Jin et al., 2010). Thus, it is necessary to further explore the biology of this disease to improve the treatment efficacy of current therapeutic approaches and to develop novel and more effective therapies against ovarian cancer. Intriguingly, cancer stem cells (CSCs), a subset of cells within cancer tissues, have been implicated in the initiation, progression, metastasis, and recurrence of human cancer. CSCs exhibit the distinct capacity of self-renewal and can generate all the heterogeneous lineages of cancer cells that constitute the bulk of the tumor mass (Clevers, 2011). Therefore, it is very important to investigate the role of ovarian cancer CSCs in cancer progression to improve the clinical outcomes of this highly aggressive cancer.

CD44 is a receptor for hyaluronic acid (HA) and the binding of HA to CD44 leads to the activation of a variety of biological processes, including tumor progression, metastasis and proliferation (Savani et al., 2001). Importantly, it has been reported that CD44 plays a critical role in multiple steps that regulate cell migration (Nagano and Saya, 2004). Once activated, the cytoplasmic tail of CD44 interacts with the actin cytoskeleton, resulting in the translocation of CD44 to the leading edge of migrating cells (Ponta et al., 2003). These findings highlight the important role of CD44 in regulating cancer progression and metastasis. Interestingly, in recent years, it has been found that CD44 can be reliably used as a marker to identify CSCs and serve as a prognostic factor for a variety of human cancers (Ricardo et al., 2011; Wakamatsu et al., 2012; de Beça et al., 2013). However, the correlations between CD44 and the clinicopothological features and prognosis of ovarian cancer are still not clear (Sillanpää et al., 2003; Chen et al., 2009a; Gao et al., 2015; Wang et al., 2015). In this study, we performed a systematic review of the published literature and conducted a meta-analysis of the included studies to examine the association of CD44 expression with the clinicopathological features and the prognosis of ovarian cancer patients. Our findings may provide novel insights into the potential cellular origin of ovarian cancer and offer important guidelines for the prognostic stratification of ovarian cancer patients that need adjuvant therapy.

Genetics and Molecular Research 15 (3): gmr.15038325

MATERIAL AND METHODS

Literature search

A comprehensive literature search (up to December 1, 2015) of electronic database, including PubMed, EMBASE, and Wanfang databases, for the abstracts about studies on human subjects was conducted to identify articles on the prognostic role of CD44 expression in ovarian cancer. The key words that were used for the literature search are: "CD44" as well as "ovarian neoplasms" or "ovary neoplasms" or "ovarian cancer" or "cancer of ovary". All relevant studies were retrieved and, in the meantime, we also checked the bibliographies of those articles for other related reports to identify additional eligible studies.

Two of the authors extracted data from all eligible studies independently based on the following inclusion criteria: 1) articles that reported the expression of CD44 and either prognostic factors or overall survival (OS) of ovarian cancer; 2) studies that contain sufficient data to allow for the estimation of the odds ratio (OR) or relative risk (RR) of OS; 3) articles that were reported in English or Chinese; and 4) studies published as original research. Reviews, comments, duplicated studies, and articles unrelated to our analysis were excluded. Disagreements in data extraction between the two authors were resolved by discussion.

The key information that we extracted from the included papers are listed as follows: author, publication year, patient's country, number of patients, tumor stage, research protocols, and cutoff scores for the definition of positive staining or staining intensity. Two major groups of data were collected based on the purpose of our metaanalysis. One group of data was used to evaluate the association between the expression of CD44 and clinicopathological parameters, including tumor grade, age of the patients, residual tumor size, or response to chemotherapy, tumor lymphatic metastasis and TNM stage. We analyzed another group of data to investigate the association between the expression of CD44 and OS.

Statistical analysis

The meta-analysis was conducted as previously described. ORs with 95% confidence intervals (CI) were calculated to evaluate the association between the stem cell marker (CD44) and clinicopathological features of ovarian cancer, including tumor grade, age of the patients, residual tumor size, or response to chemotherapy, tumor lymphatic metastasis and TNM stage. The RR was employed to assess the correlation of CSC marker CD44 and OS. When RRs were not directly described in certain studies, we then extracted the original data from the articles and calculated RRs based on the methods described by Parmar et al. (1998). *Q* test and P values were used to estimate heterogeneity across studies. ORs and RRs were calculated using a random-effect model when the P values are less than 0.05. Otherwise, a fixed-effect model was used. The Begg and Egger funnel plots were generated to assess publication bias. All statistical analyses were performed using the Review manager software. P values were two-sided and results are considered significant when P values are less than 0.05.

Genetics and Molecular Research 15 (3): gmr.15038325

Y.Y. Shi and H. Jiang

RESULTS

Characteristics of included studies

After the literature search of electronic databases, including the PubMed, EMBASE, and Wanfang, we initially identified a total of 197 articles that are relevant for this metaanalysis. One hundred and eight-two articles were then excluded after reviewing the titles and abstracts and 7 studies were further excluded after examining the full-text of the articles (Figure 1). We excluded those articles from our meta-analysis for the following reasons: a) Non-association studies were performed, b) Researchers in those articles did not carry out histopathologic analysis or intensive clinical and imaging follow-up for at least 6 months, c) There were not association studies for other kinds of diseases d), They were review articles and no original data were reported, e) Data could not be extracted, and/or f) The data in certain articles were repeated from the same or similar population. After extensively reviewing the literature, we eventually identified a total of 8 studies with 957 patients, who met the inclusion criteria for our meta-analysis (Sillanpää et al., 2003; Chen et al., 2009a; Jiang and Chen, 2010; Steffensen et al., 2011; Li et al., 2012; Gao et al., 2015; Wang et al., 2015; Zhu et al., 2015). Five of these studies reported the correlation of CD44 expression with the OS for ovarian cancer patients, which was assessed using the Kaplan-Meier method. Three of the included studies examined the association between CD44 and the clinicopathological factors without survival analysis. The characteristics of the included studies for this meta-analysis were summarized in Table 1.

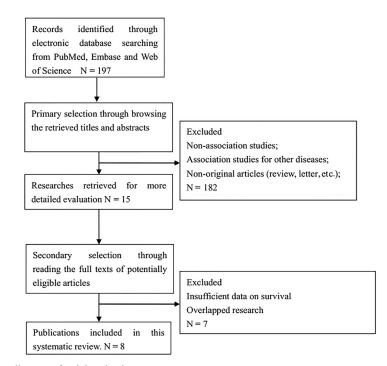


Figure 1. Flow diagram of article selection.

Genetics and Molecular Research 15 (3): gmr.15038325

			0								
Study	Patient's	Ethnicity	Year	Time of	Pathological	Method	Number	Age in	Follow-up	Cutoff for	Survival
Sillanpää et al.	country Finland	Caucasian	2003	collection 1976-1992	stage I-IV	IHC	or patients 445	years	montns 237	>10% staining	analysis OS
Chen et al.	China	Asian	2009a	2001-2007	VI-I	IHC	120	40-70	56	>25% staining	QN
Jiang and Chen	China	Asian	2010	2007-2008	I-IV	IHC	33	33-74	ΟN	>50% staining	QN
Steffensen et al.	Denmark	Caucasian	2011	QN	I-IV	IHC	109	32-79	40	>20% staining	SO
Li et al.	China	Asian	2012	2007-2008	I-IV	IHC	46	ND	ND	>10% staining	QN
Gao et al.	USA	Caucasian	2015	QN	III-I	IHC	26	ND	150	>25% staining	SO
Wang et al.	China	Asian	2015	2006-2012	VI-I	IHC	86	29-73	94	>50% staining	SO
Zhu et al.	USA	Caucasian	2015	2006-2010	VI-I	IHC	92	24-78	84	>25% staining	SO
IHC: immunohistochemistry;	chemistry; C	S: overal surv	ival; ND: 1	OS: overal survival; ND: not documented	,bá						

CD44 in ovarian cancer

Y.Y. Shi and H. Jiang

Correlation of CD44 expression with clinicopathological parameters of ovarian cancer

We first conduced the meta-analysis to evaluate the association between CD44 and several clinicopathological parameters of ovarian cancer as shown in Figure 2. Our results demonstrate that CD44 expression is not significantly correlated with tumor grade (OR = 2.31, 95%CI = 0.61-8.73, P = 0.22; Figure 2A), the age of patients (OR = 0.89, 95%CI = 0.32-2.53, P = 0.83; Figure 2B), residual tumor size (OR = 1.01, 95%CI = 0.30-3.40, P = 0.99; Figure 2C), or response to chemotherapy (OR = 3.49, 95%CI = 0.51-23.65, P = 0.20; Figure 2D). However, there is a significant correlation between CD44 expression and tumor lymphatic metastasis (OR = 2.66, 95%CI = 1.36-5.22, P = 0.004; Figure 2E) and tumor TNM stage (OR = 2.34, 95%CI = 1.76-3.12, P < 0.00001; Figure 2F).

A	Case		Contro			Odds Ratio	Odds Ratio
Study or Subgroup	Events					M-H, Random, 95% Cl	
Sillanpaa et al 2003	38	208	62	192	19.2%	0.47 [0.29, 0.75]	
Chen et al 2009a	73	74	29	46	13.4%	42.79 [5.44, 336.48]	
Jiang and Chen 2010		21	5	12	16.0%	1.27 [0.30, 5.33]	
Steffensen et al 2011	7	20	51	97	17.7%	0.49 [0.18, 1.32]	
Li et al 2012	7	22	3	24	15.7%	3.27 [0.72, 14.73]	
Zhu et al 2015	35	44	15	48	17.9%	8.56 [3.30, 22.20]	
Total (95% CI)		389		419	100.0%	2.31 [0.61, 8.73]	
Total events	170		165				
Heterogeneity: Tau ² =	2.33; Chi ² =	= 48.36.	df = 5 (P	< 0.000	001); I ² =	90%	0.01 0.1 1 10 10
Test for overall effect:	Z = 1.23 (P	= 0.22)					0.01 0.1 1 10 10 Grade I+II Grade III
в	0		0			Out - Date	
Study or Subgroup	Case Events		Contro Events		Moight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
Steffensen et al 2011	16	20	91	97	29.2%	0.26 [0.07, 1.04]	
Li et al 2012	10	20	13	24	29.2% 33.5%		
	14	44	13	48		1.48 [0.45, 4.83]	
Zhu et al 2015	10	44	8	48	37.3%	1.47 [0.52, 4.14]	-
Total (95% CI)		86		169	100.0%	0.89 [0.32, 2.53]	
Total events	40		112				· 1
Heterogeneity: Tau ² =		= 4.60.0		0.10):	I ² = 56%		
Test for overall effect:				0.10/,			0.01 0.1 1 10 10
С							Age < 50y Age ≥ 50 y
	Case		Control			Odds Ratio	Odds Ratio
Study or Subgroup						Random, 95% Cl	M-H, Random, 95% Cl
Sillanpaa et al 2003		208	116 192 12 4P			0.44 [0.30, 0.66]	
Chen et al 2009a Steffensen et al 2011	40	20	49 97			3.33 [1.50, 7.43] 0.24 [0.08, 0.79]	
Zhu et al 2015	24	44	49 97			2.64 [1.13, 6.18]	
Zhu et al 2015	24	**	10 40	24.5	20	2.04 [1.15, 0.16]	
Total (95% CI)	3	346	383	3 100.0	196	1.01 [0.30, 3.40]	
Total events	152		192				
Heterogeneity: Tau ² = 1			: 3 (P < 0.0	J0001);	l ² = 91%	0.01	0.1 1 10 10
Test for overall effect: Z D	= 0.01 (P = 0	.99)					dual tumor <1 cm Residual tumor >1 cm
-	Case	Cont			Odds		Odds Ratio
	vents Total					lom, 95% Cl	M-H, Random, 95% Cl
Sillanpaa et al 2003	46 208	54		5.7%		[0.46, 1.14]	
Wang et al 2015 Zhu et al 2015	16 43 28 44	3		11.0% 13.3%		2.10, 29.76] 3.30, 23.23]	
		•					
Total (95% CI)	295		283 10	0.0%	3.49 [0	0.51, 23.65]	
Total events	90	65					
Heterogeneity: Tau ² = 2.6 Test for overall effect: Z =	1.28 (P = 0.2)	17, 01 = 2 10)	(P < 0.000	01); P=	93%		0,1 1 10 10
E		-,					
						Sensitive to	chemothearpy Resistant to chemothearp
Study or Subgroup	Experimenta		Control			dds Ratio	chemothearpy Resistant to chemothearp Odds Ratio
	Events To	otal Eve	ents Tota		ht M-H,	dds Ratio , Fixed, 95% Cl	chemothearpy Resistant to chemothearp
Li et al 2012	Events To 9	22	ents Tota 2 2	4 10.6	<u>ht M-H</u> 3% 7.6	dds Ratio , Fixed, 95% Cl 2 [1.42, 40.80]	chemothearpy Resistant to chemothearp Odds Ratio
Li et al 2012 Wang et al 2015	<u>Events To</u> 9 7	22 43	2 2 3 4	4 10.6 3 23.5	ht M-H, 3% 7.6 5% 2.5	dds Ratio Fixed, 95% Cl 2 [1.42, 40.80] 9 [0.62, 10.78]	chemothearpy Resistant to chemothearp Odds Ratio
Li et al 2012	Events To 9	22	ents Tota 2 2	4 10.6 3 23.5	ht M-H, 3% 7.6 5% 2.5	dds Ratio , Fixed, 95% Cl 2 [1.42, 40.80]	chemothearpy Resistant to chemothearp Odds Ratio
Li et al 2012 Wang et al 2015 Zhu et al 2015	<u>Events To</u> 9 7 17	22 43 44	2 24 3 43 12 44	4 10.6 3 23.5 8 65.9	<u>ht M-H</u> 3% 7.6 5% 2.5 3% 1.	dds Ratio Fixed, 95% Cl 2 [1.42, 40.80] 9 [0.62, 10.78] 89 [0.77, 4.61]	chemothearpy Resistant to chemothearp Odds Ratio
Li et al 2012 Wang et al 2015	<u>Events To</u> 9 7 17	22 43	ents Tota 2 2 3 4 12 4 11	4 10.6 3 23.5 8 65.9	<u>ht M-H</u> 3% 7.6 5% 2.5 3% 1.	dds Ratio Fixed, 95% Cl 2 [1.42, 40.80] 9 [0.62, 10.78]	chemothearpy Resistant to chemothearp Odds Ratio
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events	Events To 9 7 17 17 133	22 43 44 109	ents Tota 2 2 3 4 12 4 11 11 17	4 10.6 3 23.5 8 65.9	<u>ht M-H</u> 3% 7.6 5% 2.5 3% 1.	dds Ratio Fixed, 95% C1 2 [1.42, 40.80] 9 [0.62, 10.78] 89 [0.77, 4.61] 66 [1.36, 5.22]	chemothearpy Resistant to chemothearp Odds Ratio M-H, Fixed, 95% CI
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI)	Events To 9 7 17 17 33 .08, df = 2 (P	22 43 44 109 = 0.35);	ents Tota 2 2 3 4 12 4 11 11 17	4 10.6 3 23.5 8 65.9	<u>ht M-H</u> 3% 7.6 5% 2.5 3% 1.	dds Ratio .Fixed. 95% Cl 2 [1.42, 40.80] 9 [0.62, 10.78] 88 [0.77, 4.61] 66 [1.36, 5.22]	chemothearpy Resistant to chemothearp Odds Ratio M-H, Fixed, 55% CI
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 2 Test for overall effect: Z	Events To 9 7 17 17 .08, df = 2 (P = 2.84 (P = 0	22 43 44 109 = 0.35); 0.004)	ents Tota 2 2 3 4: 12 4: 11: 17: 17: 17: 17: 17: 17: 17	4 10.6 3 23.6 8 65.9 5 100.0	<u>ht M-H</u> 3% 7.6 5% 2.5 3% 1.	dds Ratio Fixed, 95% Cl 2 (1.42, 40.80) 9 (0.62, 10.78) 88 (0.77, 4.61) 66 [1.36, 5.22] 0.01 no lymph	chemothearpy Resistant to chemothearp Odds Raio MH: Fixed, 95% CI 0.1 10 10 10 10 10 10 10 10 10 10 10 10 10
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 2 Test for overall effect: Z F	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas	22 43 44 109 (= 0.35); 0.004) se	2 2: 3 4: 12 4: 12 4: 17 ; i ² = 4%	4 10.6 3 23.5 8 65.9 5 100.0	t <u>ht M-H,</u> 3% 7.6 5% 2.5 3% 1. 0% 2.0	dds Ratio Fixed, 95% CI 2 (1.42, 40.80) 9 (0.62, 10.78] 89 [0.77, 4.61] 66 [1.36, 5.22] 0.01 no hymph Odds Ratio	chemothearpy Resistant to chemothearp Odds Ratio M-H, Fixed, 95% CI 0.1 10 10 alic metastasis lymphatic metastasis Odds Ratio
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 2 Test for overall effect: Z F Study or Subgroup	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas Events	22 43 44 109 2 = 0.35); 0.004) se <u>Total</u>	2 22 3 4: 12 4: 17 17 17 17 27 4% 10 11! 17 27 24% 20 20 20 20 20 20 20 20 20 20 20 20 20	4 10.6 3 23.5 8 65.9 5 100.0	tht M-H, 3% 7.6 5% 2.5 3% 1. 3% 1. 0% 2.0 Weight	dds Ratio <u>Fixed, 95% CI</u> 2 (1 42, 40.80] 9 (0.62, 10.78] 89 (0.77, 4.61] 56 (1.36, 5.22) 0.01 no hmph Odds Ratio t M-H, Fixed, 95% CI	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi ^a = 2 Test for overall effect. Z F Study or Subproup Sillanpaa et al 2003	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas Events 128	22 43 44 109 2 = 0.35); 0.004) 36 56 57 57 58 50 50 50 50 50 50 50 50 50 50 50 50 50	2 20 3 4: 12 4: 11 11: 17 ; F = 4% Contr <u>Events</u> 72	4 10.6 3 23.5 8 65.9 5 100.0 rol <u>Total</u> 192	ht <u>M-H</u> , 3% 7.6 5% 2.5 3% 1. 0% 2.0 <u>Weight</u> 46.9%	dds Ratio .Fixed, 95% CI 2 [1.42, 40.80] g (0.62, 10.78] 88 [0.77, 4.61] 66 [1.36, 5.22] 0.01 no lymph Odds Ratio t. M.H. Fixed, 95% CI 6 2.67 [1.78, 4.00]	chemothearpy Resistant to chemothearp Odds Ratio M-H, Fixed, 95% CI 0.1 10 10 alic metastasis lymphatic metastasis Odds Ratio
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi ² = 2 Test for overall effect. Z F <u>Study or Subgroup</u> Sillanpa et al 2003 Chen et al 2009a	Events To 9 7 17 .08, df = 2 (P E = 2.84 (P = 0 Cas Events 128 60	otal Eve 22 43 44 44 109 * = 0.35); 0.004) se : Total : 208 : 74	ents Tota 2 2: 3 4: 12 4: 17 17 17 17 17 17 17 Events 72 26	4 10.6 3 23.5 8 65.9 5 100.0 101 <u>Total</u> 192 46	tht M-H, 3% 7.6 5% 2.5 3% 1. 0% 2.0 <u>Weight</u> 46.9% 9.9%	dds Ratio Fixed, 95% CI 2 (1.42, 40.60) 9 (0.52, 10.78) 89 (0.77, 4.61) 66 (1.36, 5.22) 0.01 0.	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 2 Test for overall effect. Z F Stutky or Subgroup Sillanpaa et al 2003 Chen et al 2009 Jiang and Chen 2010	Events To 9 7 17 .08, df = 2 (P = 0 Cas Events 128 60 1 18	otal Eve 22 43 44 44 109 *= 0.35); 0.004) se : Total : 208 : 74	ents Tota 2 2: 3 4: 12 4: 11: 17 17 17 17 17 17 17 17 17 17	4 10.6 3 23.5 8 65.9 5 100.0 5 100.0 192 46 12	ht M-H, 3% 7.6 5% 2.5 3% 1. 0% 2.4 Weight 46.9% 9.9% 2.7%	dds Ratio Fixed, 95% CI 2 (1.42, 40.80) 9 (0.62, 10.78) 88 (0.77, 4.61) 66 (1.36, 5.22) 0 0dds Ratio 1 M-H, Fixed, 95% CI 6 2.67 (1.78, 4.00) 6 3.30 (1.45, 7.51) 6 2.00 (0.33, 11.97)	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi ²² = 2 Test for overall effect Z F <u>Study or Subgroup</u> Sillanpaa et al 2003 Chen et al 2009a	Events To 9 7 17 .08, df = 2 (P = 0 Cas Events 128 60 1 18	otal Eve 22 43 44 44 109 *= 0.35); 0.004) se : Total : 208 : 74	ents Tota 2 2: 3 4: 12 4: 17 17 17 17 17 17 17 Events 72 26	4 10.6 3 23.5 8 65.9 5 100.0 101 <u>Total</u> 192 46	tht M-H, 3% 7.6 5% 2.5 3% 1. 0% 2.0 <u>Weight</u> 46.9% 9.9%	dds Ratio Fixed, 95% CI 2 (1.42, 40.80) 9 (0.62, 10.78) 88 (0.77, 4.61) 66 (1.36, 5.22) 0 0dds Ratio 1 M-H, Fixed, 95% CI 6 2.67 (1.78, 4.00) 6 3.30 (1.45, 7.51) 6 2.00 (0.33, 11.97)	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi [#] = 2 Test for overall effect. Z F Stutky or Subgroup Sillanpaa et al 2003 Chen et al 2009 Jiang and Chen 2010	Events To 9 7 17 .08, df = 2 (P = 0 Cas Events 128 60 1 18	otal Eve 22 43 44 44 109 *= 0.35); 0.004) se : Total : 208 : 74	ents Tota 2 2: 3 4: 12 4: 11: 17 17 17 17 17 17 17 17 17 17	4 10.6 3 23.5 8 65.9 5 100.0 5 100.0 192 46 12	ht M-H, 3% 7.6 5% 2.5 3% 1. 0% 2.4 Weight 46.9% 9.9% 2.7%	dds Ratio Fixed, 95% C1 21 (42,40.80) 9 (0.62,10.78) 89 (0.77,4.61) 66 (1.36,5.22) 0.01 0	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneity: Chi ²⁷ = 2 Test for overall effect. Z F Study or Subgroup Sillanpaa et al 2003 Chen et al 2009a Jiang and Chen 2010 Steffensen et al 2011	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas Events 128 60 1 18	otal Eve 22 43 44 109 * = 0.35); 0.004) se Total : 208 : 74 : 21 : 20	ents Tota 2 2: 3 4: 12 4: 11: 17 17 17 17 17 17 17 17 17 17	4 10.6 3 23.5 8 65.9 5 100.0 Total 192 46 12 97	ht M-H, 3% 7.6 5% 2.5 3% 1. 0% 2.0 Weight 46.9% 9.9% 2.7% 16.7%	dds Ratio Fixed, 95% C1 2 (142, 40.80) 9 (0.62, 10.78) 89 (0.77, 4.81) 0 (17, 4.81) 0 (17, 4.81) 0 (17, 4.81) 0 (17, 4.84) 0 (144, Fixed, 95% C1 4 (17, 4.40) 5 (14, 67, 52) 2 (14, 67, 52) 4 (12, 14, 4.65) 4 (12, 14	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Heterogeneily: $Ch^{\mu} = 2$ Test for overall effect. Z F Stildnpaa et al 2003 Chen et al 2009a Jiang and Chen 2010 Steffensen et al 2012	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = (Cass Events 128 60 1 18 1 10 17	tal Eve 22 43 44 44 109	ents Tota 2 2- 3 4: 12 4: 11: 17 17 17 17 17 26 9 60 11	4 10.6 3 23.5 8 65.9 5 100.0 Total 192 46 12 97 24	tht M-H, 3% 7.6 3% 2.5 3% 1. 3% 2.4 Weight 46.9% 9.9% 2.7% 16.7% 3.9%	dds Ratio Fixed, 99% CI 21 442, 40.80 9 (b.27, 14.27, 40.80) 9 (b.27, 14.27, 40.80) 9 (b.27, 46.1) 56 (1.36, 5.22) 0 dds Ratio 1 M-H, Fixed, 95% CI 3 .30 (14.67, 51) 2 .30 (14.67, 51) 2 .00 (20.33, 11.97) 0 .062 (02.33, 16.27) 4 .02 (11.21, 44.69) 3 .315 (11.18, 8.38)	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (9%):CI) Total events Heterogeneity: Ch ² = 2 Testfor overall effect. Z F Study or Subproum Sillançaa et al 2003 Chen et al 2009 Jiang and Chen 2010 Li et al 2012 Wang et al 2015 Zhu et al 2015	Events To 9 7 17 .08, df = 2 (P = (Cas Events 60 1 18 1 10 17 18	Data Eve 22 43 44 44 109 = 0.35); 0.0004) = 50 Total 208 74 208 74 200 22 43 44	ents Tota 2 2· 3 4: 12 4: 11: 17 17: 17: 17: 26: 9 600 111: 8	4 10.6 3 23.5 8 65.9 5 100.0 Total 192 46 12 97 24 43 48	ht M-H, 3% 7.6 3% 2.5 3% 1. 3% 2.0 Weight 46.9% 9.9% 2.7% 16.7% 3.9% 7.6% 12.3%	dds Ratio Fixed, 99% CI 21 442, 40.80 91 (0.27, 10.78] 99 (0.77, 451] 56 [1.36, 5.22] 0.01 0.01 1.05 (1.76, 4.00) 0.045 (1.76, 4.00) 3.30 (145, 751] 2.300 (145, 751] 2.300 (145, 751] 2.300 (145, 751] 2.301 (145, 751] 2.302 (145, 751] 2.302 (145, 751) 3.302 (145, 75	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total e99% CI) Total e99% CI Total e99% CI Test for overal al effect 2 F Study or stubsmoun Sillanpaa et al 2003 Chen et al 2003 Steffensen et al 2011 U et al 2012 Wang et al 2015 Total (95% CI)	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = (Cas Events 60 1 18 1 10 17 18 32	tal Eve 22 43 44 44 109 = 0.35); = 0.004) se = Total = = 74 = = 20 = = 43 = = 44 432	ents Tota 2 2: 3 4: 12 4: 17 17 17 17 17 17 17 17 17 17	4 10.6 3 23.5 8 65.9 5 100.0 Total 192 46 12 97 24 43 48	tht M-H, 5% 7.6 5% 2.5 5% 1. 0% 2.0 Weight 46.9% 9.9% 2.7% 16.7% 3.9% 7.6%	dds Ratio Fixed, 99% CL 21 422, 40.80 91 (0.27, 10.78] 99 (0.77, 451] 56 [1.36, 5.22] 0 dds Ratio 1 M-H, Fixed, 95% CL 3 .30 (1.45, 751] 2 .200 (0.33, 11.97] 4 .022 (1.12, 14.46] 3 .155 (1.18, 8.38] 5 .1.75 (0.72, 4.21]	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Testfor overall effect: 2 F Study or Subgroup Staffensen et al 2003 Chen et al 2008 Staffensen et al 2013 Staffensen et al 2015 Zhu et al 2015 Zhu et al 2015 Total (95% CI) Total events	Events To 9 7 17 .08, df = 2 (P = (Cas Events 128 60 1 18 1 0 17 18 32 283	tal Eve 22 43 44 44 109 = 0.35); = 0.0004) se = Total = 208 = 208 = 208 = 201 = 208 = 44 = 432	nts Tota 2 2: 3 4: 12 4i 17 17 17 17 17 17 17 17 17 17	4 10.6 3 23.5 8 65.5 5 100.0 Total 192 46 12 97 24 43 48 48 462	ht M-H, 3% 7.6 3% 2.5 3% 1. 3% 2.0 Weight 46.9% 9.9% 2.7% 16.7% 3.9% 7.6% 12.3%	dds Ratio Fixed, 99% CI 21 442, 40.80 91 (0.27, 10.78] 99 (0.77, 451] 56 [1.36, 5.22] 0.01 0.01 1.05 (1.76, 4.00) 0.045 (1.76, 4.00) 3.30 (145, 751] 2.300 (145, 751] 2.300 (145, 751] 2.300 (145, 751] 2.301 (145, 751] 2.302 (145, 751] 2.302 (145, 751) 3.302 (145, 75	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total e9% C1 Total e9% C1 Total e9% C1 Testfor overal effect 2 F Stuck or subsemble Stillanpaa et al 2003 Chen et al 2003 Steffensen et al 2011 Wang et al 2015 Total e9% C1 Total e9% C1	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas Events 128 60 17 18 32 283 9.86, df = 6	otal Eve 22 43 44 44 109 2 2 3 2	Ints Tota 2 2 3 4: 12 4: 112 4: 17 : 266 : 29 : 215 : 13): : 215 :	4 10.6 3 23.5 8 65.5 5 100.0 Total 192 46 12 97 24 43 48 48 462	ht M-H, 3% 7.6 3% 2.5 3% 1. 3% 2.0 Weight 46.9% 9.9% 2.7% 16.7% 3.9% 7.6% 12.3%	dds Ratio Fixed, 99% CI 21 442, 40.80 91 (0.27, 10.78] 99 (0.77, 451] 56 [1.36, 5.22] 0.01 0.01 1.05 (1.76, 4.00) 0.045 (1.76, 4.00) 3.30 (1.45, 7.51] 2.300 (1.45, 7.51] 2.300 (1.45, 7.51] 4.02 (1.71, 12, 4.61] 4.02 (1.71, 12, 4.61] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38) 5.315 (1.18, 8.38)	chemothearpy Resistant to chemothearp Odds Radio M-H, Exed. 95% CI 0.1 10 10 alic metastasis Odds Ratio M-H, Fixed, 95% CI
Li et al 2012 Wang et al 2015 Zhu et al 2015 Total (95% CI) Total events Testfor overall effect: 2 F Study or Subgroup Staffensen et al 2003 Chen et al 2008 Staffensen et al 2013 Staffensen et al 2015 Zhu et al 2015 Zhu et al 2015 Total (95% CI) Total events	Events To 9 7 17 .08, df = 2 (P = 2.84 (P = 0 Cas Events 128 60 17 18 32 283 9.86, df = 6	otal Eve 22 43 44 44 109 2 2 3 2	Ints Tota 2 2 3 4: 12 4: 112 4: 17 : 266 : 29 : 215 : 13): : 215 :	4 10.6 3 23.5 8 65.5 5 100.0 Total 192 46 12 97 24 43 48 48 462	ht M-H, 3% 7.6 3% 2.5 3% 1. 3% 2.0 Weight 46.9% 9.9% 2.7% 16.7% 3.9% 7.6% 12.3%	dds Ratio Fixed, 99% CI 21 442, 40.80 91 (0.27, 10.78] 99 (0.77, 451] 56 [1.36, 5.22] 0.01 0.01 1.05 (1.76, 4.00) 0.045 (1.76, 4.00) 3.30 (1.45, 7.51] 2.300 (1.45, 7.51] 2.300 (1.45, 7.51] 4.02 (1.71, 12, 4.61] 4.02 (1.71, 12, 4.61] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38] 5.315 (1.18, 8.38) 5.315 (1.18, 8.38)	chemothearpy Resistant to chemothearp Odds Ratio MH. Freed, 95% CI 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1

Figure 2. Forest plot of odds ratio was assessed for association between stem cell markers and clinical pathologic features, such as tumor grade (A), age of the patients (B), residual tumor size (C), response to chemotherapy (D), tumor lymphatic metastasis (E) and TNM stage (F).

Genetics and Molecular Research 15 (3): gmr.15038325

CD44 in ovarian cancer

Association of CD44 expression with the 5-year survival for ovarian cancer patients

Using the methods described previously, we next performed a meta-analysis based on the DerSimonian-Laird fixed-effect model to analyze the correlation of CD44 expression with the OS of 758 patients in five studies as presented in Figure 3. The results from our meta-analysis of the five studies indicate that CD44 expression was significantly associated with a decreased OS rate (RR: 1.47, 95%CI = 1.23-1.74, P < 0.0001; Figure 3). Nevertheless, no significant heterogeneity was observed among the five studies ($I^2 = 8\%$, $P_h = 0.36$).

	Cas	е	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Sillanpaa et al 2003	100	208	70	192	62.0%	1.32 [1.04, 1.67]	
Steffensen et al 2011	14	20	50	97	14.5%	1.36 [0.96, 1.92]	-
Gao et al 2015	8	10	7	16	4.6%	1.83 [0.97, 3.45]	
Zhu et al 2015	26	44	18	48	14.7%	1.58 [1.01, 2.45]	
Wang et al 2015	16	43	5	43	4.3%	3.20 [1.29, 7.96]	_
Total (95% CI)		325		396	100.0%	1.47 [1.23, 1.74]	•
Total events	164		150				
Heterogeneity: Chi ² = 4.	36, df = 4	(P = 0.	36); l² = 8	3%			
Test for overall effect: Z	= 4.32 (P	< 0.00	01)				0.01 0.1 1 10 100 Higher survival Lower survival

Figure 3. Analysis of CD44 expression and survival of ovarian cancer patients. Forest plot of relative risk for overall survival among included studies.

Sensitivity analysis

In order to rule out possible bias resulting from the low numbers of eligible studies for our meta-analysis, we then performed a sensitivity analysis. For this purpose, an individual study that was identified in this meta-analysis was omitted during each round of meta-analysis to evaluate the effect of the individual dataset of the particular study on the pooled ORs. We find that the pooled ORs as we presented above were not significantly affected by the subtraction of individual studies (data not shown), indicating that our findings are statistically robust.

Publication bias

The nearly symmetrical shape of the Begg's funnel plots also rules out the possibility of publication bias regarding our meta-analyses of the correlation of CD44 expression with the clinicopathological parameters and 5-year OS for ovarian cancer patients. Consistently, our results from the Egger test further demonstrate that there is no significant publication bias concerning our meta-analyses (Table 2).

Clinicopathological parameters	t value	d.f.	P value
Tumor differentiation	0.97	3	0.573
TNM stage	1.78	7	0.453
Primary residual tumor	0.66	3	0.997
Response to chemotherapy	3.67	3	0.602
Age	10.62	3	0.117
Lymphatic metastasis	2.62	2	0.296
Overall survival	0.18	5	0.142

d.f.: degrees of freedom.

Genetics and Molecular Research 15 (3): gmr.15038325

Y.Y. Shi and H. Jiang

DISCUSSION

To our knowledge, our meta-analysis is the first study to systematically examine the association between stem cell marker CD44 and the overall survival for ovarian cancer patients. The importance of stem cells in ovarian cancer remains very controversial in the literature, highlighting the necessity to perform a quantitative meta-analysis study to estimate the overall effect of CD44 expression on the survival of ovarian cancer patients. Our results show that the stem cell marker CD44 is significantly associated with tumor lymphatic metastasis and TNM stage, as well as poor prognosis for patients with ovarian cancer. These findings indicate that CD44 may serve as a marker to guide the clinical management of ovarian cancer patients in the future.

CD44 belongs to a multifunctional family of type I transmembrane proteins and is expressed as multiple isoforms in a variety of human cells (Marhaba and Zöller, 2004). Previous studies have demonstrated that CD44-positive tumor cells possess CSC phenotype, contributing to the self-renewal and tumorigenic capabilities of human cancers (Chen et al., 2009b). Overexpression of CD44 promotes cell proliferation and is associated with increased resistance to chemotherapeutic agents (Hessman et al., 2012). Consistently with these findings, our data indicated that increased CD44 expression correlates with poor OS for ovarian cancer patients. However, Diaz et al. (2005) reported that CD44 expression correlates with favorable prognosis in breast cancer. Additionally, Hsu et al. (2007) demonstrated that gastrointestinal stromal tumor patients with higher levels of CD44 expression exhibit longer overall survival and lower recurrence rates. These conflicting results suggest an elusive role of CD44 in cancer progression and metastasis. Thus, future studies with larger patient population are needed to draw a definite conclusion.

For future studies, it may turn out to be more practical to examine the potential clinical application of a panel of ovarian CSC markers in predicting the overall survival of ovarian cancer patients. Several studies have shown that CSC-related factors, including ALDH1, CD133, and Bmi-1, are involved in promoting ovarian cancer progression (Chang et al., 2009; Yang et al., 2010; Silva et al., 2011). In addition, CSCs exhibit remarkable phenotypic and functional heterogeneities, which may help to distinguish them from non-stem cancer cells and provide a potential therapeutic target for the development of anticancer therapies to improve clinical outcomes (Tang, 2012).

However, it is worth noting that there are some limitations concerning our metaanalysis. First, the number of included studies is relatively small. There are varying preoperative TNM stages and histologic types for ovarian cancer patients and we were unable to evaluate the potential confounding factors in the individual studies. Second, it is very important to follow a standard threshold to determine the expression levels of biomarkers like CD44. Although immunohistochemistry was the only method used for measuring CD44 expression levels, differences in cutoff values for positive CD44 expression may have contributed to the heterogeneity that we observed in our meta-analysis. Third, OS was determined from unadjusted RRs in the published papers and RRs that we calculated from the survival curves might be less reliable than those obtained from direct analysis of variance. Ideally, parameters should be directly extracted from the statistical data in published papers and then adjusted by using other prognostic factors.

In summary, in this meta-analysis, we show that CD44 expression was associated with tumor lymphatic metastasis and TNM stage in ovarian cancer. Moreover, ovarian cancer patients with positive CD44 expression exhibit a worse clinical outcome than those with

Genetics and Molecular Research 15 (3): gmr.15038325

negative CD44 expression, indicating that CD44 may be an independent factor associated with reduced survival for ovarian cancer patients. The relative simplicity in the methodology for using CD44 expression in the identification of CSCs indicates that this biomarker should be further evaluated for their potential application as a marker for ovarian cancer stem cells in clinical practice.

Conflicts of interest

The authors declare no conflict of interest

REFERENCES

- Chang B, Liu G, Xue F, Rosen DG, et al. (2009). ALDH1 expression correlates with favorable prognosis in ovarian cancers. *Mod. Pathol.* 22: 817-823.
- Chen H, Hao J, Wang L and Li Y (2009a). Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br. J. Cancer 101: 432-440. <u>http:// dx.doi.org/10.1038/sj.bjc.6605185</u>
- Chen Y-C, Chen Y-W, Hsu H-S, Tseng L-M, et al. (2009b). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. *Biochem. Biophys. Res. Commun.* 385: 307-313. <u>http://dx.doi.org/10.1016/j.bbrc.2009.05.048</u>
- Clevers H (2011). The cancer stem cell: premises, promises and challenges. Nat. Med. 17: 313-319. http://dx.doi. org/10.1038/nm.2304
- de Beça FF, Caetano P, Gerhard R, Alvarenga CA, et al. (2013). Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J. Clin. Pathol. 66: 187-191. http://dx.doi.org/10.1136/jclinpath-2012-201169
- Diaz LK, Zhou X, Wright ET, Cristofanilli M, et al. (2005). CD44 expression is associated with increased survival in node-negative invasive breast carcinoma. *Clin. Cancer Res.* 11: 3309-3314. <u>http://dx.doi.org/10.1158/1078-0432.</u> <u>CCR-04-2184</u>
- Gao Y, Foster R, Yang X, Feng Y, et al. (2015). Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. *Oncotarget* 6: 9313-9326. http://dx.doi.org/10.18632/oncotarget.3220
- Hessman CJ, Bubbers EJ, Billingsley KG, Herzig DO, et al. (2012). Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am. J. Surg. 203: 649-653. <u>http://dx.doi.org/10.1016/j.amjsurg.2012.01.003</u>
- Holschneider CH and Berek JS (2000). Ovarian cancer: epidemiology, biology, and prognostic factors. In Seminars in surgical oncology (Wiley Online Library), 3-10.
- Hsu K-H, Tsai H-W, Shan Y-S and Lin P-W (2007). Significance of CD44 expression in gastrointestinal stromal tumors in relation to disease progression and survival. *World J. Surg.* 31: 1438-1444. <u>http://dx.doi.org/10.1007/s00268-007-9088-1</u>
- Jiang YM and Chen AP (2010). The significance of Ezrin and CD44 expression in Ovarian Cancer. Evaluation and analysis of drug-use in hospitals of China, 4: 344-346.
- Jin H, Yu Y, Zhang T, Zhou X, et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. *Int. J. Cancer* 126: 2102-2111.
- Li HZ, Li WW, Wei SP, Bo YS, et al. (2012). Study on the expression of CDI33, CD44 and Notchl in ovarian epithelial carcinoma. *China Med. Herald* 9: 21-23.
- Marhaba R and Zöller M (2004). CD44 in cancer progression: adhesion, migration and growth regulation. J. Mol. Histol. 35: 211-231. http://dx.doi.org/10.1023/B:HIJO.0000032354.94213.69
- Nagano O and Saya H (2004). Mechanism and biological significance of CD44 cleavage. *Cancer Sci.* 95: 930-935. <u>http://</u> dx.doi.org/10.1111/j.1349-7006.2004.tb03179.x
- Parmar MK, Torri V and Stewart L (1998). Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. *Stat. Med.* 17: 2815-2834.<u>http://dx.doi.org/10.1002/(SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8</u>
- Ponta H, Sherman L and Herrlich PA (2003). CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4: 33-45. <u>http://dx.doi.org/10.1038/nrm1004</u>
- Ricardo S, Vieira AF, Gerhard R, Leitão D, et al. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64: 937-946. <u>http://dx.doi.org/10.1136/jcp.2011.090456</u>

9

Genetics and Molecular Research 15 (3): gmr.15038325

- Savani RC, Cao G, Pooler PM, Zaman A, et al. (2001). Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J. Biol. Chem. 276: 36770-36778. <u>http://dx.doi.org/10.1074/jbc.M102273200</u>
- Sillanpää S, Anttila MA, Voutilainen K, Tammi RH, et al. (2003). CD44 expression indicates favorable prognosis in epithelial ovarian cancer. *Clin. Cancer Res.* 9: 5318-5324.
- Silva IA, Bai S, McLean K, Yang K, et al. (2011). Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. *Cancer Res.* 71: 3991-4001. <u>http://dx.doi.org/10.1158/0008-5472.CAN-10-3175</u>
- Steffensen KD, Alvero AB, Yang Y, Waldstrøm M, et al. (2011). Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer. J. Oncol. 2011: 620523. <u>http://dx.doi.org/10.1155/2011/620523</u>
- Tang DG (2012). Understanding cancer stem cell heterogeneity and plasticity. *Cell Res.* 22: 457-472. <u>http://dx.doi.org/10.1038/cr.2012.13</u>
- Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y, et al. (2012). Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. *Pathol. Int.* 62: 112-119. <u>http://dx.doi.org/10.1111/j.1440-1827.2011.02760.x</u>
- Wang H, Tan M, Zhang S, Li X, et al. (2015). Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. *Int. J. Mol. Sci.* 16: 3391-3404. <u>http://dx.doi.org/10.3390/ijms16023391</u>
- Yang G-F, He W-P, Cai M-Y, He L-R, et al. (2010). Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer 10: 133. <u>http://dx.doi.org/10.1186/1471-2407-10-133</u>
- Zhu L-C, Gao J, Hu Z-H, Schwab CL, et al. (2015). Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am. J. Cancer Res. 5: 830-843.

Genetics and Molecular Research 15 (3): gmr.15038325