
P.C. Carvalho et al. 856

Genetics and Molecular Research 5 (4): 856-867 (2006) www.funpecrp.com.br

Personalized diagnosis by cached solutions
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ABSTRACT. Statistical modeling of links between genetic profiles with
environmental and clinical data to aid in medical diagnosis is a challenge.
Here, we present a computational approach for rapidly selecting impor-
tant clinical data to assist in medical decisions based on personalized
genetic profiles. What could take hours or days of computing is available
on-the-fly, making this strategy feasible to implement as a routine with-
out demanding great computing power. The key to rapidly obtaining an
optimal/nearly optimal mathematical function that can evaluate the “dis-
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ease stage” by combining information of genetic profiles with personal
clinical data is done by querying a precomputed solution database. The
database is previously generated by a new hybrid feature selection method
that makes use of support vector machines, recursive feature elimina-
tion and random sub-space search. Here, to evaluate the method, data
from polymorphisms in the renin-angiotensin-aldosterone system genes
together with clinical data were obtained from patients with hyperten-
sion and control subjects. The disease “risk” was determined by classi-
fying the patients’ data with a support vector machine model based on
the optimized feature; then measuring the Euclidean distance to the hy-
perplane decision function. Our results showed the association of renin-
angiotensin-aldosterone system gene haplotypes with hypertension. The
association of polymorphism patterns with different ethnic groups was
also tracked by the feature selection process. A demonstration of this
method is also available online on the project’s web site.

Key words: Genetic polymorphisms, Essential hypertension,
Evironmental risks, Support vector machines, Feature selection

INTRODUCTION

Understanding links between genetic profiles with environmental/clinical data in patho-
genesis, follow-up or diagnosis is a challenge. Population heterogeneity and genetic and innu-
merous external factors all hold information with potential aid for medical decisions. A compu-
tational approach able to select important medical features for an individual genetic profile is a
path for personalized diagnosis and treatment.

The search for these combination patterns can quickly become computationally unfea-
sible depending on the number of parameters to inquire. Classical feature selection approaches
can rapidly find a good solution, but it is not guaranteed to be the best, nor possess a good
generalization performance.

Here we present a method for rapidly obtaining an optimal/nearly optimal mathematical
function that can evaluate the “disease stage” by combining information about genetic profiles
with personal clinical data. The former queries a database of pre-computed optimal feature sets
that best apply to a specific genetic profile. The database is previously generated by a new
hybrid feature selection method that makes use of support vector machines (SVM), recursive
feature elimination (RFE) and random sub-space search (RSS). Thus, this approach could as-
sist doctors during medical routine without needing great computing power, offering immediate
access to optimized cached solutions. What could take hours or days of computing time, thanks
to this approach, is made available on-the-fly. Here, we exemplify this methodology by using
hypertension as a study model. We search for diagnosis patterns linking polymorphisms in renin-
angiotensin-aldosterone system (RAAS) genes with clinical data. A demonstration program for
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personalized diagnosis is available online (“Diagnostic SVM”) taking advantage of the con-
structed database to promptly execute personalized diagnosis. Such a program is also an effi-
cient tool to show trends in the dataset.

Hypertension and the renin-angiotensin-aldosterone system

In the last decade, the RAAS has received increasing attention in the field of cardiovas-
cular diseases because of its relation to blood pressure maintenance and salt homeostasis. Poly-
morphisms in RAAS genes have already been associated with angiotensinogen concentration in
plasma (Inoue et al., 1997; Ishigami et al., 1997; Jeunemaitre et al., 1997), cardiovascular dis-
eases (Lindpaintner et al., 1995; Pontremoli et al., 2000; Alvarez et al., 2001), blood pressure
regulation (Baudin, 2002), vascular stiffness, and increased risk of pregnancy-induced hyperten-
sion development (Benetos et al., 1995), amongst others. Having genetic predisposition to a
certain disease does not mean that one will eventually have it; its pathogenesis is believed to be
the result of a number of complex factors, including ethnic background and, external and clinical
factors combined with genetic predisposition.

In the present study, information on six RAAS polymorphic genes is studied together
with patient clinical data to further verify the combinatory effect of RAAS polymorphisms in
essential hypertension. This is primarily achieved by generating a database of feature subsets
having optimal solutions for a given classifier and training set. The feature subsets are charac-
terized by a new hybrid machine learning method that combines SVM/RFE and RSS. RAAS
polymorphic genes are listed below:

1. M235T, polymorphism characterized by substitution of a methionine for a threonine
at codon 235 of the angiotensinogen (AGT) gene (Jeunemaitre et al., 1992);

2. Insertion/deletion (I/D), a polymorphism characterized by an I/D of an Alu fragment
in intron 16 of the angiotensin-converting enzyme (ACE) gene (Baudin, 2000);

3. A1166C, corresponding to an A to C substitution, at nucleotide position 1166 of the
angiotensin II type 1 receptor (AGTR1) mRNA sequence (Bonnardeaux et al., 1994);

4. C344T, polymorphism caused by the substitution of T for C at the locus -344 in the
promoter region of the aldosterone synthase gene (CYP11B2) (Stella et al., 2004);

5. A4582C, an A to C transversion, and G3514C, a G to C transition; both being poly-
morphisms in the mineralocorticoid receptor (MR) gene (Poch et al., 2001).

Support vector machines

SVM is a supervised learning method based on statistical learning theory and the prin-
ciple of structural risk minimization, developed by Vapnik (1995). This method has been suc-
cessfully used in a number of applications ranging from particle and face identification, text
categorization, data base marketing, and extensively in bioinformatics. An SVM model is evalu-
ated using the most informative patterns in the data (the support vectors) and is capable of
separating classes by finding an optimal hyperplane of maximum margin between both datasets.
For cases when data are not linearly separable, the use of a kernel-induced feature space can
be applied so data can be mapped to a higher dimension space and then classified by a hyper-
plane or a linear discriminate function (Boser et al., 1992).
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Feature selection

A feature selection is executed on a dataset to choose reduced subsets that best per-
form under a determined classification system and also reduce the pattern recognition cost.
Various feature selection methods are described in the literature; among them are the genetic
algorithms with decision trees (Shah and Kusiak, 2004), beam search, branch-and-bound, Pearson
correlation coefficients, Fisher criterion scores, floating search, and recently RFE with SVM.
According to Cover and Van Campenhout (1977), no non-exhaustive sequential feature selec-
tion procedure is guaranteed to produce the optimal subset, nor does any ordering of the error
probabilities. Since the number of subset possibilities grows exponentially with the amount of
features, exhaustive searching quickly becomes unfeasible, even for a moderate number of
features. Bearing this in mind, a hybrid sub-optimal feature selection method was applied to the
hypertension dataset and its performance compared to SVM RFE and RSS.

MATERIAL AND METHODS

Hypertension evaluation of the study population and RAAS genotyping

A total of 91 hypertensive patients from the Hypertension Division of the National
Institute of Cardiology Laranjeiras (Rio de Janeiro, RJ, Brazil) and 32 normotensive control
subjects were genetically investigated for RAAS gene polymorphisms at the Fiocruz Ge-
netics Department. Blood pressure was determined using a conventional mercury sphyg-
momanometer on the left arm in the sitting position on three different occasions, by the
same observer. Hypertension was defined as subjects with a systolic blood pressure ≥140
mmHg or diastolic blood pressure ≥90 mmHg. The possibility of secondary hypertension
was excluded after complete clinical, laboratorial and radiological investigation. The nor-
motensive group was characterized by the absence of family history of hypertension, renal
insufficiency, hepatic disease, or apparent coronary artery disease and a blood pressure <140/
90 mmHg. All participants were submitted to complete physical and routine biochemical analy-
ses.

Genomic DNA from patients and controls was extracted by a standard salting out
method. Polymerase chain reaction and restriction fragment length polymorphism were used to
detect AGT M235T, ACE I/D (Nalogowska-Glosnicka et al., 2000), AGTR1 A1166C
(Nalogowska-Glosnicka et al., 2000), CYP11B2 C344T (Stella et al., 2004), MR A4582C and
MR G3514C polymorphisms according to published procedures.

Assay quality control was performed by randomly selecting samples to be genotyped
again. This study was approved by the Institutional Ethics Review Board from Fiocruz, and the
participants provided written informed consent.

Input vector construction for support vector machine modeling

The input vector can have a total of 33 dimensions. The input vectors were constructed
having each vector representing a subject. Dimensions 1-18 are AGT0, AGT1, AGT2, ACE0,
ACE1, ACE2, AGTR0, AGTR1, AGTR2, CYP11B2_0, CYP11B2_1, CYP11P2_2, MRA0,
MRA1, MRA2, MRG0, MRG1, and MRG2. The number ending each variable indicates whether
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0, 1 or 2 risk alleles are present in the gene. Their values were “1” if present in the genome,
otherwise “0”. The remaining dimensions are indicated in Table 1.

Support vector machine analysis

The SVM approach is described as follows. Given a linearly separable training sample:
S = ((x

1
, y

1
), … (x

n
, y

n
)) that produces the equation of a linear classifier: 〈wt,x〉 + b, where w is

the normal vector, and b the bias of the hyperplane of maximum margin separating both classes,
an unknown sample or input vector x is classified as +1 if: 〈wt,x〉 + b ≥ 0, and classified as -1 if:
〈wt,x〉 + b < 0 as seen in Figure 1.

The primal formulation (Boser et al., 1992) consists in minimizing the Euclidean norm of
the vector w subject to the classification constraints:

Table 1. The columns represent the dimension number, variable name and value for the input vector construction,
respectively.

Dimention number Variable Value

19 Gender 1 = male; 0 = female
20 Age Normalized from 1 to 0
21 Systolic blood pressure Normalized from 1 to 0
22 Diastolic blood pressure Normalized from 1 to 0
23 Glucose 0 if ≤100 mg/dL; else 1
24 Total cholesterol 0 if ≤200 mg/dL; else 1
25 HDL cholesterol If (male)

{0 if ≥40 mg/dL; else 1}
If (female)
{0 if ≥50 mg/dL; else 1}

26 LDL cholesterol 0 if ≥130 mg/dL; else 1
27 Triglycerides 0 if ≥150 mg/dL; else 1
28 Urea 1 if ≥41 mg/dL; else 0
29 Body mass index 0.00 = 18.5-24.9

0.25 = 25.0-29.9
0.50 = 30.0-34.9
0.75 = 35.0-39.9
1.00 = ≥40

30 Brain natriuretic peptide 1 if ≥100 pg/mL; else 0
31 Ethny_0 1 if Caucasian; else 0
32 Ethny_1 1 if African descendant; else 0
33 Ethny_2 1 if Mestizo; else 0

Subject to: y
i 
(〈wt,x

i
〉 + b) ≥ 1

Minimize:      〈wt,w〉
2
1
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Figure 1. The hyperplane of maximum margin that separates the two classes is orthogonal to the shortest line connect-
ing the convex hulls of both classes, and intersects it in its midpoint. The margin is obtained by calculating the difference
of points x1, x2 and projecting them on the hyperplane normal vector w. Once the hyperplane is built, classification
determines what side of the hyperplane a sample is to be placed.

The algorithm searches the space of w’s and b’s to find the widest margin to place a
hyperplane. A straight forward approach is reducing it to a convex optimization problem by
minimizing a quadratic function under linear inequality constraints. SVM has become a standard
in statistical modeling, and further details are thus beyond the scope of this manuscript and can
be easily found in the literature (Vapnik, 1995).

SVM analysis was carried out using the SVMlight (Joachims, 1998) libraries programmed
in C, interfacing with scripts programmed in Perl 5.8 using the linear kernel and a cost param-
eter of 100 to ensure numerical stability. To compensate for having more hypertensive than
normotensive subjects in the dataset, two methods were considered: the first by applying a cost
factor where training errors on the positive samples (normotensive) outweigh errors on the
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negative samples (Joachims, 2002); the second by using flexible margins with different control
parameters.

Model evaluation

The leave-one-out (LOO) approach, also known as jackknife, is performed by exclud-
ing one feature vector from the subjects pool, and using the remaining as a training set. The
algorithm builds a support vector model based on the training set and then tries to properly
classify the excluded feature vector by establishing what side of the hyperplane it is to be
placed. The process is repeated until all feature vectors from the pool have gone through this
process (Joachims, 2000).

Feature selection and ranking

Support vector machine - recursive feature elimination

Given the training sample S, a SVM model is built and the weight vector w of dimension
length d is calculated as described above. The feature k having the smallest ranking criteria
where k = arg min

i
 {(w

i
)2} has the least influence in the hyperplane solution and is eliminated.

The remaining set of top ranked features should be taken into account as a group, so that a new
SVM model is built in a dimension space d-1. This process is repeated until a desired dimension
is obtained. Since features are removed one at the time, an importance ranking can also be
established (Guyon et al., 2002).

Random sub-space search

A script written in Perl 5.8.6 that later interfaced with SVMlight generated 230,000
random feature combinations originating from the initial set of 33 features. For each combina-
tion in the list, SVM LOO error, number of support vectors contained in the model, and the
tested combination were stored in an MySQL database.

Computing random sub-space search scores

One of the methods used to rank the features by order of importance was by querying
the RSS database to retrieve results having LOO error ≤2% ordered by LOO error and then by
number of support vectors and grouped according to these variables. A quadratic group ranking
function having the ordinate value decrease from 1 to 0.1 while its abscissa value ranges from
1 to the number of groups retrieved was used to score the features. An example of this ranking
method is shown in Table 2.

Hybrid recursive feature elimination-random sub-space feature scripts

RFE is initially applied to reduce the feature numbers from 33 to 20. Then, RSS per-
formed a semi-exhaustive search generating 230,000 feature set combinations. This method is
referred to as hybrid.
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Table 2. Example of feature ranking. The features (F) are first grouped by decreasing leave-one-out (LOO) error
coupled with number of support vectors (SV). Each group of features used in the solution is represented by a vector
of 0’s and 1’s where 0 indicates that the respective feature was not used for the given solution. The score (S) is
calculated by summing the product of the feature column with the ranking function applied to the group rank. In the
above example the features listed by order of importance are F1, F2, F3.

LOO error No. SV F1 S F1 F2 S F2 F3 S F3

0.2% 17 1 1 1 1 0 0
0.2% 17 1 1 0 0 1 1
1.8% 18 1 0.6 1 0.6 1 0.6
1.8% 19 0 0.1 1 0.1 0 0

Total score 2.7 1.7 1.6

Online demonstration of the method and script/data availability

An online version of the software called “Diagnostic SVM” is available at http://
www.dbbm.fiocruz.br/labwim/bioinfoteam/ by clicking on the software tab. The hybrid recur-
sive feature elimination - random sub-space feature scripts and data used for this study are
available upon request.

Given a genetic profile, “Diagnostic SVM” queries the MySQL feature solution data-
base to obtain the optimal feature set to the given profile. The optimal feature set is considered
to be the one having a best match with the individual’s genetic profile, a low LOO error, and a
reduced number of support vectors. Clinical data are then entered and a new SVM training is
performed to predict whether the input data belong to a hypertensive or normotensive subject.
By no means should “Diagnostic SVM” substitute for normal diagnostic procedures; it is cur-
rently a simplified model to further study SVM and combinatory effects of RAAS with clinical
data in hypertension.

Note: All analyses were carried out on a Pentium IV with 256 MB of RAM and a 2.0
GHz clock frequency.

RESULTS

Feature selection and ranking

Genetic and clinical data of 91 hypertensive patients and 31 control subjects were ana-
lyzed in order to find correlations with diagnostic value. An initial SVM analysis was able to
classify with a 13.11% LOO error among subjects when using the complete (33) feature set,
making it evident that further refinements in the methodology are needed.

The RSS was able to identify subsets having 1 perfect solution, 4 solutions with a 0.82%
LOO error, 153 solutions with a 1.64% LOO error, and 703 solutions with a 2.46% LOO error.
The majority of solutions (17,436) had a 9.02% LOO error.

The hybrid search narrowed the number of features to 20 using RFE and then searched
for solutions using the RSS. The hybrid approach identified subsets having 1 perfect solution, 22



P.C. Carvalho et al. 864

Genetics and Molecular Research 5 (4): 856-867 (2006) www.funpecrp.com.br

subsets with a 0.82% LOO error, 598 solutions with a 1.64% LOO error, and 1855 solutions
with a 2.46% LOO error. The majority of solutions (21,895) contained a 6.65% LOO error. A
more detailed distribution of error occurrence vs LOO error for both the RSS and hybrid meth-
ods can be seen in Figure 2. All solutions were stored in an MySQL database.

Figure 2. Matrix plot of number of leave-one-out (LOO) error occurrences vs LOO error for random and hybrid methods
showing that the hybrid method finds better solutions faster.
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When comparing only the top 10 ranked features selected by the three methods, sys-
tolic blood pressure, Ethny_0, Ethny_1, CYP11B2_1 are shared among all. The hybrid also
shared LDL cholesterol and Ethny_2 with RFE and brain natriuretic peptide with RSS. ACE_0
and ACE_1 were also shared between RFE and RSS. The predominant presence of ethnicity
among solutions can easily be explained because hypertension is not a monogenetic disorder, but
a polygenic trait (Dominiczak et al., 2004) meaning that a gene may be responsible for the
disorder in one population, but not necessarily in another.

“Diagnostic SVM” analysis

“Diagnostic SVM” is an efficient tool to search for trends in data. After entering the
genetic profile and clinical data in “Diagnostic SVM”, it predicts whether a subject is hyperten-
sive and returns the dot product of 〈wt,x〉 summed with the bias b. By varying entry values, it is
easy to see whether the change favors normotensive classification or not, by the dot product
result. When compensating for normotensive in the unbalanced dataset, better results seemed
to be obtained when using flexible margins than when applying a cost factor where training
errors on the positive samples outweigh errors on the negative samples.

In general, the results show that AGT0, ECA0, AS1, MRA0, MRG0, MRG1, glucose,
Ethny_0, and Ethny_1 favor normotensive classification while ECA1, MRA1, MRA2, LDL
cholesterol, triglycerides, urea, and brain natriuretic peptide favor hypertensive classification.
As expected, wild-type genes favor SVM classification for normotensive. Some unexpected
results were also obtained such as high LDL cholesterol favoring normotensive in a profile
having Ethny_1 and AGT0. Glucose favoring normotensive classification could be a conse-
quence of the relatively young age in normotensive subjects (average = 48 years); the high
glucose index could act as a diuretic, making the body eliminate fluids consequently lowering its
pressure. In the long-run, glucose attacks the kidney and favors the development of hyperten-
sion.

DISCUSSION AND CONCLUSIONS

Hypertension is one of the most important risk factors for cardiovascular diseases.
Although its pathogenesis is not well elucidated, it is known that high blood pressure is influ-
enced by a complex interaction between environmental and genetic factors. In the current
study, hypertension is used as a model for the methods employed which, in accordance with
other works, yield strong evidence of a genetic association between the polymorphic RAAS
genes and essential hypertension (Isa et al., 1990; Benetos et al., 1996). Our aim was not to
demonstrate a new method for diagnosing hypertension, but to use it as a study model since it
can be easily diagnosed. The same strategy presented here could be used for other hyperten-
sion cases such as predicting medication for a combined genetic/clinical profile, or even be
applied to other pathologies.

The feature ranking strategy was based on RFE and/or grouping results obtained from
RSS and sorting them by LOO error followed by number of support vectors. The number of
support vectors is related to the capability of generalization of a model: a model with less support
vectors is expected to generalize best. It was also observed that, in general, the expected LOO
error is proportional to the number of support vectors. We did not use a higher order k-fold
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cross-validation technique due to the limited and unbalanced dataset. For more complex models,
other parameters could also be used to efficiently estimate the SVM generalization perfor-
mance such as the geometrical margin between classes or even the ξα-estimators (Joachims,
2000). When dealing with an extremely large number of features, after using RFE, the RSS
could also be substituted by other methods.

The complex combination of a genetic profile with environmental/clinical data in patho-
genesis, follow-up or diagnosis is a challenge. Population heterogeneity and innumerous exter-
nal factors greatly influence a classifier decision; knowing which ones to choose is a key for
improved diagnosis. Poorly chosen features may add noise and degrade classifier performance.
Increasing the number of features can quickly make exhaustive feature search impossible.
Classical feature selection approaches can rapidly find a good solution, but it is not guaranteed
to be the best, nor possess a good generalization performance for a desired genetic profile.

Obtaining optimal pre-computed feature selected subsets to inquire for important clini-
cal data, followed by SVM analysis, is a solution that can assist doctors in personalized medical
diagnosis and that can also reveal trends in the dataset. The hybrid method outperformed RFE
and RSS when used in their isolated forms, e.g., finding good solutions faster. The construction
of such databases can be very time-consuming: the database for this work took up to 5 days.

“Diagnostic SVM” justifies the importance of such databases because it can instantly
retrieve a set of clinical features that, combined with the genetic profile, performs best, followed
by SVM classification. What could take hours or days of computing is available on-the-fly
making this strategy feasible to implement as a routine without the demand of great computing
power. The functional value of the classification process (〈w,x〉 + b) can also be an indicator to
measure the “degree of risk or disease stage” of hypertension, or of other pathologies in future
studies.

The optimal and near optimal solutions generated here are of great importance, espe-
cially when used for the design of systems based on heuristics and rules in a knowledge-specific
domain that can advice or make recommendations, much like a human expert would. These
approaches applied to expert systems, can result in a great performance, especially where a
good deal of training and specialized knowledge is required to assist doctors in future personal-
ized diagnosis.
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