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ABSTRACT. We evaluated the potential of the best linear unbiased 
predictor (BLUP) along with the relationship coefficient for predicting 
the performance of untested maize single-cross hybrids. Ninety S0:2 
progenies arising from three single-cross hybrids were used. The 90 
progenies were genotyped with 25 microsatellite markers, with nine 
markers linked to quantitative trait loci for grain yield. Based on 
genetic similarities, 17 partial inbred lines were selected and crossed 
in a partial diallel design. Similarity and relationship coefficients were 
used to construct the additive and dominance genetic matrices; along 
with BLUP, they provided predictions for untested single-crosses. Five 
degrees of imbalance were simulated (5, 10, 20, 30, and 40 hybrids). 
The correlation values between the predicted genotypic values and the 
observed phenotypic means varied from 0.55 to 0.70, depending on 
the degree of imbalance. A similar result was observed for the specific 
combining ability predictions; they varied from 0.61 to 0.70. It was also 
found that the relationship coefficient based on BLUP provided more 
accurate predictions than similarity-in-state predictions. We conclude 
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that BLUP methodology is a viable alternative for the prediction of 
untested crosses in early progenies.

Key words: BLUP; Molecular markers; Similarity-in-state;
Untested hybrids 

INTRODUCTION

In maize breeding programs, diallel cross designs are useful in selecting genotypes with 
good combining ability, since, in diallel combinations, it is possible to breakdown the cross val-
ues into general combining ability (GCA) and specific combining ability (SCA) (Griffing, 1956). 
GCA and SCA values support the breeder in the choice of genitors, given that these parameters 
are linked to the additive and dominant effects and the selection of elite lines for superior hybrid 
production, exploiting heterosis in an effective way (Vencovsky and Barriga, 1992). 

However, due to the great number of crosses that can be obtained with few genotypes, di-
allel cross design is little used in the early stages of breeding programs. An alternative could be the 
use of partial diallels and partial circular diallel design (Kempthorne and Curnow, 1961; Ramalho 
et al., 1993). However, the restriction of these diallel designs results from the failure of SCA infor-
mation due to missing crosses. To avoid that problem, the strategy usually employed is the predic-
tion of the crosses based just on the GCA genitor information. Nevertheless, when the dominance 
effects are higher than the additive effects, that method becomes inefficient (Cruz et al., 1997). 

Thus, some methodologies have been proposed for the prediction of untested crosses, 
i.e., the use of the genetic distance by molecular markers in the prediction of SCA and hetero-
sis values (Melchinger, 1999; Reif et al., 2003; Balestre et al., 2008a). However, results have 
demonstrated little efficacy and repeatability (Dias et al., 2004). 

An alternative would be the use of the best linear unbiased predictor (BLUP) for the 
prediction of missing crosses (Bernardo, 1994; Charcosset et al., 1998; Piepho et al., 2008; 
Schrag et al., 2009). For that, the availability of pedigree data or the relationship information 
between tested and untested genotypes is necessary (Bernardo, 1994). However, the breeder 
does not always have such information, which could limit the use of this methodology. 

To get around this limitation, some authors have suggested the use of similarity-in-
state by molecular markers, when pedigree data are unavailable (Bernardo, 1994, 1995; André, 
1999; Balestre et al., 2008c). According to Nejati-Javaremi et al. (1997), similarity-in-state 
has the “advantage” of considering the entire allelic similarity existing among the assessed 
individuals. Identity by state has been defined as allelic similarity due to a locus transmitted 
without considering a genealogic history, just taking into account whether two loci have the 
same sequence and same length, i.e., if the alleles are distinguished by their sequence and 
if the alleles are distinguished by the number of repeats of a microsatellite (Rousset, 2007). 
Thus, all coefficients that take into account just co-occurrence of band (raw molecular data) 
are labeled a similarity-in-state coefficient. 

Bernardo (1994) employed a coancestry coefficient in order to correct for possible bias 
that can arise from genetic similarity-in-state, because this tends to overestimate the relation-
ship values. However, this method is applicable just for partial diallels in which endogamic 
crosses, theoretically, do not occur. In other words, it can just be used when prior information 
about heterotic groups is available. 
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An alternative to get around this restriction is the Lynch and Ritland (1999) relation-
ship (LR) coefficient, proposed to infer about relationships between individuals by molecular 
markers when pedigree information is unavailable. Relationship coefficients are very useful for 
complex pedigrees or when there is little prior information about population structure, as well as 
in complex diallel designs. This coefficient uses moment estimators to estimate the relatedness 
between a pair of individuals, which is a continuous quantity defined in terms of probabilities of 
identity-by-descent (Ritland, 1996). In addition, this coefficient has been widely recommended, 
since it shows smaller sampling variance when compared to the usual coefficients (Lynch and 
Ritland, 1999; Bouvet et al., 2008). Based on these claims, similarity-in-state and similarity-by-
descent must be better understood to be employed with BLUP in untested hybrid predictions.

The objective of this study was to evaluate the efficacy of BLUP for the prediction of 
missing crosses in maize hybrids, employing similarity-in-state, estimated by Roger’s modi-
fied distance coefficient and similarity-by-descent estimated by the LR coefficient, in order to 
determine if predictions in untested hybrids are influenced by this approach. 

MATERIAL AND METHODS

Description of materials

Seventeen S0:2 progenies from three single-cross hybrid backgrounds were used. 
These populations were labeled as: population A - raised from hybrid P30F45, population B 
- from hybrid Dow 657, and population C - from hybrid DKB333B. These three populations 
(A, B and C) are separately preserved since good combining ability among them is obtained 
(Amorin et al., 2006). The 17 partial inbred lines were used in order to recover the best of 256 
S0:1 intra- and interpopulation crosses obtained by Amorim et al. (2006).

All 17 progenies were genotyped with 25 microsatellite markers (simple sequence 
repeats), with 9 markers linked to quantitative trait loci for grain yield. The other markers 
were selected according to the results from “bootstrap” analysis for those same populations 
(Amorim et al., 2006). The extraction of DNA, reaction preparation and estimates of genetic 
distances were described earlier by Balestre et al. (2008b). The Roger’s modified distance 
(RMD) coefficient was utilized as the similarity-in-state coefficient because it is the expres-
sion best suited for this type of analysis; it provides a coefficient recommended for prearrang-
ing heterotic groups (Reif et al., 2005), besides showing acceptable values of distortion and 
stress for these populations in genetic divergence analysis (Balestre et al., 2008b). 

A partial diallel (11 x 6) was performed with the 17 selected partial inbred lines, 
where, within each group, the lines were used to obtain the intra- and interpopulation crosses. 
This design was chosen due to evidence for good combining ability within and between those 
populations (Amorin et al., 2006).

Experimental design and correction of means by mixed model 

Due to the small number of seeds, 60 crosses were evaluated together with four 
checks in two locations in Lavras County (Campus of the Universidade Federal de Lavras 
and Vitorinha Farm), in the agricultural year of 2007/2008. One of the checks was the hybrid 
DKB199, and the other three checks were single-cross hybrids that originated populations A 
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(P30F45), B (Dow 657) and C (DKB333B). The experimental design used was an 8 x 8-lat-
tice design with three repetitions. The hybrids were grown in two-row plots, each row 3 m 
long and spaced 0.80 m apart, at a plant population density of 60,000 plants/ha, fertilized with 
450 kg/ha NPK (8-28-16) at sowing and 100 kg/ha nitrogen as side dressing. The plots were 
harvested and grain yields (t/ha at 155 g H2O/kg) were recorded.

The linear mixed model, in the matrix form, used for data analysis, was expressed as:

(Equation 1)

where y is the vector of observed grain yields, β is the vector of the fixed effects (overall mean, 
locations and repetitions inside locations), a is the random vector of the genotypic values, b 
is the random vector of the block effects, i is the random vector of genotype by environment 
interactions, δ is the random error, and X, Z1 Z2, and Z3 are the matrices of incidence related 
to β, a, b, and i, respectively.

 Diallel design analysis by mixed models

The genotypic effects were partitioned into GCA and SCA by diallel analysis, using 
the method IV proposed by Griffing (1956). The analyses were done using the SAS® PROC 
IML System (SAS Institute, 2000). The estimates of fixed effects and BLUPs of the combi-
nation abilities (SCA and GCA) were obtained in a manner similar to that presented in Ber-
nardo’s (1995) proposal for partial diallels. However, in this study, the complete diallel model 
was chosen, considering all the genotypes within the same group. 

The linear model considered was given by:

 (Equation 2)

where: yc is the vector of observed grain yield corrected by inter-block recovery (i.e., hybrid 
by two location trial mean); β is the vector of the fixed effects (overall mean and location); g 
is the vector of effects of GCA; s is the vector of SCA; e is the error vector, and X, Z1 and Z2 
are the incidence matrices of effects β, g and s, respectively.

The joint solution for the fixed and random effects was obtained by the equation system, 
according to Henderson (1984): 

with  , where A1 is the matrix of additive genetic similarity among the partial inbred lines.
The additive relationship matrix was obtained according to Lynch and Ritland (1999) 

by the following expression:

where:  is the additive relationship estimate between individual X (taken as a reference) 
with alleles a and b and individual Y with alleles c and d in locus k; Sab: assigned 1 if a and b 

(Equation 3)

(Equation 4)
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are identical and 0 if contrary; Sac: assigned 1 if a and c are identical and 0 if contrary; Sad: as-
signed l if a and d are identical and 0 if contrary; Sbc: assigned 1 if b and c are identical and 0 if 
contrary; Sbd: assigned 1 if b and d are identical and 0 if contrary; pa and pb are the frequencies 
of alleles a and b along the lines for a given locus k.

This coefficient was derived by Lynch and Ritland (1999) in order to obtain pairwise 
relatedness between two individuals considering molecular markers with two alleles per locus. 
This is a common condition in lines derived from single-cross hybrids as employed in this study. 

Considering that the relationship estimates are obtained along many loci, the use of 
weights for the estimates is suggested in order to reduce sample variance that can arise from 
differences in reference genotypes and in levels of variation (Lynch and Ritland, 1999). In ad-
dition, these authors propose reciprocal estimation of , that is, initially, the individual X 
is taken as reference and then the individual Y (Lynch and Ritland, 1999).

The multilocus expression, taking into account all loci, the weights attributed to each 
locus, and reciprocal relationship estimates, is given by:

with

where: wr,x(k) and wr,y(k) are the weights for the kth locus of the estimate of 
 
and reciprocal 

estimates and Wr,x and Wr,y, the sum of the weights being attributed to all loci.
The dominance relationship matrix (A2) was constructed according to Henderson (1984) 

and Van Vleck (1993).
Also, Roger’s distances were used to make the matrices A1 and A2 using the expression 

sij = 1 - dij, in which dij is RMD. Thus, the LR coefficient and RMD were compared by accuracy 
of untested single-cross predictions. 

Prediction of untested single-cross hybrids and cross-validation procedure

The predictions of untested crosses for phenotypic values and SCA were performed 
using unbalanced simulations. Thus, using 60 evaluated hybrids, five degrees of imbalance 
were performed considering 5, 10, 20, 30, and 40 missing crosses. The process was repeated 
100 times. A cross-validation procedure and hybrid prediction was performed as proposed by 
Bernardo (1994, 1995). 

Considering that  are the averages of the evaluated hybrids corrected for β effects, 
one obtains:

(Equation 7)

Predictions of untested hybrids for grain yield were made using the following expression:

(Equation 8)

(Equation 6)

(Equation 5)
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in which:  is the performance vector of the unbalanced crosses; C is the genetic covariance 
matrix between the unbalanced crosses and evaluated crosses; V is the variance and covariance 
matrix among the evaluated crosses.

In a similar way, the SCA values were predicted by the following expression:

(Equation 9)

in which: dnt is the SCA vector of the unbalanced crosses, S is the genetic covariance matrix 
between the unbalanced crosses and evaluated crosses; V is the variance and covariance matrix 
among the evaluated crosses,  is the SCA vector of the evaluated hybrids.

The efficiency of BLUP in the prediction of the SCA and genotypic values was evalu-
ated by correlation between observed values and predicted values (cross-validation procedure). 

The Hamblin and Zimmermann (1986) selection efficiency index was applied to compare 
the 12 highest SCA and predictions of genotypic values, with the 12 highest SCA and phenotypic 
observed means. For that, the averages of untested single-cross hybrids, along all predictions, were 
considered for ranking the 12 highest values and compared with their respective observed values. 

The RMD similarity coefficient and the LR coefficient were used to predict the un-
tested crosses. Thus, the observed SCA and phenotypic means obtained by RMD and LR were 
correlated with the predicted values of the untested hybrid (cross-validation). 

In addition, the prediction sum square (PRESS) was applied, using the expression given by:

(Equation 10)

in which: θi is the observed values (for SCA and phenotypic cross values) of the ith untested 
hybrid; I is the 60 x 1 vector of hybrids to be predicted; Ji

 is the number of times that hybrid i 
was predicted, and  is the jth prediction of θi. This expression measures the prediction sum 
square or the discrepancy between observed phenotypic means and predicted means. 

RESULTS 

The 17 genotypes showed a genetic similarity mean of 0.817 and a relationship mean 
of 0.077 (Table 1). This average relationship value, in spite of being relatively lower compared 
to the genetic similarity estimate, can be considered overestimated, because the negative val-
ues obtained by the Lynch and Ritland coefficient were considered equal to zero.

There were null relationship values between genotype groups (30B, 27B, 1B, 28B, and 
29A), in relation to other genotypes (Table 1). Thus, one can infer that the LR coefficient provided 
a robust estimate of relationship between the genotypes, because it did not show any relationship 
value between the progenies derived from populations B and C, although it did show a small 
relationship value between the 30B and 29A progenies, which were derived from different popu-
lations. 

This small relationship value between progenies was expected due to lack of major 
heterotic groups, resulting in a low relationship index among commercial hybrids. In Brazil, 
maize breeding programs do not preserve two-key heterotic groups as is frequent in other 
countries, i.e., dent and flint groups. Thus, the heterotic groups are established within breeding 
programs based on populations with high combining ability. These populations can be de-
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rived from landraces, single-cross hybrids originating from elite lines (breeding population), 
or occasionally it is feasible use commercial hybrids. In new breeding programs, commercial 
single-cross hybrids have been frequently used for new population formation, given that the 
companies keep their heterotic groups disconnectedly, leading to good combining ability 
among commercial single-cross hybrids, making them potentially viable for the extraction 
of lines.

Figure 1 shows that RMD, which measures the similarity-in-state, clustered the gen-
otypes in a way similar to that seen with the LR coefficient. In spite of the slight modifica-
tions within the groups, two major groups, which are represented by populations B and C, are 
evident. It should be pointed out that although the 29A genotype belongs to population A, this 
partial inbred line was allocated within the genotype group derived from population B, due to 
the small relationship value estimated with the 30B genotype.

The overall mean grain yield for the 60 evaluated hybrids was 8.962 t/ha, with a herita-
bility value of 0.741. GCA variance was of low magnitude (0.002) in relation to SCA variance 
(1.622). 

The correlation values, depending on the number of unbalanced hybrids, varied 
from 0.555 to 0.704 when the LR coefficient was used (Table 2). This value can be consid-
ered of moderate magnitude, because the accuracy obtained in this experiment was 0.86.

Nevertheless, considering RMD, the correlation values were inferior to that ob-
tained by the LR coefficient, i.e., varying from 0.351 to 0.60 (Table 2). It was also ob-
served that the correlation was higher when the number of predictor hybrids was high. 
This finding was also reported in previous studies (Bernardo, 1994, 1995). 

The standard deviation of the correlation decreased when the number of predictor 
hybrids also decreased; in other words, the standard deviation of the correlation values 
was lower when the imbalance was higher (Table 2). In addition, it was observed that the 
standard deviation of the correlations using RMD was higher than with the LR coefficient 
across all levels of imbalance presented in this study.

Relationship (LR)								       Similarity-in-state (RMD)

	 30B	 27B	 19C	 22C	 1B	 1C	 14C	 29C	 5C	 12C	 15C	 23C	 25C	 28B	 7C	 28C	 29A

30B	 1.00	 0.93	 0.73	 0.73	 0.90	 0.73	 0.69	 0.74	 0.74	 0.76	 0.74	 0.73	 0.68	 1.00	 0.80	 0.73	 0.76
27B	 0.21	 1.00	 0.74	 0.74	 0.88	 0.74	 0.70	 0.75	 0.74	 0.76	 0.74	 0.74	 0.69	 0.93	 0.80	 0.74	 0.74
19C	 0.00	 0.00	 1.00	 0.84	 0.73	 0.88	 0.84	 0.90	 0.88	 0.93	 0.88	 0.84	 0.81	 0.73	 0.97	 0.88	 0.74
22C	 0.00	 0.00	 0.08	 1.00	 0.73	 0.88	 0.78	 0.90	 0.85	 0.88	 0.85	 0.97	 0.80	 0.73	 0.97	 0.90	 0.72
1B	 0.10	 0.12	 0.00	 0.00	 1.00	 0.76	 0.71	 0.72	 0.73	 0.75	 0.73	 0.73	 0.66	 0.90	 0.80	 0.75	 0.74
1C	 0.00	 0.00	 0.04	 0.07	 0.00	 1.00	 0.85	 0.86	 0.90	 0.98	 0.90	 0.88	 0.77	 0.73	 0.97	 0.94	 0.74
14C	 0.00	 0.00	 0.00	 0.03	 0.00	 0.18	 1.00	 0.81	 0.88	 0.85	 0.88	 0.78	 0.78	 0.69	 0.97	 0.86	 0.69
29C	 0.00	 0.00	 0.09	 0.00	 0.00	 0.20	 0.09	 1.00	 0.88	 0.94	 0.88	 0.90	 0.84	 0.74	 0.97	 0.88	 0.73
5C	 0.00	 0.00	 0.13	 0.04	 0.00	 0.29	 0.20	 0.12	 1.00	 0.90	 0.97	 0.85	 0.85	 0.74	 0.97	 0.88	 0.77
12C	 0.00	 0.00	 0.00	 0.01	 0.00	 0.09	 0.14	 0.14	 0.15	 1.00	 0.90	 0.88	 0.88	 0.76	 0.97	 0.94	 0.77
15C	 0.00	 0.00	 0.07	 0.00	 0.00	 0.21	 0.18	 0.21	 0.18	 0.29	 1.00	 0.85	 0.85	 0.74	 0.97	 0.88	 0.77
23C	 0.00	 0.00	 0.07	 0.24	 0.00	 0.09	 0.00	 0.15	 0.17	 0.00	 0.02	 1.00	 0.80	 0.73	 0.97	 0.90	 0.72
25C	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.13	 0.33	 0.07	 0.28	 0.16	 0.04	 1.00	 0.68	 0.97	 0.78	 0.67
28B	 0.22	 0.27	 0.00	 0.00	 0.13	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 1.00	 0.80	 0.73	 0.76
7C	 0.00	 0.00	 0.07	 0.03	 0.00	 0.50	 0.50	 0.10	 0.37	 0.39	 0.39	 0.24	 0.36	 0.00	 1.00	 0.97	 0.80
28C	 0.00	 0.00	 0.05	 0.00	 0.00	 0.25	 0.12	 0.37	 0.14	 0.04	 0.15	 0.06	 0.12	 0.00	 0.24	 1.00	 0.71
29A	 0.03	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 1.00

Table 1. Estimates of similarity-in-state (above diagonal), obtained by Roger’s modified distance (RMD) and 
relationship estimates (below diagonal), obtained by the Lynch and Ritland (LR) coefficient, in 17 S0:2 maize 
progenies.
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			   LR
			   Number of missing hybrids

	 5	 10	 20	 30	 40

Minimum	 0.219	 -0.029	 0.007	 0.006	 0.013
Average	 0.702	  0.643	 0.601	 0.560	 0.555
Maximum	 0.961	  0.945	 0.825	 0.763	 0.722
Standard deviation	 0.208	  0.203	 0.173	 0.173	 0.112

			   RMD
			   Number of missing hybrids

	 5	 10	 20	 30	 40

Minimum	 -0.702	 -0.025	 0.070	 0.012	 -0.299
Average	  0.600	  0.562	 0.503	 0.459	  0.351
Maximum	  0.983	  0.919	 0.783	 0.686	  0.632
Standard deviation	  0.382	  0.261	 0.189	 0.175	  0.172

Table 2. Minimum, mean, maximum, and standard deviation of correlation values between the phenotypic means 
and predicted value across 100 simulations, considering the Lynch and Ritland (LR) estimated relationship 
coefficient and genetic similarity obtained by Roger’s modified distance (RMD), in 17 S0:2 maize progenies.

Figure 1. Dendrogram of genetic similarity (A) and relationship (B) estimated in 17 maize S0:2 progenies. Progenies 
coded with the letter A originated from hybrid P30F45, and B and C progenies originated from the hybrids Dow 
657 and DBB333B, respectively.
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The same results can be observed for the correlation between SCA of the untested hy-
brids and observed SCA values (Table 3). The correlation values varied from 0.617 to 0.704 
when the LR coefficient was used and from 0.507 to 0.632 when RMD was used. It was also 
observed that when there was a high degree imbalance, the correlation between the predicted 
and observed values was smallest.

Table 3. Minimum, mean, maximum, and standard deviation of correlation between the observed specific 
combining ability (SCA) and the predicted value across 100 simulations, considering the Lynch and Ritland 
(LR) estimated relationship coefficient and genetic similarity obtained by means of Roger’s modified distance 
(RMD), in 17 S0:2 maize progenies.

			   LR
			   Number of missing hybrids

	 5	 10	 20	 30	 40

Minimum	 -0.093	    0.402	  0.398	 0.528	  0.347
Average	  0.704	    0.701	  0.647	 0.644	  0.617
Maximum	  0.967	    0.958	  0.831	 0.839	  0.750
Standard deviation	  0.300	    0.136	  0.108	 0.082	  0.090

			   RMD			 
			   Number of missing hybrids

	 5	 10	 20	 30	 40

Minimum	 -0.698	   -0.103	 -0.233	 0.227	 -0.253
Average	  0.632	    0.573	  0.525	 0.524	  0.507
Maximum	  0.975	    0.949	  0.851	 0.711	  0.761
Standard deviation	  0.381	    0.269	  0.233	 0.129	  0.201

From Table 4, one can note that RMD showed a higher predicted sum square error 
when compared to the LR relationship coefficient. Thus, we can infer that the prediction val-
ues obtained by RMD when compared with the LR coefficient, show a larger prediction error. 
In addition, one can observe that when the LR coefficient was used in the predictions for all 
degrees of imbalance, the correlation between the 60 observed values and the 60 predicted 
hybrid means was higher than with the RMD similarity coefficient (Table 4).

The 12 superior untested hybrid means obtained for all degrees of imbalance are pre-
sented in Table 5. The observed phenotypic values associated with the 12 superior untested 
hybrids were of high magnitude (10.218 t/ha), showing an advantage of 1.26 t/ha in relation 
to the overall mean. The selection efficiency, taking into account the 12 highest observed phe-
notypic values, was 40% with a selection coincidence of 50% (Table 5). However, this result 
was only demonstrated when the LR coefficient was used.

Table 4. Prediction sum square error (PRESS) between predicted hybrid values and observed phenotypic values 
taking into account 500 unbalanced simulations by BLUP associated with the Lynch and Ritland (LR) relationship 
coefficient and genetic similarity obtained by Roger’s modified distance (RMD), in 17 S0:2 maize progenies.

SCA = specific combining ability.

	 LR			   RMD	

	 Genotypic value 	 SCA	 Genotypic value	 SCA

PRESS	 1.057	 0.839	 1.149	       0.978
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On the other hand, the selection efficiency index was equal to zero when RMD 
was utilized (Table 5). Although it showed a moderate correlation between the observed 
values and predicted values, the 12 highest predicted hybrids did not coincide with the 
top observed phenotypic hybrid means. 

Table 6 shows that the 12 untested genotypes selected for SCA predicted by 
BLUP with the LR coefficient had high observed SCA values (0.968) and moderate ef-
ficiency of selection (52%). In addition, there was 58% coincidence between the 12 high-
est selected untested SCA values and the 12 highest observed SCA values.

The same is not applicable to the RMD predictions, because the selection coin-
cidence and selection efficiency were lowest (Table 6). In contrast, RMD selected the 
high SCA observed value, which was not attained using the LR coefficient (Table 6). 
However, on average, the LR coefficient was superior to RMD in the selection of the 
best individuals. 

Table 5. Selection efficiency index (SE), coincidence percentage (C) of the 12 best predicted genotypic values 
and their respective phenotypic means, in relation to the 12 superior observed phenotypic means obtained in the 
evaluation of 60 maize hybrids by LR (above) and RMD (below) coefficients.

Order	 Cross	   GV1	 Grain yield

  1	 30BX7C	   9.644	 10.777
  2	 27BX7C	   9.636	   9.762
  3	 27BX28C	   9.615	 10.162
  4	 1CX28B	   9.613	   9.239
  5	 1BX25C	   9.582	   7.667
  6	 30BX28C	   9.580	 11.347
  7	 5CX28B	   9.548	 10.108
  8	 29CX28B	   9.510	 11.110
  9	 15CX28B	   9.505	 10.504
10	 30BX23C	   9.456	 11.211
11	 14CX28B	   9.413	 10.102
12	 12CX28B	   9.356	 10.629
Average		    9.538	 10.218
C%	                                            50.00	 	
SE%	                                            40.00	 	  

Order	 Cross	 GV1	 Grain yield

  1	 27BX28B	 10.949	   4.457
  2	 1BX28B	 10.295	   6.752
  3	 1BX29A	 10.204	   9.622
  4	 30BX29A	 10.201	   8.415
  5	 30BX28C	   9.932	 11.347
  6	 1CX29A	   9.836	   8.169
  7	 27BX29A	   9.784	   9.080
  8	 1CX28B	   9.769	   9.239
  9	 27BX28C	   9.718	 10.162
10	 1BX23C	   9.681	   9.771
11	 30BX23C	   9.635	 10.108
12	 5CX28B	   9.621	 10.777
Average		    9.969	   9.027
C%	                                            16.70	 	
SE%	                                              0.00	 	
1Prediction deviation associated with each prediction considering 500 simulations of unbalanced simulations. 
GV = genotypic values obtained across all 500 simulations.
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Thus, it is possible to infer that RMD, which is considered a similarity-in-state 
coefficient, shows lower efficiency in the selection of superior genotypes, when compared 
to the LR coefficient. 

DISCUSSION

The use of BLUP, for the prediction of untested hybrids has been suggested by sev-
eral authors (Bernardo, 1994, 1995, 1997; Charcosset et al., 1998; Piepho et al., 2008; Schrag 
et al., 2009). In all these works, a moderate correlation was found to be between the untested 
hybrids and their observed phenotypic values. In our study, similar results were also obtained, 
i.e., the correlation between the untested hybrids and their observed values was moderate, 
demonstrating that BLUP approach shows a good predictive efficiency in untested hybrids. 
This efficiency can be quantified by considering the square root of heritability (0.861), which 
delimits the maximum correlation value of the predictions (Bernardo, 1994). In our results, 
the correlation magnitudes retained were from 64.5 to 81.4% of the maximum correlation 
limits, which is bordered by the square root of heritability. 

According to Bernardo (1996), these correlation values can be considered sufficient-
ly high, because they provide a high probability (±80%) of selecting the best hybrid in a 

Order	 Cross	 SCA1	 SCA2

  1	 30BX7C	 0.285	  1.386
  2	 1CX28B	 0.278	  0.248
  3	 27BX7C	 0.267	  0.633
  4	 30BX28C	 0.254	  1.776
  5	 1BX25C	 0.235	 -0.930
  6	 15CX28B	 0.232	  1.169
  7	 1BX7C	 0.231	  1.625
  8	 5CX28B	 0.218	  0.867
  9	 30BX23C	 0.211	  1.661
10	 12CX28B	 0.209	  1.240
11	 27BX28C	 0.197	  0.910
12	 1BX23C	 0.188	  0.603
Average		  0.234	  0.933
C%	                                      58.00		
SE%	                                      50.00	 	  

Order	 Cross	 SCA1	 SCA2

  1	 27BX28B	 0.388	 -3.399
  2	 30BX29A	 0.297	 -0.457
  3	 30BX28C	 0.227	  1.776
  4	 1BX28B	 0.180	 -1.721
  5	 1BX29A	 0.168	  0.432
  6	 1BX23C	 0.120	  0.604
  7	 1CX28B	 0.097	  0.248
  8	 30BX23C	 0.088	  1.661
  9	 1BX28C	 0.087	  3.339
10	 27BX28C	 0.078	  0.911
11	 27BX29A	 0.074	  0.034
12	 12CX28B	 0.068	  1.240
Average		  0.156	  0.389
C%	                                      33.33		
SE%	                                      20.00	 	

Table 6. Selection efficiency index (SE), coincidence percentage (C) of the 12 superior predicted specific 
combining ability values (SCA1) and their respective observed values (SCA2) , considering 500 simulations, in 
relation to the 12 superior specific ability values obtained in the evaluation of 60 maize hybrids by LR (above) and 
RMD (below) coefficients.
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superior group considering a selection intensity of 20%. However, the best genotype was not 
placed within the group of selected hybrids, although there was 50% coincidence and 40% 
selection efficiency between the selected hybrids and the highest observed phenotypic means. 

The SCA correlation values showed a moderate magnitude (0.617 to 0.704), yet 
were higher than those reported by Bernardo (1994, 1995), André (1999) and Iemma (2003). 
Bernardo (1994, 1995) attributed the low correlation between untested SCA predictions 
with observed SCA (r ≤ 0.15) to bias in the SCA variance. This author observed that SCA 
variance was extremely low when compared to the GCA variance. Thus, the crosses were 
strongly influenced by GCA, converging to more accurate predictions, due to low SCA ef-
fects. In other words, in the study by Bernardo (1994), the predictions considering the ad-
ditive model (reduced model) showed almost the same results in relation to the full model, 
demonstrating low SCA influence in the predictions of the untested hybrids. 

In this study, SCA variance (VSCA) was higher than GCA variance, capturing about 
99% of the total genetic variance. Therefore, it can be inferred that the predictions obtained 
in this study are of great importance, considering that the hybrid combinations were highly 
influenced by SCA. The hypothesis of possible bias in the VSCA estimate should be taken into 
account, considering the additive and dominance variances usually reported in the maize 
crop (Hallauer and Miranda Filho, 1981) and mainly due to inbred and outbred combina-
tions obtained in the complete diallel (Boer and Hoeschele, 1993). Thus, the results can be 
considered restricted to the group of hybrids evaluated in this study. 

Considering the probability of selecting the best specific combinations (SCA), it can 
be demonstrated that the selection efficiency index among the 12 observed superior hybrids 
and 12 predicted superior hybrids was 50%, with 58% coincidence between them. Although 
the SCA values were obtained by means of several predictions with different combinations 
and predictor hybrids, it is seen that there is reasonable probability of selection of the best 
hybrids without being necessary to assess them. 

In the comparison between similarity-in-state (RMD) and the LR coefficient, we 
found that in all analyses, the use of RMD showed inferior results. That is, RMD showed 
lower correlation between predicted and observed grain yield means (cross-validation) and 
higher PRESS when compared with the LR coefficient, demonstrating that the predictions 
obtained with the RMD coefficient were biased in relation to the LR coefficient. In addition, 
this inferiority can also be verified considering the selection efficiency of the superior SCA 
and hybrid combinations. 

This larger prediction error (PRESS) caused by RMD on SCA and genotypic mean 
predictions was expected, due to the recovery of genetic information that takes into con-
sideration only the evolutionary aspect (similarity-in-state) of the individuals and not their 
relationship. Thus, with greater or lesser weight, all genetic covariance values are recovered 
by the linear predictor (BLUP) for each SCA and GCA value, including those individuals 
that do not share alleles inherited from common progenitors. This fact results in low con-
stant predictions, since all hybrids, even those that not share common alleles, can contribute 
to the prediction of unrelated hybrids. 

However, this bias is eliminated by the use of Lynch and Ritland’s (1996) coeffi-
cient, since despite using molecular data (similarity-by-state), it takes into consideration the 
conditional probability that two individuals have alleles inherited from common progenitors 
(similarity-by-descent). Thus, only individuals having common alleles, with some probabil-
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ity level, take part in the prediction of the untested hybrids. Therefore, those pairwise rela-
tionships equal to zero will not contribute to the prediction, resulting in more reliable results. 

The use of similarity-in-state does not limit just the RMD coefficient, but also the 
coefficients that take into account merely the co-occurrence of bands (0 and 1), i.e., Dice, 
Jaccard, simple method, etc. Accordingly, Bernardo (1994) suggested an expression to 
correct this bias. However, as already commented, in complete diallels the coancestry co-
efficient is not applied because it does not contemplate all pairwise relationships between 
the genotypes under evaluation. That is, the coancestry expression considers that every and 
any similarity between two groups in partial diallels is due to similarity-in-state. Thus, hy-
pothetical similarity-in-state is removed from genotypes placed within each group. On the 
other hand, the LR coefficient can be used in complete diallels or complex crosses, because 
the relationship values obtained by this estimator consider all individuals under evaluation. 

Thus, it can be inferred that the use of similarity-in-state, even when using further 
coefficients that exploit all genetic covariance, without pondering the probability that 
those alleles are inherited from common genitors, can show lower efficiency in the predic-
tion of the untested hybrids. 

Another important aspect to be highlighted is the reason for using an unbalanced 
complete diallel instead of a partial diallel model for the analysis. As stated in Material 
and Methods, the crosses were performed in an 11 x 6 scheme, which would lead to a par-
tial diallel to evaluate GCA and SCA. However, these crosses were obtained in order to 
recover the intra- and interpopulation combinations, which led to the allocation of related 
individuals outside the groups, i.e., not necessarily in distinct groups. 

In this study, the use of a partial diallel loses part of the relationship in matrix A 
because kinship individuals were allocated outside of groups, while in complete diallel, 
even when highly unbalanced, can recover this information, leading to greater accuracy in 
predicting GCA and SCA values. This fact became evident, when the GCA and SCA level 
of accuracy, considering the unbalanced complete diallel design (0.99 and 0.85 for GCA 
and SCA, respectively) was compared with the partial diallel design exploiting relation-
ship information (0.988 and 0.844) and without relationship information (0.987 and 0.833). 
Therefore, the preference for the use of an unbalanced complete diallel instead of a partial 
one can be justified. Although the results obtained in this study were restricted to two test 
environments and limited genotype numbers, the magnitude of the predictions reached was 
similar to reports of previous studies, in addition, there was low correlation among hybrid 
performance in the two environments and high dominance effect, showing that BLUP is an 
effective methodology for the prediction and selection of the untested crosses, even when 
there is a predominance of non-additive effects and a high degree of imbalance. 

Furthermore, there was evidence that the Lynch and Ritland relationship coeffi-
cient associated with BLUP provided more accurate predictions when compared to simi-
larity-in-state, obtained by Roger’s modified distances. 
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