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 ABSTRACT. We evaluated the efficiency of the best linear unbiased 
predictor (BLUP) and the influence of the use of similarity in state (SIS) 
and similarity by descent (SBD) in the prediction of untested maize 
hybrids. Nine inbred lines of maize were crossed using a randomized 
complete diallel method. These materials were genotyped with 48 
microsatellite markers (SSR) associated with the QTL regions for grain 
yield. Estimates of four coefficients of SIS and four coefficients of SBD 
were used to construct the additive genetic and dominance matrices, 
which were later used in combination with the BLUP for predicting 
genotypic values and specific combining ability (SCA) in unanalyzed 
hybrids under simulated unbalance. The values of correlations between 
the genotypic values predicted and the means observed, depending on 
the degree of unbalance, ranged from 0.48 to 0.99 for SIS and 0.40 
to 0.99 using information from SBD. The results obtained for the 
SCA ranged from 0.26 to 0.98 using the SIS and 0.001 to 0.990 using 
the SBD information. It was also observed that the predictions using 
SBD showed less biased than SIS predictions demonstrating that the 
predictions obtained by these coefficients (SBD) were closer to the 
observed value, but were less efficient in the ranking of genotypes. 
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Although the SIS showed a bias due to overestimation of relatedness, 
this type of coefficient may be used where low values are detected in 
the SBD in the group of parents because of its greater efficiency in 
ranking the candidates hybrids.
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INTRODUCTION

In maize breeding programs, selection and evaluation of the best genotypes are ex-
tremely important for obtaining hybrids that are increasingly more productive and adapted to 
different growing conditions. Some tools can help breeders to direct the crosses in order to 
obtain the best hybrid combinations. Many studies have concentrated on estimating the per-
formance of hybrids by determining the heterotic groups of inbred lines, in order to direct the 
crosses based on genetic distances (Reif et al., 2003a; Amorim et al., 2006). According to the 
theory of quantitative genetics, pairs that are more divergent could maximize heterosis and 
produce the best hybrid combinations (Melchinger, 1999). 

In this context, the use of molecular markers, in the determination of heterotic groups 
and in the prediction of maize hybrid performance, has been proposed by various authors (Reif 
et al., 2003b; Amorim et al., 2006). However, so far, the results are still inconsistent (Dias et 
al., 2004; Balestre et al., 2009).

An alternative to the use of information obtained by molecular markers would be the 
use of this information through the methodology of linear mixed models for prediction of 
unrealized crosses (Bernardo, 1994; Charcosset et al., 1998; Schrag et al., 2009, Balestre et 
al., 2010). To do this, it becomes necessary to know the genealogy or the relatedness between 
the individuals evaluated and individuals in which their performance needs to be predicted 
(Bernardo, 1994). But the breeder does not always have such information, which could limit 
the use of this technique. 

In order to circumvent this limitation, some authors suggest the use of molecular 
marker information (allelic similarity in state, SIS) as an option when no genealogical data are 
available (Bernardo, 1994, 1995; André, 1999; Balestre et al., 2008b). According to Nejati-
Javaremi et al. (1997), the use of SIS has the advantage of using all the allelic similarity exist-
ing between the individuals tested. 

Bernardo (1993) proposes the use of a coefficient of coancestry, which uses infor-
mation from genetic similarity, in order to correct possible biases of the SIS. However, this 
methodology is only valid for partial diallel crosses in which no endogamic crosses occur, i.e., 
when prior information is possessed about the heterotic groups. 

As an alternative to this restriction, some authors (Queller and Goodnight, 1989; Rit-
land, 1996; Lynch and Ritland, 1999; Wang, 2002) have suggested procedures for joint es-
timation of similarity by descent (SBD) using molecular markers, which can be used in full 
and partial diallels. These estimators, even using molecular data, consider the conditional 
probability that two individuals possess alleles inherited from common genitors, so that only 
individuals who meet this premise participate in the prediction of unanalyzed hybrids. Thus, 
those individuals that possess a relatedness of zero will not contribute in the prediction, lead-
ing to more consistent results.
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Therefore, the objective of this study was to evaluate the efficiency of the best linear 
unbiased predictor (BLUP) with the use of information of SIS and relatedness between geni-
tors in order to obtain estimates of prediction of untested maize hybrids.

MATERIAL AND METHODS

Description of materials 

Nine inbred lines (Table 1) were used from the maize breeding program of the com-
pany Geneseeds Genetic Resources Ltd.

Line	 Background		  Maturity	 Grain color

L30	 POP GNS 10	 Cateto/(Tuxpeno/Caribean)	 L	 A1
L31	 POP GNS 10	 Cateto/(Tuxpeno/Caribean)	 M	 A1
L32	 POP GNS 30	 Eto/Cateto	 L	 A2
L37	 POP GNS 10	 Cateto/(Tuxpeno/Caribean)	 M	 A3
L63	 POP GNS 20 	 Tuxpeno Nicarilho/Autopionn	 E	 A1
L12	 POP GNS 50	 Tuxpeno	 L	 A3
L43	 POP GNS 70	 Tuxpeno	 L	 A2
L57	 POP USA 80	 B73/Tuxpeno	 E	 A3
L84	 POP GNS 60	 Tuxpeno/Autoembrapa	 E	 A2

Table 1. Characterization of the nine inbred lines of maize.

Maturity: E = early; M = medium; L = late. Grain color: A1 = yellow; A2 = orange; A3 = red. Geneseeds Genetic 
Resources Ltd., Lavras, MG, 2010.

To carry out the microsatellite marker analysis (simple sequence repeat), samples of 
approximately 20 seeds of each strain were germinated in a seedbed in a greenhouse. After 
emergence of the seedlings, when they presented the second pair of leaves, leaf tissue was 
collected for DNA extraction. Extraction of DNA, preparation of reactions and estimates of 
genetic similarity followed the procedures previously described by Balestre et al. (2008a). 
Subsequently, all progeny were genotyped using 48 microsatellite markers (Table 2), and all 
these markers linked to quantitative trait loci for components of grain yield.

Primers	 Primers	 Primers	 Primers	 Primers	 Primers

UMC 1025	 UMC 1550	 UMC 1762	 BNLG 1017	 BNLG 1360	 BNLG 1805
UMC 1040	 UMC 1576	 UMC 1792	 BNLG 1055	 BNLG 1521	 BNLG 1810
UMC 1042	 UMC 1614	 UMC 1812	 BNLG 1057	 BNLG 1526	 BNLG 1863
UMC 1066	 UMC 1630	 UMC 1827	 BNLG 1082	 BNLG 1583	 BNLG 1890
UMC 1112	 UMC 1653	 BNLG 0197	 BNLG 1108	 BNLG 1600	 BNLG 2057
UMC 1426	 UMC 1659	 BNLG 0238	 BNLG 1194	 BNLG 1662	 BNLG 2235
UMC 1528	 UMC 1737	 BNLG 0252	 BNLG 1208	 BNLG 1700	 BNLG 2248
UMC 1532	 UMC 1738	 BNLG 0657	 BNLG 1272	 BNLG 1721	 BNLG 2305

Table 2. Description of the primers used for microsatellite marker analysis.

All work in obtaining the microsatellite marker information was carried out at the 
Laboratory of Molecular Biology, Department of Biology (LBM/DBI), Federal University of 
Lavras. With the microsatellite marker information, a matrix of binary values (“0” and “1”) was 
constructed to compare the different similarity coefficients (Table 3). The binary values were 
converted into allelic frequencies using the NTSYS-PC 2.1 Program (Rohlf, 2000). The SBD 
coefficients were determined with input from the MARK Program (Ritland, 2006).
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Experimental design and correction of the means via mixed linear models

The nine inbred lines were crossed in an unbalanced diallel design. Twenty-nine sin-
gle-cross hybrids were obtained.

These hybrids, along with the hybrids used as controls (P30F35, DKB 390 and DOW 
2B587) were evaluated at two locations in Lavras/MG (Campus of the Federal University 
of Lavras and Vitorinha Farm) in the 2008/2009 season. The experimental design used was 
alpha-lattice 8 x 4 with three repetitions. Each plot consisted of two rows of 4.0 m in length, 
with spacing of 0.80 m between rows. The planting was carried out in mid-November 2008 
and the harvest in mid-April 2009.

At sowing, 450 kg/ha of the formulation of 08-28-16 (N, P2O5 and K2O) and 300 kg/
ha of the formulation of 30-00-20 (N, P2O5 and K2O) were used in coverage. The other agricul-
tural treatments were those commonly recommended for the cultivation of maize in the region.

The adjusted means of the hybrids for each site were corrected taking into account the 
recovery of interblock information.

Diallelic analysis by mixed linear models

Based on the adjusted phenotypic means of the hybrids at each site, the joint diallelic 
analysis was conducted using the IV method proposed by Griffing (1956). Analyses were per-

Coefficients	 Models

SIS

    Sorense-Dice (SD)	
 

    Jaccard (J)	

    Simple matching (SM)	

    Modified Rogers’ distance (MRD)	

SPD

    Lynch & Ritland (LR)	

    Queller & Goodnight (QG)	

    Ritland (R)	

    Wang (W)	

 (1)a = 1 and 1; b = 1 and 0; c = 0 and 1; d = 0 and 0; (2)n = number of loci; xki and xkj = frequency of the k-th allele of 
inbred lines i and j;  is the estimator of additive genetic relatedness between the individual X (taken as reference) 
with alleles a and b and the individual Y with alleles c and d at locus k; S ab = equal to 1 if a and b are identical and 
equal to 0 otherwise; S ac = equal to 1 if a and c are identical and equal to 0 otherwise; S ad = equal to 1 if a and d are 
identical and equal to 0 otherwise; S bc = equal to 1 if b and c are identical and equal to 0 otherwise; S bd = equal to 1 if 
b and d are identical and equal to 0 otherwise; pa and pb are the allelic frequencies of the alleles a and b throughout the 
inbred lines for a given locus k; S’xy = 1.0 (x = ii; y = ii) or (x = ij; y = ij); S’xy = 0.75 (x = ii; y = ij); S’xy = 0.5 (x = ij; y 
= ik) and S’xy = 0.0 (x = ij; y = kl); Jo is the expected homozygosity obtained by , n being the number of loci.    

Table 3. Coefficients of similarity in state (SIS) and similarity by descent (SBD) used for analysis of genetic data 
obtained with microsatellite markers.
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formed using the SAS® System, IML Module Software (SAS Institute, 2000). Estimates of fixed 
effects and BLUPs for general combining ability (GCA) and specific combining ability (SCA) 
were obtained in a manner similar to that proposed by Bernardo (1995), for partial diallels. 

The linear model considered was the following:

y = Xβ + Z1g + Z2s + e (Equation 1)

where y is the vector of the adjusted means of the hybrid combinations; β is the vector of fixed 
effects (general and local mean); g is the vector of effects of GCA of the inbred lines; s is the 
vector of SCA of the hybrids; e is the vector of errors and X, Z1 and Z2 are the incidence matri-
ces of the effects β, g and s, respectively.

The joint solution for fixed and random effects was obtained by the following system 
of equations, conforming to Henderson (1984):

(Equation 2)

with  and , 

where: A1 is the additive genetic similarity matrix among inbred lines; A2 is the dominance 
matrix among strains.

Variance components were estimated using the method of restricted maximum likeli-
hood using the expectation-maximization algorithm.

The additive genetic similarity matrices were constructed according to the SIS and 
SBD coefficients (Table 4).

Dominance matrices (A2) were constructed as suggested by Henderson (1984) and 
Van Vleck (1993). 

Prediction of unanalyzed hybrids

The predicted genotypic values and the SCA of the unanalyzed crosses were made 
based on simulated losses or cross-validation. Thus, of a total of 29 analyzed hybrids, five situ-
ations were simulated considering random unbalancing of 3, 6, 9, 12, and 15 hybrids. For each 
situation, the process was repeated 2000 times. The model used was similar to that presented 
by Bernardo (1994).

Considering that  is the vector of the means of the analyzed hybrids corrected for 
fixed effects (β), it has:

(Equation 3)

in which: Z is the incidence matrix of the effects of the analyzed hybrids.
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The yields of the unanalyzed hybrids were predicted by the following expression:

(Equation 4)

in which  is the vector of the performance of the hybrids with simulated loss; C is the matrix 
of genetic covariance between the crosses with simulated loss and the analyzed crosses, V is 
the matrix of phenotypic covariance between the analyzed crosses. Similarly, the SCA values 
of the crosses with loss simulated were predicted using the following expression:

in which dnt is the vector of the SCA of the crosses with simulated loss; C is the matrix of 
genetic covariance between the crosses with simulated loss and the analyzed crosses; V is the 
matrix of genetic variance and covariance between the analyzed crosses;  is the vector of the 
SCA of the analyzed hybrids.

Comparison of the predictions obtained by the similarity in state and relatedness 
coefficients

To predict hybrids with simulated loss, information of SIS and relatedness was used. 
To compare the predictions, from the genetic similarity determined by the different coeffi-
cients, the Pearson correlation was used between the observed values of SCA and the pheno-
typic means with the values predicted for the untested hybrids.

The sum of prediction error (PRES) (Allen, 1974) was also used, through the follow-
ing expression: 

(Equation 6)

where yi is the observed value (effect of SCA or of crossing) of the i-th hybrid untested, n is 
the number of parameters to be predicted and  is the i-th prediction of yi. This expression 
measures the sum of the prediction error relative to its observed value.

The efficiency of BLUP for predicting the values of SCA and the genotypic values 
was assessed by the magnitude of the correlation values.

The selection efficiency of Hamblin and Zimmermann (1986) was also applied, com-
paring the nine highest predicted values of SCA and genotypic values, with the nine highest 
values of SCA and yield observed. Means of all genotypic values of the untested hybrids were 
considered, in all combinations and conditions of unbalance presented.

RESULTS

The set of evaluated genotypes showed mean values of similarity in state of 0.251, 0.153, 
0.646, and 0.636, for the Sorensen-Dice (SD), Jaccard (J), modified Roger’s distance (MRD), 

(Equation 5)
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and simple matching (SM) coefficients, respectively. Concerning the mean value of relatedness, 
values 0.005, 0.006, 0.186, and 0.001 were observed, corresponding to the relatedness of Lynch 
and Ritland (LR), Queller and Goodnight (QG), Ritland (R), and Wang (W), respectively. 

Mean values related to grain yields of the 29 simple hybrids obtained from crosses 
between the nine inbred lines are found in Table 4. As mentioned in the Material and Methods 
section, of the 36 hybrids that could possibly be obtained in the diallel, 29 were obtained and 
evaluated. In this case, it is observed that the phenotypic mean was 8.780 ton/ha, of which the 
cross with best performance was L32XL43 with a yield of 11.547 ton/ha. 

Rank 	 Crosses	 Grain yield	 Rank	 Crosses	 Grain yield

  1	 L32XL43	 11.547	 16	 L30XL43	 8.861
  2	 L63XL84	 10.348	 17	 L43XL84	 8.857
  3	 L32XL57	 10.249	 18	 L30XL84	 8.824
  4	 L32XL84	 10.017	 19	 L12XL37	 8.718
  5	 L12XL32	   9.798	 20	 L12XL30	 8.475
  6	 L37XL43	   9.359	 21	 L31XL57	 8.355
  7	 L37XL84	   9.283	 22	 L12XL63	 8.311
  8	 L30XL32	   9.276	 23	 L31XL84	 8.283
  9	 L43XL63	   9.134	 24	 L31XL32	 8.259
10	 L32XL37	   9.114	 25	 L43XL57	 8.106
11	 L30XL57	   9.113	 26	 L43XL84	 7.618
12	 L30XL37	   9.041	 27	 L30XL31	 7.487
13	 L31XL43	   9.039	 28	 L12XL43	 5.902
14	 L37XL57	   9.004	 29	 L12XL84	 5.273
15	 L57XL63	   8.984	 General mean	 	 8.780

Table 4. Values related to grain yield obtained at two locations (the Campus of the Federal University of Lavras 
and Vitorinha Farm, Lavras, Minas Gerais; Safra 2008/2009).

Mean values of correlation between the means predicted and observed over 2000 
simulations obtained at different levels of unbalance (3, 6, 9, 12, and 15 hybrids removed) 
using the coefficients of SIS (SD, J, MRD, and SM) are found in Table 5. It was observed that 
the correlations were of moderate magnitude, when considering the mean values of distribu-
tion, ranging from 0.439 to 0.494 (SD), 0.449 to 0.505 (J), 0.442 to 0.503 (MRD), and 0.434 
to 0.472 (SM). When the median of the distribution is considered, the correlation values also 
showed moderate magnitude, ranging from 0.468 to 0.694, 0.468 to 0.728, 0.466 to 0.722, and 
0.463 to 0.667, depending on the level of unbalance, for those coefficients, respectively. Fur-
thermore, it was observed that the standard deviation of the correlations decreased as the mean 
number of predictor hybrids also decreased, i.e., the standard deviation of the correlations was 
lower when the level of unbalance was greater. 

However, it is noteworthy that when there is high asymmetry of the probability 
distribution or sampling (Figures 1 and 2), the mean and median may not reflect a good 
measure of position as the most plausible values are not close to these estimators, i.e., the 
mean and median do not reflect the values of maximum probability when a high degree of 
skewness occurs in the distribution due to the presence of outliers. According to Dalenius 
(1965) the mode is applied in some situations, such as the measure of position in asymmet-
ric distributions, in order to express the most probable value of a probability distribution, 
especially when the goal of inference is related to the prediction of future values. Likewise, 
Bickel (2002, 2003) says that the mode is more robust than the mean and the median in 
cases of asymmetric probability distributions.
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Coefficients	 NHR		  SCA			   Grain yield

		  Mean	 Median	 Mode	 Mean	 Median	 Mode

Sorensen-Dice	   3	 0.291	 0.563	 0.980	 0.457	 0.694	 0.990
	   6	 0.373	 0.441	 0.650	 0.494	 0.556	 0.700
	   9	 0.388	 0.431	 0.540	 0.479	 0.512	 0.620
	 12	 0.374	 0.412	 0.490	 0.462	 0.492	 0.560
	 15	 0.343	 0.374	 0.440	 0.439	 0.468	 0.480

Jaccard	   3	 0.370	 0.628	 0.980	 0.495	 0.728	 0.990
	   6	 0.433	 0.515	 0.660	 0.505	 0.569	 0.650
	   9	 0.447	 0.478	 0.640	 0.492	 0.525	 0.580
	 12	 0.401	 0.432	 0.490	 0.478	 0.501	 0.570
	 15	 0.369	 0.384	 0.520	 0.449	 0.468	 0.500

Modified Rogers’ distance	   3	 0.112	 0.231	 0.980	 0.493	 0.722	 0.990
	   6	 0.155	 0.208	 0.260	 0.503	 0.551	 0.650
	   9	 0.183	 0.227	 0.380	 0.486	 0.514	 0.570
	 12	 0.178	 0.223	 0.290	 0.471	 0.492	 0.550
	 15	 0.164	 0.191	 0.270	 0.442	 0.466	 0.520

Simple matching	   3	 0.145	 0.343	 0.970	 0.434	 0.667	 0.990
	   6	 0.171	 0.235	 0.450	 0.472	 0.533	 0.620
	   9	 0.196	 0.253	 0.350	 0.471	 0.516	 0.560
	 12	 0.217	 0.271	 0.370	 0.453	 0.479	 0.500
	 15	 0.206	 0.239	 0.330	 0.435	 0.463	 0.540

Lynch and Ritland	   3	 0.365	 0.585	 0.990	 0.455	 0.692	 0.990
	   6	 0.269	 0.266	 0.270	 0.483	 0.522	 0.540
	   9	 0.185	 0.157	 0.065	 0.454	 0.476	 0.510
	 12	 0.141	 0.098	 0.024	 0.414	 0.429	 0.450
	 15	 0.105	 0.075	 0.002	 0.358	 0.371	 0.410

Queller and Goodnight	   3	 0.399	 0.655	 0.980	 0.461	 0.708	 0.980
	   6	 0.307	 0.316	 0.160	 0.479	 0.529	 0.590
	   9	 0.243	 0.237	 0.096	 0.456	 0.482	 0.520
	 12	 0.194	 0.173	 0.037	 0.415	 0.434	 0.460
	 15	 0.151	 0.125	 0.009	 0.366	 0.381	 0.400

Ritland	   3	 0.401	 0.645	 0.980	 0.445	 0.674	 0.990
	   6	 0.384	 0.421	 0.430	 0.448	 0.499	 0.550
	   9	 0.331	 0.338	 0.320	 0.434	 0.464	 0.460
	 12	 0.276	 0.287	 0.280	 0.409	 0.433	 0.490
	 15	 0.215	 0.221	 0.200	 0.373	 0.391	 0.450

Wang	   3	 0.348	 0.528	 0.980	 0.445	 0.682	 0.980
	   6	 0.216	 0.203	 0.110	 0.475	 0.525	 0.570
	   9	 0.156	 0.126	 0.048	 0.465	 0.481	 0.510
	 12	 0.107	 0.073	 0.012	 0.427	 0.444	 0.430
	 15	 0.084	 0.046	 0.001	 0.375	 0.388	 0.410
NHR = number of hybrids removed.

Table 5. Parameters related to the correlation values obtained from 2000 simulations at different levels of unbalance, 
related to grain yield and specific combining ability (SCA) of simple unanalyzed hybrids and their observed values.

In this sense, in order to obtain the more probable correlation values during the pro-
cess of cross-validation we obtained the densities of the samples and thus determined the 
mode of the distribution of correlation values. Taking into account the mode of the distribu-
tion, the values of most probable correlations ranged from 0.480 to 0.990, 0.500 to 0.990, 
0.520 to 0.990, and 0.500 to 0.990 depending on the levels of unbalance, for the coefficients 
of SD, J, MRD, and SM, respectively.

This allows the inference that, with 10% unbalance, i.e., when three hybrids are re-
moved, it is possible to predict the performance with high accuracy. With levels of unbalance 
of 20% or above this value, i.e., 6, 9, 12, and 15 hybrids removed, the values of correlations 
showed moderate magnitude.
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In Table 5, the correlation values between predicted and observed means obtained in 
2000 simulations are shown, considering the same levels of unbalance (3, 6, 9, 12, and 15 hy-
brids removed) relating to grain yield, using the coefficients of relatedness or SBD (LR, QG, 
R, and W). In this case, as well as in the SIS, the use of the correlation values referring to the 
mode was preferred for the same reason described above. Thus, the correlations between the 
predicted and observed values ranged from moderate to high magnitude, i.e., from 0.410 to 
0.990 (LR), from 0.400 to 0.980 (QG), from 0.450 to 0.990 (R), and from 0.410 to 0.980 (W) 
according to the different levels of unbalance. The standard deviation was higher when the 
level of unbalance was lower.

Importantly, considering the grain yield, it was observed that the values of correla-
tion between predicted means and observed means using SIS showed slight superiority to the 
predictions using SBD. This situation was more pronounced when analyzing the correlations 
with levels of unbalance of 6, 9, 12, and 15 hybrids.

Figure 2. Frequency distribution of correlations between predicted and observed values, considering an unbalance 
of three hybrids. Lynch and Ritland (1999) relatedness coefficient (mean = 0.46; median = 0.69; mode = 0.99, and 
standard deviation = 0.58).

Figure 1. Frequency distribution of correlations between predicted and observed values, considering an unbalance of three 
hybrids. Sorensen-Dice similarity coefficient (mean = 0.49; median = 0.69; mode = 0.99, and standard deviation = 0.58). 
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The correlation values between the SCA of the untested hybrids and their observed 
values are shown in Table 5. Similar to the grain yield situation, it can be observed that as 
the unbalance increases the correlation values tend to decrease for all coefficients analyzed. 
Similarly, it was observed that the SIS + BLUP (BLUP-SIS) method showed correlation 
values of a greater magnitude than the correlation values corresponding to the SBD + BLUP 
(BLUP-SBD) method. This fact was more pronounced when analyzing levels of unbalance 
with six hybrids removed.

One probable explanation for these results can be associated with low relatedness 
values found among inbred lines making it difficult to predict when the levels of unbalance are 
higher. For example, considering the similarity by decent coefficient of LR, this determined 
relatedness only between the inbred lines L31 and L37 (0.147), L43 and L57 (0.002), and L12 
and L84 (0.033). A similar situation was observed for the coefficient of QG and more so for 
the coefficient of W where relatedness was only detected between the parents L31 and L37, 
the cross of which was not possible to obtain in the field.

However, it is possible to infer that even with low values of relatedness detected, the 
coefficients of SBD allowed the prediction, with moderate accuracy, of the performance of 
the untested hybrids (Table 5). Furthermore, it can be inferred that these coefficients (SBD) 
showed good consistency between the relatedness of the genotypes, whereas among the hy-
brids that showed some relatedness between the inbred lines, they did not show good perfor-
mance in terms of grain yield compared to hybrids whose inbred lines showed no relatedness. 
For example, there are hybrids L12XL84, L12XL43, L43XL57, and L12XL30 in the perfor-
mances of which were below the overall mean (data not shown).

Even considering the method BLUP-SBD, for the predictive values regarding the 
SCA (Table 5), the accuracy of this method was lower when compared with BLUP-SIS, espe-
cially when the level of unbalance was increased. Even so, the highest value of SCA observed 
(L32XL43) was found among the nine highest predicted SCA values for the coefficients of QG 
and R (data not shown). Likewise, the second highest value of SCA observed (L63XL84) was 
found to be present among the nine highest predicted SCA values using the LR coefficient. 
Considering the predicted SCA values, it is noteworthy that the coefficient of SBD proposed 
by Wang (2002) failed to predict the SCAs. This occurred because of the low values of related-
ness detected by the estimator.

 It may be noted that the observed phenotypic values corresponding to the nine larg-
est predicted values obtained over the simulations, for the most part, were of high magnitude, 
with an increase over the general mean of 0.878 ton/ha for the BLUP-SIS method and a mean 
of 0.628 ton/ha for the BLUP-SBD method (Table 6). The selection efficiency by applying 
Hamblin and Zimmermann’s (1986) expression, considering the nine major phenotypic values 
observed, was 65% for the BLUP-SIS method, 53% for the BLUP-SBD method using the 
coefficient R and 42% for the other SBD coefficients (LR, QG, W).

Another important finding is that the hybrid with the highest observed phenotypic 
mean (L32XL43) is present among the nine highest means predicted by all SBD and SIS coef-
ficients. Furthermore, it was found that the four highest observed phenotypic means were also 
present among the nine largest predicted values when using the BLUP-SIS method. This fact 
illustrates a situation where, if such hybrids were not evaluated, but had their means predicted, 
they would probably be good candidates for future crossings due to the high genotypic mean 
value predicted by BLUP-SIS.
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It was also noted that when using the BLUP-SBD, the three hybrids with the highest 
observed phenotypic means were also present among the nine selected hybrid means, which 
were predicted over 2000 simulations. Thus, even with little relatedness information between 
the inbred lines, it was possible to predict performance of untested hybrids with moderate ef-
ficiency. This demonstrates the effectiveness of the BLUP in predicting the performance of 
untested maize hybrids through the use of SIS and SBD information. 

Considering the PRES values for grain yield, it can be inferred that the BLUP-SBD 
method showed a slight superiority (Table 6) compared to the BLUP-SIS method. This fact be-
comes more evident when analyzing the sum of the prediction error values of the SCAs show-
ing that the SBD provided estimates of predictions less biased than SIS predictions (Table 6).

DISCUSSION

Using the BLUP in the prediction of unanalyzed hybrids has been recommended by 
many authors (Bernardo, 1994, 1995, 1996a; Charcosset et al., 1998; Schrag et al., 2009, 
Balestre et al., 2010). In this context, the use of molecular marker information is an alterna-
tive when the pedigrees of the parents are unavailable, contributing to the obtaining of more 
accurate predictive estimates of the genotypic values of untested hybrids.

In this study, the results obtained using SIS and SBD allowed estimates of correlation, 
of moderate magnitude, for grain yield, and SCA for untested maize hybrids. This allows the 
inference that the BLUP associated with molecular markers (BLUP-SIS and BLUP-SBD) 
had moderate predictive ability for performance of untested hybrids, confirming the results 
obtained by Bernardo (1996a,b) that found moderate correlation values in prediction studies 
of untested maize hybrids, for the grain yield characteristic, ranging from 0.43 to 0.76.

By analyzing the results, it can be inferred that the SIS presented superior ranking 
ability in relation to the SBD with respect to the prediction values over different unbalanced 
degrees and 2000 simulations. This is evident when the correlation values between the pre-
dicted genotypic values and the observed grain yield values are compared. Similar differences 
were observed to the SCA parameter.

Therefore, it was observed that the coefficient proposed by Jaccard showed greater ac-
curacy on different levels of unbalance (Table 5). This coefficient does not consider the common 

Coefficients		                        Grain yield			   	                          SCA

	 Mean1	 Mean2	 PRES	 SE	 Mean1	 Mean2	 PRES	 SE

SD	 12.726	 9.658	 3.379	 65%	 0.511	 0.394	 0.618	 53%
J	 12.296	 9.658	 3.323	 65%	 0.284	 0.366	 0.542	 53%
MRD	 13.164	 9.658	 3.239	 65%	 0.422	 0.223	 0.681	 42%
SM	 12.044	 9.658	 3.302	 65%	 0.353	 0.208	 0.757	 42%
LR	 12.060	 9.395	 3.102	 42%	 0.055	 0.292	 0.533	 53%
QG	 12.081	 9.395	 3.138	 42%	 0.062	 0.377	 0.532	 53%
R	 11.966	 9.446	 3.244	 54%	 0.215	 0.379	 0.555	 53%
W	 12.168	 9.394	 3.156	 42%	 -	 -	 -	 -

Table 6. Parameters related to the ranking of the largest predicted genotypic values and predicted specific 
combining ability (SCA), obtained from over 10,000 simulations (2000 with five different levels of unbalance). 

1Mean of the predicted values corresponding to nine selected hybrids over 10,000 simulations. 2Mean of the observed 
phenotypic values corresponding to nine selected hybrids. PRES = sum of prediction error; SE = selection efficiency 
based on nine highest phenotypic values and nine highest predicted values. For coefficient abbreviations, see Table 3. 
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absence of bands (Table 3) in the construction of the binary data matrix, contributing to more 
accurate predictions than coefficients that consider this information, such as the SM coefficient 
(Table 3). According to some authors (Reif et al., 2005), in studies with dominant and codomi-
nant markers, the use of coefficients that consider the common absence of bands might be biased. 
These authors argue that this common absence does not necessarily mean that the regions of 
DNA are identical, which could lead to more biased estimates of similarity between genitors.

Moreover, it was observed that the SD coefficient may overestimate the SIS, because 
it gives greater weight to the common occurrence of bands between the genitors (Table 3) 
compared to the J coefficient, which may have influenced the small disadvantage of the SD 
coefficient over the J coefficient in the predictions and ranking of the hybrids (Tables 5 and 6). 
Conversely, in studies of phylogeny, the use of the SD coefficient has presented good results, 
being superior to the other coefficients (Balestre et al., 2008a). In situations where the aim is the 
prediction of untested hybrids, the use of the SD coefficient, due to giving greater weight to the 
SIS, can result in obtaining less precise estimates of prediction compared with the J coefficient. 

The low values of relatedness detected between the genitors may have been one of the 
main reasons for the inferior accuracy of the SBD in relation to the SIS. Under this condition, 
little information is retrieved from the levels of the additive effects of the model and, therefore, 
part of the information retrieved by the methodology may be due to the participation of the 
coefficient of dominance associated with the effects of SCA.

The low indices of relatedness found in this study may be due to the occurrence of 
biases in obtaining these estimates. Ritland (1996) emphasizes that the use of coefficients can 
lead to negative estimates of relatedness reflecting in large statistical error with small sample 
size of the study population, introducing bias in the estimates and distorting the associations be-
tween variables. This can occur because these coefficients were developed for studies of natural 
populations, where the sample size may influence the results of the relatedness estimates. 

Another likely explanation for the low relatedness values detected may be due to the 
fact that the inbred lines used in this study are, mostly, from different backgrounds, i.e., they 
may have originated from different populations and thus, the estimates of relatedness between 
these inbred lines would be expected to be low or zero. 

One of the reasons why the breeder may prefer to use the SBD lies in the fact that 
these estimators consider the conditional probability that two individuals possess alleles in-
herited from common genitors, where only individuals who meet this condition participate 
in the prediction of untested hybrids leading to more consistent and less biased predictions. 
Moreover, in ideal situations, such as those obtained by Bernardo (1994, 1995), where two 
distinct heterotic groups are evident, the predictions using the SBD tend to be more accurate 
and consistent with the observed values. These results were also observed by Balestre et al. 
(2010). However, if distinct groups do not occur and the inbred lines come from different 
backgrounds the level of information retrieved using the SBD may be minimal and lead to less 
accurate predictions, as occurred in this study. 

Still regarding the absence of relatedness, Bernardo (1996b) found that the BLUP is 
robust when up to 25% relatedness is unknown, or when there are biases in the estimates. In 
the case of this study, the percentage of evaluated crosses that presented the relatedness coef-
ficient of zero was much higher than the values described by that author. 

It was observed that the participation of GCA in predicting the genotypic values of the 
hybrids was significant, which made the predictions of genotypic values more precise than the 
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predictions considering only the SCA. This fact was also observed in several studies where 
the variance of GCA was higher than the variance of SCA and in these cases, as expected, the 
predictions were assisted. In this study, although the variance of SCA was greater than the 
variance of GCA, the difference between the two variances was less pronounced as observed 
by Balestre et al. (2010). Even in this case, the authors observed medium magnitude correla-
tion values between the predicted and observed values. 

Importantly, although the BLUP-SIS method showed higher correlation and selection 
efficiency values (high accuracy), this method showed the highest PRES values (high bias), 
i.e., the predictions using the BLUP-SBD method were closer to the observed values, leading 
to less biased predictions of genotypic values of the untested hybrids, although the SBD pre-
diction values were more dispersive (less accurate). The BLUP-SIS method provided a better 
ranking of hybrids, which can be confirmed by the selection efficiency values and correlations 
between observed and predicted values. In this sense, it can be inferred from this study, that 
the BLUP-SIS method has more practical application for the breeder, since what is sought in 
most cases is the identification and ranking of the best hybrids, although their predictions pres-
ent a greater bias due to the retrieval of information from the entire set of analyzed hybrids.

Even with the evident superiority of the BLUP-SIS method over the BLUP-SBD ob-
served in this study, it was found that the BLUP-SBD method is very robust in relation to 
the level of relatedness information recovered and its predictive capacity obtained from the 
coefficients of this class. Thus, it can be inferred that the BLUP-SBD can be preferably used 
in situations where it obtains a greater quantity of measures of relatedness between the geni-
tors and, somehow, leads to more accurate predictions of the genotypic values of the untested 
hybrids. Based on the results of this study it can be inferred that the SIS, although with a bias 
due to overestimation of relatedness, can be used in situations where the SBD presents few 
values of relatedness among the set of evaluated genitors. Moreover, the predictions of the 
performance of hybrids through BLUP-SIS and BLUP-SBD demonstrate the potential of these 
methodologies as tools to be used in maize breeding programs, making it feasible to predict 
the performance of hybrids even before these materials are effectively analyzed. This allows 
the breeder to reduce the number of hybrids to be analyzed and provides analysis of these 
hybrids in more environments and in different culture conditions, leading to the selection of 
hybrids with higher adaptability and yield potential.
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