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ABSTRACT. Machine learning techniques are of great importance in 
the analysis of microarray expression data, and provide a systematic 
and promising way to predict core cancer genes. In this study, a hybrid 
strategy was introduced based on machine learning techniques to 
select a small set of informative genes, which will lead to improving 
classification accuracy. First feature filtering algorithms were applied 
to select a set of top-ranked genes, and then hierarchical clustering 
and collapsing dense clusters were used to select core cancer genes. 
Through empirical study, our approach is capable of selecting 
relatively few core cancer genes while making high-accuracy 
predictions. The biological significance of these genes was evaluated 
using systems biology analysis. Extensive functional pathway and 
network analyses have confirmed findings in previous studies and can 
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bring new insights into common cancer mechanisms.
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INTRODUCTION

Various machine learning methods have been applied for cancer diagnostic research 
(Cruz and Wishart, 2007; Lisboa and Taktak, 2006). From the medical perspective, cancer 
comprises more than 100 distinct diseases specific to cell type and tissue origin (Stratton et 
al., 2009). For these diseases, diagnosis is to identify one disease by its signs and symptoms 
while prognosis is to predict the outcome of the disease and status of the patient. Therefore, 
it is widely believed that a number of cancers share a common pathogenesis (Stratton et al., 
2009). Elucidating common cancer mechanisms will certainly enhance our ability to devise 
effective therapeutics against the disease responsible for one in eight deaths worldwide (Khalil 
and Hill, 2005). Researchers have proven that machine learning methods could generate more 
accurate diagnoses or prognoses as compared to traditional statistical methods (Cruz and Wis-
hart, 2007; Cheng and Cheng, 2009).

In some studies, the researchers have attempted to identify the core cancer genes, or 
the meta-signatures across a wide range of cancer types by analyzing genome-wide gene ex-
pression profiles from multiple-microarray data sets (Rhodes et al., 2004; Segal et al., 2004; 
Chuang and Yang, 2009; Gao et al., 2013). The research of common cancer mechanisms are 
part of an emerging biological domain termed cancer systems biology (Kreeger and Lauffen-
burger, 2010). In order to discovering the common cancer mechanisms from a genome-wide 
gene expression profiles, a feature selection technique is one better way for selecting a small 
subset of genes as features for classification. In this research, we focus on this gene selec-
tion problem and attempt to discover core cancer genes using a hybrid approach (Wang et 
al., 2005). In a microarray dataset FHCCancer9 including 9 sub-datasets, each represented a 
binary classification of cancer vs normal samples. We applied feature filtering algorithms on 
the whole set of genes using training data, pre-select top-ranked genes from the whole set, 
and finally applied pre-filtering approaches to select core cancer genes. The pre-filtering ap-
proaches had two levels, namely hierarchical clustering (HC) and collapsing dense clusters. In 
the HC level, HC was applied to this set of pre-selected genes, while collapsing dense clusters 
was used to reduce the gene redundancy and extract core cancer genes.

As a result, 41 Affymetrix probe sets were identified of a total of 22,277 sets found 
in all samples, as core features of 9 cancer types. The effectiveness of 41 features was 
cross-validated on the training dataset FHCCancer9_train and was further tested on an in-
dependent dataset FHCCancer9_test. Systems biology analysis for these 41 genes is largely 
consistent with previous studies and brings new insights into possible common mechanisms 
of cancers.

MATERIAL AND METHODS

Dataset construction

The gene expression dataset FHCCancer9 used in this study was compiled from the 
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web resource ONCOMINE (http://www.oncomine.org) (Rhodes et al., 2007) in April 2014. 
The primary filtering criteria were set to Differential Analysis and Cancer versus Normal 
Analysis, including three criteria: 1) each dataset must be specific to one cancer type, which 
represents one single task, 2) each dataset must contain the appropriate proportion of posi-
tive and negative samples, and 3) the largest one among datasets of the same cancer type was 
chosen. The platform filtering criterion was set to Affymetrix U133 to minimize the platform 
variation. Passing the filtering steps, we selected 9 datasets as the dataset FHCCancer9 from 
a total of 376 datasets.

Overall, FHCCancer9 covered 9 common cancer types: pancreas, vulva, prostate, leu-
kemia, renal, lung, esophagus, colon, and breast cancer. In this study, 375 samples were used, 
with 193 cancer samples and 182 normal samples. The dataset FHCCancer9_train and the 
dataset FHCCancer9_test consisted of 249 and 126 samples, respectively, with a ratio of ap-
proximately 2:1 cancer samples to normal samples. The detailed description of FHCCancer9 
can be seen in the Supplementary File 1.

Data preprocess and representation

Data preprocessing is very important for microarray data analysis. We performed data 
preprocessing as follows: 1) Affymetrix U133 platform includes three types: Human Genome 
U133 Plus 2.0 Array, Human Genome U133A 2.0 Array, and Human Genome U133A&B. 
These types differ by the number of probe sets presented in the chip. The shared genes of those 
three types of microarrays are represented by 22,277 Affymetrix identifiers, which are used 
as features to describe each sample. 2) Cancer samples are defined as positives and normal 
samples as negatives. 3) Samples in FHCCancer9 are normalized by the Robust Multi-Array 
Average (RMA) algorithm (Irizarry et al., 2003) individually. Finally, the sample is repre-
sented by N = 22,277 features in such form Xi = (Xi1, Xi2,. . ., Xij, . . ., Xin).

Gene ranking

Pearson’s correlation coefficient (PCC)

The PCC, also known as the product moment correlation coefficient, is represented in 
a sample by r. The coefficient is measured on a scale with no units and can take a value from 
-1 through 0 to +1. For a series of n variables of X and Y (denoted by xi and yi, respectively, 
where i = 1, 2,…, n), the sample correlation coefficient can be used to estimate the population 
Pearson’s correlation r between X and Y, as shown in Equation 1, where x and y are the sample 
means of X and Y, accordingly, and sx and sy are the sample standard deviations of X and Y, 
accordingly. In this research, r is calculated and ranked for each of the feature input and the 
team with the highest r is selected.

 

(Equation 1)

http://www.hrbmu.edu.cn/supplementary/supplementary.htm
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Relief-F

Relief-F (Kononenko, 1994) is a simple yet efficient procedure to estimate the quality 
of attributes in problems with strong dependencies between attributes. The basic idea of Relief-F 
is to draw instances at random, compute their nearest neighbors, and adjust a feature-weighting 
vector to give more weight to features that discriminate the instance from neighbors of different 
classes. This approach has shown good performance in various domains (Robnik and Kononen-
ko, 2003). In this research, each feature input is ranked and weighted using the k-nearest neigh-
bors classification, in which k = 5. The top features with large positive weights will be selected.

Information gain

Information gain (Liu et al., 2002) is used to select the features that hold the most 
information about each classification. This method has been used for gene selection by Liu et 
al. (2002) and Li et al. (2004). Note that information gain requires that numeric features be 
discretized. Li et al. (2003) indicated that mean-entropy discretized features are effective for 
classification using gene expression data. It measures the number of bits of information ob-
tained for class prediction by knowing the value of a feature. The information gain of a feature 
f is defined to be:

(Equation 2)

 

Hierarchical clustering and the reduction of gene redundancy

After applying feature filtering algorithms on the whole set of genes using the dataset 
FHCCancer9_train, we preselected the top-ranked genes from the whole set. Typically, top-50, 
top-100, top-200, and top-300 genes were preselected. These genes can be used as classification 
characteristics of the sample. However, those genes may still contain redundancies. For reduc-
ing the dimension of the feature set and improving the classification accuracy of the classifier, 
we then presented the HCC gene approach, hierarchical clustering, and collapsing clusters for 
the core gene selection. Figure 1 shows the flowchart used for the HCC gene approach.

The hierarchical clustering algorithm is a hybrid between an agglomerative (bottom 
up) and a divisive (top down) algorithm. The dendrogram is built from the root node (all 
elements) down to the leaf nodes, the clusters in each level are ordered with a deterministic 
algorithm based on the same distance metric that is used in the clustering. In this way, the or-
dering produced in the final level of the tree does not depend on that of the data in the original 
data set (as can be the case with algorithms that have a random component in their ordering 
methods). We refer to our particular implementation with PAM (Partitioning around medoid) 
as the partitioning algorithm to produce a dendrogram.

A collapsing step can be applied at any level of the tree to unite similar clusters. By 
combining the strengths of two celebrated approaches with clustering, partitioning, and ag-
glomerative methods, we create a more flexible algorithm for finding patterns in data. The 
Median (or Mean) Split Silhouette (MSS) criterium is used to determine the optimal number of 
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children at each node, decide which pairs of clusters to collapse at each level, and identify the 
first level of the tree with maximally homogeneous clusters. In each case, the goal is to mini-
mize MSS. Collapsing clusters output as the core genes the smallest set of representative genes.

Figure 1. HCC gene approach for the core gene selection flowchart.

Classification

K-nearest neighbor (k-NN)

The k-NN classifier (Dasarathy, 1991) is a well-known nonparametric classifier. In 
k-NN classification, the output is a class membership. An object is classified by a majority vote 
of its neighbors, with the object being assigned to the class most common among its k-nearest 
neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned 
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to the class of that single nearest neighbor. It can be useful to weight the contributions of the 
neighbors, so that the nearer neighbors contribute more to the average than the more distant ones.

Support vector machine (SVM)

Support vector machines are supervised learning models with associated learning al-
gorithms that analyze data and recognize patterns for classification and regression. SVMs can 
efficiently perform linear classification and a non-linear classification using what is called 
the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. In this 
study, a widely used SVM tool, LIBSVM (Chang and Lin, 2011), was used. There are 2 steps 
involved in the LIBSVM: 1) the dataset was trained to obtain a model, and 2) the model was 
used to predict the information for the testing dataset. The details for LIBSVM can be found 
in the reference (Chang and Lin, 2011).

Random decision forests (RF)

Random forests (Breiman, 2001) are an ensemble learning method for classification 
and regression that uses an ensemble of unpruned decision trees, each of which is built on a 
bootstrap sample of the training data using a randomly selected subset of variables. In sum-
mary, this algorithm possesses a number of properties, making it an attractive technique for the 
classification of microarray gene expression data.

RESULTS AND DISCUSSION

In this study, a hybrid method for classification was used to select the core cancer 
genes. Description of the algorithms is provided in the Material and Methods section. The re-
search consists of three parts. First, three gene ranking methods were used to build classifiers 
with all 22,277 features to select the top-ranked genes. All of the top-ranked genes are directly 
used for classification. Second, the hierarchical clustering algorithm and collapsing clusters 
were applied to select the core cancer genes. The effectiveness of feature selection was cross-
validated on the dataset FHCCancer9_train and was further tested on an independent testing 
dataset FHCCancer9_test. Third, these core genes were mapped and analyzed by functional 
annotations, clustering analysis, pathways, and networks.

Feature selection and validation

Each of the three gene ranking methods (Relief-F, information gain, and HCC) 
was used to select the top-50, top-100, top-200 and top-300 ranked genes. Each was cross-
validated on the dataset FHCCancer9_train. Five-fold cross-validation of parameters is used 
to estimate the performance of all the classifiers. Then, the accuracy of all the top-ranked 
genes was compared and was directly used for classification. The top-ranked genes are further 
processed using the HCC gene approach. Note that the HCC gene approach selects different 
numbers of genes with different classifiers and then those selected genes are tested for the 
efficiency of classification on the dataset FHCCancer9_test. The results show that applying 
the HCC gene approach produced higher classification accuracy than applying the top-ranked 
genes directly (Tables 1-3). In all cases, the best feature selection method for FHCCancer9 
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is PCC with k-NN classification. Finally, all 22,277 features were ranked by PCC and 41 
features (Supplementary File 2) were selected from the top-200 by the HCC gene approach 
as significant common features. As a classification method, the classifier with 41 genes reached 
greater classification accuracy (98.41%) than another by feature selection.

Relief-F  k-NN SVM RF

50 Top-ranked genes All 50 Acc 85.71 91.26 80.95
 Genes 27 27 27
 HCCgene Acc 90.47 93.65 88.88
100 Top-ranked genes All 100 Acc 88.88 92.06 82.53
 Genes 25 25 25
 HCCgene Acc 90.47 93.65 90.47
200 Top-ranked genes All 200 Acc 90.47 94.44 86.50
 Genes 33 33 33
 HCCgene Acc 94.44 96.82 92.06
300 Top-ranked genes All 300 Acc 87.30 92.85 87.30
 Genes 37 37 37
 HCCgene Acc 92.06 93.65 90.47

Table 1. Classification accuracy (Acc) on dataset FHCCancer9 using Relief-F.

PCC  k-NN SVM RF

50 Top-ranked genes All 50 Acc 93.65 90.48 88.89
 Genes 31 31 31
 HCCgene Acc 95.24 92.86 90.48
100 Top-ranked genes All 100 Acc 94.44 90.48 89.68
 Genes 23 23 23
 HCCgene Acc 97.62 93.65 90.48
200 Top-ranked genes All 200 Acc 95.24 93.65 90.48
 Genes 41 41 41
 HCCgene Acc 98.41 94.44 93.65
300 Top-ranked genes All 300 Acc 92.86 91.27 90.48
 Genes 35 35 35
 HCCgene Acc 96.83 93.65 91.27

Table 2. Classification accuracy (Acc) on dataset FHCCancer9 using PCC.

Information gain  k-NN SVM RF

50 Top-ranked genes All 50 Acc 88.10 83.33 90.48
 Genes 25 25 25
 HCCgene Acc 92.06 92.86 89.68
100 Top-ranked genes All 100 Acc 88.10 86.51 87.30
 Genes 20 20 20
 HCCgene Acc 88.10 92.86 89.68
200 Top-ranked genes All 200 Acc 86.51 84.13 88.10
 Genes 24 24 24
 HCCgene Acc 86.51 92.86 89.68
300 Top-ranked genes All 300 Acc 86.51 87.30 88.10
 Genes 45 45 45
 HCCgene Acc 87.30 92.86 88.89

Table 3. Classification accuracy (Acc) on dataset FHCCancer9 using information gain.

http://www.hrbmu.edu.cn/supplementary/supplementary.htm
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Cancer gene expression profile, clustering analysis and network

It is widely accepted that genes involved in the same networks and pathways likely 
share similar expression patterns. In order to elucidate possible mechanisms, we performed hier-
archical clustering of these 41 core cancer genes across all 375 samples of FHCCancer9 (Figure 
2). The clustering of the heat map rows shows the relationship between samples and the clus-
tering of the heat map columns shows the relationship between genes (Supplementary File 
3) (Figure 3). The comparison of the clustering results with Ingenuity Pathway Analysis (IPA, 
http://www.ingenuity.com) (Jimenez et al., 2009) may raise interesting questions or form new 
hypotheses. These complex relationships between core cancer genes may provide useful infor-
mation for further investigation. For example, one cluster includes NUSAP1, FEN1, and MCM2 
with similar expression patterns. Among them, FEN1 and MCM2 have a very close relationship 
and both hubs are in the network. According to the Atlas of Genetics and Cytogenetics in Oncol-
ogy and Haematology, FEN1 is implicated in prostate cancer, pancreatic cancer, gastric cancer, 
lung cancer, brain cancer, breast cancer, and testicular cancer. Another gene related to FEN1 in 
the network is CDK1. These two are connected by a solid line, which represents a very close 
relationship between the two genes. Indeed, it has been found that CDK1 can decrease FEN1 
activity in vitro (Freedland et al., 2003).

Figure 2. Clustering results of 41 genes by 375 samples.

Biological significance of selected core genes

The biological significance of the identified features must be determined by experi-
mental validation. We attempted to address the biological significance of these genes using 
systems biology analysis. The rationale of this approach is that these core genes should be 
related to cancers and play significant roles in networks and pathways important to cancers. In 
addition, we want to investigate whether the selected genes can interact with each other and 
form networks.

We first mapped the 41 significant features (Affymetrix probe sets) to 41 known 
genes. We then compared these genes to annotated cancer genes and genes possibly implicated 
in cancers collected by the Atlas of Genetics and Cytogenetics in Oncology and Haematology 
(http://atlasgeneticsoncology.org/). Among these 41 genes, 15 are annotated cancer genes and 
23 are possibly related to cancers (Supplementary File 4). Analysis of all genes using Inge-

http://www.hrbmu.edu.cn/supplementary/supplementary.htm
http://www.hrbmu.edu.cn/supplementary/supplementary.htm
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nuity Pathway Analysis of all genes using IPA reveals that all of the genes are either directly 
related to cancers or indirectly through interactions with cancer-related biomolecules. There-
fore, all selected genes are known to be or are possibly related to cancers.

Figure 3. Heat map of 41 core gene profile.

We further applied IPA to systematically analyze these 41 genes. IPA Network Analy-
sis constructs three networks among 41 genes (Supplementary File 5). The most significant 
network (Figure 4) consists of 22 genes. It is noteworthy that the most significant feature is 
mapped to TIMP1, a gene that is expressed in almost all carcinomas.

IPA Functional Analysis maps these genes to a set of diseases and disorders, deter-
mined by the P values of the Fisher exact test P values (Supplementary File 6). The top 10 
categories are displayed in Figure 5. The most significant function and disease category is 
cancer, which includes a number of cancer-related functional annotations. Cancer is also one 
of the top 5 significant disease categories, along with organismal injury and abnormalities, re-
productive system disease, connective tissue disorders, and tumor morphology, which include 
40, 36, 32, 15, and 11 of these 41 genes, respectively. Therefore, the majority of the identified 
genes are known to be related to cancer. IPA Canonical Pathway Analysis identifies metabolic 

http://www.hrbmu.edu.cn/supplementary/supplementary.htm
http://www.hrbmu.edu.cn/supplementary/supplementary.htm
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and cell signaling pathways where these 41 genes are enriched. The top 10 significant path-
ways, ordered by their Fisher exact test negative log P values, are displayed in Figure 6.

Figure 5. Functional analysis by IPA.

Figure 4. Network from 3 IPA networks. The solid line represents a relationship between the genes such that they 
are considered a member of the same.
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CONCLUSION

In this study, a novel hybrid approach was introduced and 41 core cancer genes were 
identified from a microarray dataset covering 9 cancer types. The combined use of two mecha-
nisms implemented in these methods makes the feature selection more reliable and robust. 
Using far fewer genes, our approach is able to offer better (or the same) accuracy compared 
with conventional approaches.

All selected genes are either known cancer genes or probably related to cancers. The 
analysis has clearly shown that the selected genes play important roles in cancers and form 
important networks through their interactions with each other. According to drug targets, we 
are currently collaborating with a pharmacologist to develop anticancer drugs.
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