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ABSTRACT. In this study, the in vivo interaction system of oligopeptide 
permease (Opp) proteins was analyzed, and a high expression system of 
inner membrane protein OppC was constructed by flexible usage of the 
green fluorescent protein (GFP). The Escherichia coli OppC gene, which 
encodes a transmembrane component of oligopeptide transporter, was 
cloned into different vectors. Recombinant plasmids were transformed 
into different E. coli strains, and the expression conditions were optimized. 
The effect of plasmids and expression strains on OppC production was 
evaluated by in-gel and western blot analyses. OppC produced by the 
pWaldo-GFPe vector, harboring the GFP reporter gene, transformed into 
E. coli C43(DE3) provided sufficient functional protein for biochemical 
and biophysical studies. In vivo protein-protein interactions were detected 
among oligopeptide permease proteins using a GFP fragment reassembly 
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protocol. The substrate binding protein OppA showed no interaction with 
the other components, while the ATP-binding component OppD did not 
interact with OppF. OppD and OppF interacted with the transmembrane 
components OppB and OppC. OppB also showed direct interaction with 
OppC. In vivo OppC functionality was determined by constructing an OppC 
gene deletion strain. OppC was shown to be essential for peptide uptake, 
and non-essential for cell viability. These results could help in elucidating 
the oligopeptide transport mechanism in bacteria.
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INTRODUCTION

A number of bacterial species cannot synthesize amino acids, fatty acids, and certain 
other essential elements (Matthews, 1975; Lin et al., 2001), and uptake essential nutrients from 
their environment. The ABC transporters mediate a large fraction of the nutrient uptake capacity in 
bacteria. Some species typically possess multiple peptide transporters that specifically facilitate the 
utilization of different peptides as amino acid and nitrogen sources (Payne and Smith, 1994; Juillard 
et al., 1995). The oligopeptide permease (Opp), or the oligopeptide uptake system, represents the 
major peptide uptake method adopted by archaea and bacteria.

Besides transporting oligopeptides, the Opp systems in several pathogenic bacteria (Wang 
et al., 2004; Moutran et al., 2004; Flores-Valdez et al., 2009; Moraes et al., 2014) participate in 
distinct life processes, including the binding of soluble host proteins (Cundell et al., 1995; Henrich 
et al., 1999; Fenno et al., 2000), cellular signal transudation (Ruhfel et al., 1993), recycling of 
cell-wall peptides released from the growing peptidoglycan (Goodell and Higgins, 1987), and 
initiation of sporulation (Perego et al., 1991). The Opp system plays a leading role in imparting 
cell sensitivity to aminoglycoside antibiotics (Kashiwagi et al., 1992), and imparts virulence and 
pathogenicity to the organisms (Moraes et al., 2014). The blocking of oligopeptide transport in 
pathogenic bacteria usually resulted in a reduction in virulence (Reniere et al., 2015). Therefore, 
oligopeptide transporters are believed to be effective targets in some multi-drug-resistant bacteria.

Opp permease is a multicomponent system that is usually composed of five subunits: 
two integral membrane subunits (OppB and OppC) forming the transmembrane pore and two 
cytoplasmic ATP-binding subunits (OppD and OppF) that can hydrolyze ATP, or work in conjunction 
with one periplasmic (or membrane-bound lipoprotein in Gram-positive bacteria) peptide-binding 
subunit (OppA), which confers high affinity (but low specificity) to oligopeptide uptake systems.

The mechanism of the Opp system might vary from that of the mammalian oligopeptide-proton 
symporters PepT1 and PepT2 (Newstead et al., 2010), the dipeptide permease (Dpp) system (Letoffe 
et al., 2006) and specific nutrient transporters (Suzuki et al., 2005) in bacteria. Further studies on Opp 
transporters would help clarify the transport mechanism, as well as the evolutionary pathway from the 
dipeptide transporter to oligopeptide transporter, in bacteria. Understanding the mechanism may also 
provide deeper insights into the oligopeptide transportation and drug-resistance mechanisms.

One major limitation to the study of membrane proteins is the non-availability of pure and 
sufficient functional protein. Over-expression and purification of OppC will be a challenge. In this 
study, the expression vectors and strains, and optimized expression conditions of OppC extraction 
from Escherichia coli k-12 were screened. Green fluorescent protein (GFP), a fusion protein, was 
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used to facilitate the soluble expression of OppC, and to optimize the expression and purification 
protocols. Sufficient purified protein was obtained for solid-state nuclear magnetic resonance and 
other biophysical studies, such as crystallization for protein structure research.

Peptides have been previously utilized as nitrogen sources (Matthews, 1975; Juillard et 
al., 1995). In vivo function of OppC was tested using M9 medium (which was used to cultivate the 
OppC deletion strain), using a peptide mixture as the only nitrogen source. Through this, OppC 
was proven to be essential for peptide uptake in E. coli.

The transport mechanism was analyzed by evaluating the in vivo protein-protein 
interactions among oligopeptide permease proteins using a previously described GFP fragment 
reassembly protocol (Wilson et al., 2004; Magliery et al., 2005). OppB and OppC were found to be 
located at the center of this interaction map. Studies on the function and interaction of OppC would 
help gain deeper insights into the peptide transport mechanisms, in addition to assisting in the 
development of novel drugs against multi-drug-resistant pathogenic bacteria (Moraes et al., 2014). 

MATERIAL AND METHODS

Strains and plasmids

Genomic DNA of E. coli k-12 was used as the template for cloning OppC. E. coli BW25113 
was used to knock out OppC; E. coli JM109 was used for gene cloning, and the BL21(DE3), Rosetta 
(DE3), C41(DE3), C43(DE3) strains were used for protein expression. pACYC-duet1, pET28, and 
pET28-derived pWaldo-GFPe were employed as gene cloning and expression vectors. pET11a-
link-NGFP and pMRBAD-link-CGFP, kindly gifted by Professor Lynne Regan of Yale University, 
were used for protein interaction analyses. KOD-Fx polymerase and restriction enzymes were 
purchased from ToYoBo (Shanghai, China) and Fermentas (Shenzhen, China).

Construction of expression and interaction plasmids

The OppC encoding sequence was amplified by standard PCR, using the KOD-Fx DNA 
polymerase. The expression primer sequences are depicted in Table S1. The PCR products were 
gel-purified, digested with restriction enzymes, and ligated into the pre-digested expression pACYC-
duet1, pET28, or pWaldo-GFPe vectors. Coding sequences of OppA, OppB, OppC, OppD, and 
OppF were amplified by interaction primers (Table S1). PCR products were gel-purified, digested 
with restriction enzymes, and subsequently ligated into the pre-digested interaction plasmids 
pET11a-link-NGFP and pMRBAD-link-CGFP. The ligation mix was transformed into E. coli JM109 
competent cells. The sequences of each transformant were confirmed by sequencing in a BGI 
analyzer (Shenzhen, China), and analyzed using a Basic Local Alignment Search Tool (BLAST) 
algorithm on the National Center for Biotechnology Information (NCBI) website. Multiple-sequence 
alignment of proteins was performed using the Clustal X2 program (Thompson et al., 1994). The 
sequence properties were analyzed using the DNAMAN 6.0 program.

Recombinant expression of OppC

Optmization of OppC-GFP expression

pACYC-OppC, pET28-OppC, and pWaldo-OppC were transformed and expressed in 

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6621_supplementary.pdf
http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6621_supplementary.pdf
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BL21(DE3), Rosetta(DE3), C41(DE3), and C43(DE3) cells. The cells of fresh pET28-OppC and 
pWaldo-OppC transformants were cultured in 2 mL Luria-Bertani (LB) medium supplemented 
with 50 μg/mL kanamycin [BL21(DE3), C41(DE3), C43(DE3)], or 50 μg/mL kanamycin and 
34 μg/mL chloramphenicol [Rosetta(DE3)], and cultured overnight at 37°C and 200 rpm. The 
pACYC-OppC transformants were cultured overnight in medium containing chloramphenicol 
(34 μg/mL) at 37°C and 200 rpm. The overnight culture was transferred to 10 mL fresh LB 
medium and incubated at 37°C until an OD600 of 0.5-0.6 was reached. The OppC expression 
was subsequently induced with isopropyl-thio-β-D-thiogalactopyranoside (IPTG) at 18°, 25°, and 
30°C. The cells were harvested 20 h after induction by centrifugation, and washed with Tris-
buffered saline (TBS, pH 8.0). The pellet could be used immediately for following experiments, 
or stored at -20°C for at least 1 week.

In-gel analysis of OppC-GFP expression

The cells were treated for sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE). The recombinant strains were induced with 0.1 mM IPTG and cultured at 18°C and 
200 rpm for 20 h, and subsequently harvested by centrifugation. The cells were resuspended, 
mixed with solubilization buffer (0.02% bromophenol blue, 20% glycerol, 5 mM EDTA, pH 8.0, 
200 mM Tris-HCl, pH 8.8, 4% SDS, and 0.05 M DTT), and incubated at 37°C for 5 min. The 
samples were centrifuged at 13,000 g at 4°C for 15 min, and the resultant suspension analyzed by 
SDS-PAGE. The gel was exposed to ultraviolet light, and in-gel fluorescent images were captured 
using a CCD camera system (Bio-Rad, Shanghai, China). The molecular weight of the fluorescent 
band was confirmed by staining the gel with Coomassie brilliant blue R250. The cells were also 
disrupted with 5X SDS loading buffer (10% SDS, 0.5% bromophenol blue, 50% glycerol, 250 mM 
Tris-HCl, pH 6.8, and 5% β-mercaptoethanol). The protein was thoroughly denatured by incubation 
at 95°C for 5 min, and analyzed by SDS-PAGE. Following electrophoresis, the gel was stained with 
Coomassie brilliant blue R250, in order to visualize the protein bands.

Over-expression and purification of OppC-GFP

Overnight culture of C43(DE3) containing pWaldo-OppC (50 mL) was inoculated into 1 
L LB media. At an OD600 of 0.5-0.6, 0.1 mM IPTG was added to induce protein expression. The 
temperature was reduced from 37° to 18°C, and incubation continued for 20 h at 200 rpm. The cells 
were harvested by centrifugation, and disrupted in TBS, pH 8.0, containing 1 μM DNase I (Sigma-
Aldrich), 1 μM lysozyme (Sigma-Aldrich), and 1 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich) 
by French press. The cell debris was removed by centrifugation at 5,000 g for 15 min at 4°C.

The supernatant was then ultracentrifuged at 100,000 g for 1 h to pellet the whole membrane, 
which was subsequently solubilized in 20 mM Tris-HCl, pH 7.8, containing 10 mM imidazole, 
100 mM NaCl, and 1% (w/v) DDM (n-dodecyl-β-D-maltoside) for 2 h at room temperature. The 
solubilized membrane was ultracentrifuged at 100,000 g for 1 h to remove membrane debris prior 
to being loaded onto a nickel-nitrilotriacetate affinity resin (Ni-NTA; Qiagen). The protein bound to 
Ni2+ was washed with 30 mM imidazole, 20 mM Tris-HCl, pH 7.8, 300 mM NaCl, and 0.016% DDM, 
and eluted with 300 mM imidazole, 20 mM Tris-HCl, pH 7.8, 300 mM NaCl, and 0.016% DDM. The 
eluted protein was desalted using a HiPrep 26/10 Desalting column (GE Healthcare), and digested 
overnight with Tobacco Etch Virus (TEV) protease at room temperature. The aggregated protein 
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was removed by centrifugation at 5000 g for 15 min. The supernatant was loaded onto an Ni-NTA 
to remove the GFP-His8 fragment. The effluent containing purified protein was pooled and further 
purified by size-exclusion chromatography, using a HiLoad 16/60 Superdex 200 prep grade column 
(GE Healthcare). The purified protein was subsequently pooled and concentrated. The desalt and 
gel-filtration buffer consisted of 20 mM Tris-HCl, pH 7.8, 100 mM NaCl, and 0.016% DDM. The 
protein purity was monitored on a 12% SDS-PAGE. The protein concentration was determined 
using the Bradford method, using bovine serum albumin as the standard.

Western blot analysis

The protein expression was confirmed by western blot analysis. OppC-GFP fusion protein 
was resolved on a 12% SDS-PAGE which was electro-blotted onto a nitrocellulose membrane 
using an iBlot™ Dry Blotting System (Invitrogen). The membrane was blocked with PBS, pH 7.4, 
and 0.1% Tween 20 (PBST) containing 5% (w/v) non-fat dry milk for 1 h at room temperature. The 
blocked membrane was then washed thrice with PBST and incubated with anti-His monoclonal 
antibody (anti-6His, 400 μg/mL; 1:1000 dilution) for 1 h at room temperature. The membrane was 
washed again and incubated with a horseradish peroxidase-labeled antibody (goat anti-mouse, 0.8 
mg/mL; 1:5000 dilution) for 1 h at room temperature. The blot signal was revealed by enhanced 
chemiluminescence, and the protein bands visualized by autoradiography. The OppC expression 
was also confirmed by mass spectrometry.

Functional assays

OppC del-F and OppC del-R primers (Table S1) were used to generate the OppC knockout 
E. coli strain, using the Red system. E. coli BW25113 cells, containing the Red helper plasmid was 
grown in 5 mL SOB medium supplemented with ampicillin and L-arabinose at 30°C, until an OD600 
of 0.5-0.6 was reached. Competent cells were obtained by washing with ice-cold 10% glycerol. The 
kanamycin fragment in pKD13 was cloned using OppC del-F and OppC del-R by standard PCR. 
The PCR product (upstream 55 bp and downstream 54 bp), homologous to the adjacent regions of 
OppC, was digested with DpnI and gel-purified. The cells were subjected to electroporation using 
a MicroPulser (Bio-Rad) with a 0.2-cm chamber according to the manufacturer protocols, using 80 
ng PCR product and 100 μL competent cells. The OppC deletion was confirmed by PCR, using 
OppC expression F1 and R1 primers (Table S1).

To determine if OppC was essential for oligopeptide transport, we tested the ability of 
OppC deleted E. coli strain in acquiring nitrogen through peptide uptake. A mixture of two to five 
amino acid peptides (Lys-Leu, Lys-Leu-Gly, Glu-Cys-Gly, Lys-Leu-Leu-Gly, Lys-Leu-Gly-Leu, and 
Lys-Leu-Leu-Leu-Gly) served as the only nitrogen source in M9 medium. In order to determine 
whether the OppC could compensate this defection, plasmid pACYC-OppC was transformed into 
the OppC deleted strain.

OppC interacts with other components of the oligopeptide permease system

The interaction between OppC and the other four components of the oligopeptide permease 
system was detected using a GFP fragment reassembly protocol. The coding sequences of OppA, 
OppB, OppC, OppD, and OppF were cloned into pET11a-link-NGFP and pMRBAD-link-CGFP. 

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6621_supplementary.pdf
http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6621_supplementary.pdf
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Both plasmids were simultaneously transformed into BL21(DE3), using 1-10 ng of each construct. 
The doubly transformed cells were incubated at 37°C and 200 rpm for 1 h, and subsequently plated 
onto selective LB agar plates containing 35 μg/mL kanamycin and 100 μg/mL ampicillin. Single 
colonies were selected and incubated overnight in LB liquid medium with shaking at 37°C. A 1:10 
dilution of fresh overnight culture (5-10 μL) was plated onto screening media containing 10 μM 
IPTG and 0.2% arabinose, in order to screen for GFP reassembly.

As GFP reassembly is effectively irreversible, in-gel analysis was also performed to verify 
the interactions. Fresh overnight culture (500 μL) was inoculated into 20 mL fresh LB medium, and 
incubated at 37°C, 200 rpm until an OD600 of 0.5-0.6 was attained. The temperature was shifted 
to 18°C, and 10 μM IPTG and 0.2% arabinose were added to induce the expression of genes in 
pET11a-link-NGFP and pMRBAD-link-CGFP, respectively. The cells were harvested after 24 h, and 
treated with SB for in-gel SDS-PAGE analysis.

RESULTS

Protein interaction and OppC expression plasmid construction

The coding sequence of OppA, OppB, OppC, OppD, and OppF was amplified using E. 
coli k-12 genomic DNA as the template. OppA, OppB, OppC, and OppD were cloned into pET11a-
link-NGFP vectors, while OppB, OppC, and OppF were inserted into a pMRBAD-link-CGFP. The 
resulting plasmids were called pN-OppA, pN-OppB, pN-OppC, and pN-OppD, and pC-OppB, pC-
OppC, and pC-OppF, respectively. The constructions were confirmed by DNA sequencing.

The coding sequence of OppC was also cloned into different expression vectors, which 
were named pACYC-OppC, pET28-OppC, and pWaldo-OppC. The insertion was confirmed by 
DNA sequencing.

Optimizing strains for OppC expression

The optimal expression conditions for pWaldo-OppC were determined by monitoring 
bacterial growth and protein fluorescence under varying temperature and IPTG concentrations. 
The OppC-GFP fusion protein was analyzed by SDS-PAGE and western blotting, using an antibody 
against the His-tag.

The OppC-GFP expression and solubility levels were significantly different among the four 
strains when induced with 0.1 mM IPTG at 18°C for 20 h. The yield of OppC-GFP was much higher 
in the BL21(DE3) and Rosetta(DE3) strains than in C43(DE3) and C41(DE3) (Figure 1B). However, 
visual inspection of the strains and the in-gel GFP bands showed better expression of OppC-GFP 
in C43(DE3) and C41(DE3) than in the BL21(DE3) and Rosetta(DE3) strains (Figure 1A). Although 
we observed a higher yield of OppC-GFP in the BL21(DE3) and Rosetta(DE3) strains, the protein 
could not fold properly. Well-folded OppC-GFP was fluorescent, which could be enhanced by UV 
light. Therefore, C43(DE3) was selected to over-express and purify the OppC-GFP protein. The 
expression of OppC-GFP in C43(DE3) was not affected by IPTG concentration (varying from 0.1 
to 1.0 mM (Figure 1C and D); however, increasing the incubation temperature from 18° to 30°C 
slightly decreased the expression level and folding of OppC-GFP. 

Finally, the optimized expression conditions were determined to be as follows: C43(DE3) 
containing pWaldo-OppC, induced with 0.1 mM IPTG, and cultured at 18°C for 20 h prior to 
harvesting.
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In-gel mobility shift of the OppC-GFP fusion protein

The OppC-GFP fusion protein obtained from different expression strains was analyzed 
by SDS-PAGE and in-gel detection of GFP fluorescence. The protein sample was not denatured 
for in-gel analysis. Each sample displayed a single prominent fluorescent band. The gel was 
also analyzed by western blot using an anti-His6 antibody. Surprisingly, two obvious bands were 
observed. One band was located at the same position as the fluorescent band, while the other band 
was approximately 10 kDa higher, which was consistent with the expected molecular weight of 
OppC-GFP (Figure 2A and B). The intensity ratios of the two bands were different. The anomalous 
migration of fluorescent bands might be a result of preservation of the GFP moiety structure.

The origin of the dual migration was analyzed by preparing protein samples by 
denaturing and non-denaturing methods. The non-fluorescent band with the correct molecular 
mass was found to be denatured OppC-GFP. The OppC-GFP protein represented by the GFP 
band was in the folded form. The intensity of the non-denatured bands was closely related to the 
protein expression level, and was not affected by the sample preparation process (Wang et al., 
2011). The fluorescent bands were proposed to represent the soluble portion of the target protein 
(Geertsma et al., 2008).

Figure 1. In-gel fluorescence analysis of OppC-GFP expression. A. and B. OppC-GFP expression in diverse strains. 
Lane 1 = marker; lane 2 = C43(DE3) strain without IPTG induction; lanes 3-6 = C43(DE3), C41(DE3), BL21(DE3), and 
Rosetta(DE3) strains grown at 18°C and induced with 0.1 mM IPTG. C. and D. OppC-GFP expression in C43(DE3) 
under different culture conditions. Lane 5 = marker; lanes 1-3 grown at 18°C and induced with 0.1, 0.5, and 1.0 mM 
IPTG; lanes 4 and 6 = not induced with IPTG; lanes 7-9 = cells induced with 0.1 mM IPTG and grown at 30°, 25°, and 
18°C. A. and C. depict in-gel fluorescence results. B. and D. depict the same gel stained with Coomassie brilliant blue. 
The arrow indicates OppC-GFP fluorescent fusion.
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OppC-GFP produced by the BL21(DE3) and Rosetta(DE3) strains showed two bands. 
The intensity of denatured bands was much higher than that of the lower bands. C41(DE3) and 
C43(DE3) strains produced proteins that expressed only one obvious fluorescent band (Figure 
2A). According to the above observation, OppC-GFP must be soluble in C41(DE3) and C43(DE3) 
and insoluble (almost) in BL21(DE3) and Rosetta(DE3). This conjecture was tested by western 
blot analysis of the solubility of OppC-GFP produced by the four bacterial strains. A greater portion 
of the protein expressed by C41(DE3) and C43(DE3) was found to be insoluble (Figure 2B). The 
intensities of the soluble fractions in BL21(DE3) and Rosetta(DE3) were found to be similar as in 
C41(DE3) and C43(DE3). However the fluorescence of the cell and in-gel protein bands was found 
to be obscure. This showed that BL21(DE3) and Rosetta(DE3) might be able to express some 
OppC-GFP as soluble, but improperly folded fusion proteins.

Purification of the OppC-GFP protein

C43(DE3) was used to over-express OppC-GFP as this strain could promote the solubility 
of the protein. Detergent DDM was used to extract and solubilize OppC-GFP from the membrane. 
Ni2+-NTA column enriched the protein from the cell lysate. TEV digested OppC-GFP overnight 
and could separate OppC and GFP. Subsequently, the GFP moiety containing the 8-His tag 

Figure 2. Western blot confirmation and purification of OppC. A. Western blot analysis of OppC-GFP expression 
in different host strains. Samples were mixed with solubilization buffer and incubated at 37°C for 5 min. Lower and 
upper bands indicate the positions of fluorescent and non-fluorescent species of OppC-GFP, respectively. Lane 1 
= Rosetta(DE3); lane 2 = BL21(DE3); lane 3 = C41(DE3); lane 4 = C43(DE3); lane 5 = uninduced. B. Western blot 
analysis of OppC-GFP expression in different strains. The cells were disrupted by sonication, and denatured by boiling 
for 5 min. Lanes 1 and 2 = C43(DE3) soluble fraction and insoluble fraction; lanes 3 and 4 = C41(DE3) soluble and 
insoluble fractions; lanes 5 and 6 = BL21(DE3) soluble and insoluble fractions; lanes 7 and 8 = Rosetta(DE3) soluble 
and insoluble fraction. C. SDS-PAGE analysis of purified OppC. M = protein marker; lane 1 = purified OppC protein; 
lane 2 = eluted GFP moiety.
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was removed by Ni2+-NTA. The OppC was further purified by gel filtration, in order to obtain a 
homogeneous protein. The purified OppC protein was found to be quite pure (Figure 2C).

The protein could be traced during the purification process using GFP as the reporter. 
Fractions containing OppC were pooled and concentrated to approximately 10 mg/mL. 
Approximately 0.5 mg OppC protein was purified from 1 L of the bacterial culture. This volume and 
concentration could support protein function and crystallography research.

OppC is essential for peptide transport

OppC was replaced by a kanamycin-resistant gene, and the resultant E. coli strain named 
∆OppC. OppC gene deletion was confirmed by PCR (data not shown). In order to test if OppC is 
essential for peptide transport in E. coli, M9 medium was used to cultivate the ∆OppC strain, and 
a mixture of 2-5 peptides was used as the only nitrogen source. The growth conditions for wild-
type E. coli, using peptides as the sole nitrogen source, were applied as the control. Wild-type E. 
coli growth in peptide-containing M9 medium was not affected compared to cultivation in LB broth 
(peptide-rich medium), which showed that the peptide mixture could work as the nitrogen source. 

The OppC gene in pACYC-OppC could compensate for the ∆OppC defection. The wild-
type E. coli and pACYC-OppC-transformed ∆OppC showed normal growth. The OppC-depleted 
strain containing the pACYC-duet1 empty vector showed normal, but depleted growth (Figure 3A).

Figure 3. Functional assay of OppC in vivo. A. Cell growth of the ∆OppC strain under different cultivation conditions. 
Error bars represent means ± SD (N = 3). B. Protein-protein interactions among oligopeptide permease proteins. The 
BL21(DE3) strain, transformed with interaction plasmids, was induced with 10 μM IPTG and 0.2% arabinose. The 
fluorescent property of GFP was activated by UV light. 1-10: pET11a-link-NGFP and pMRBAD-link-CGFP; pN-Z and 
pC-Z; pN-OppA and pC-OppB; pN-OppA and pC-OppC; pN-OppB and pC-OppC; pN-OppB and pC-OppF; pN-OppD 
and pC-OppB; pN-OppD and pC-OppC; pN-OppC and pC-OppF; and pN-OppD and pC-OppF.

OppC interacts with other oligopeptide permease proteins

pN-OppA and pC-OppB, pN-OppA and pC-OppC, pN-OppB and pC-OppC, pN-OppB 
and pC-OppF, pN-OppC and pC-OppF, pN-OppD and pC-OppB, pN-OppD and pC-OppC, and 
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pN-OppD and pC-OppF were simultaneously transformed into BL21(DE3). The protein-protein 
interactions were analyzed using screening media containing 10 μM IPTG and 0.2% arabinose, 
in order to screen for GFP reassembly. The assembled GFP displayed in-cell fluorescence. 
This showed that the substrate binding protein OppA did not interact with the transmembrane 
components OppB and OppC. On the other hand, the ATP-binding component OppD had no 
direct interaction with OppF. OppB and OppC could interact with each other and also with OppD 
and OppF (Figure 3B). In-gel analysis of GFP reassembly confirmed the in vivo results (Figure 
S1).

DISCUSSION

Many powerful vectors could be used to express foreign genes in E. coli, and the proteins 
could be easily purified by tags. pET28 and pACYC-duet1 were used to express the inner 
membrane protein OppC. The yield was not very good (data not shown); however, the yield of 
OppC in pWaldo-GFPe was much higher. pWaldo-GFPe used GFP as the reporter, which was 
convenient for the optimization of the expression and purification protocols. GFP allowed for real-
time monitoring of the target protein during the expression and purification period.

As the GFP gene was located at the C-terminal of the OppC gene, the fluorescence 
could be a reporter of the expressed full-length OppC. The GFP moiety was exceptionally stable, 
and the fluorescence could be detected even in SDS-PAGE with a detection limit of less than 5 
ng GFP per protein band (Drew et al., 2006). Therefore, pWaldo-GFPe was selected for OppC 
expression.

High-level OppC-GFP expression strains with greater solubility were determined by 
testing a panel of genetically well-characterized E. coli strains with different phenotypes (Terpe, 
2006). All of the E. coli strains [Rosetta(DE3), BL21(DE3), C41(DE3), C43(DE3)] have previously 
successfully functioned as expression systems for the purification and crystallization of a number 
of membrane proteins, each of the host strains had specific advantages pertaining to protein 
expression. E. coli BL21(DE3), lacking the lon and ompT proteases, which could degrade 
abnormal and outer membrane proteins, respectively, was suitable for high expression of normal 
and membrane proteins. E. coli Rosetta(DE3), which carried the pRARE plasmid that provided 
tRNA for E. coli and rarely used codons, was suitable for the expression of eukaryotic proteins. 
E. coli C41(DE3) and C43(DE3) were mutants designed to promote the expression of toxic and 
membrane proteins.

The two bands of OppC-GFP protein were not mere artifacts, but different folding states. 
Although the intensity ratios of the two bands depended on the protein expression levels, the ratios 
of the two bands could somewhat represent the expression quality; however, the exact quantities 
of the soluble and insoluble protein fractions could not be determined.

The OppC-GFP protein yield was much higher in the BL21(DE3) and Rosetta(DE3) strains 
than in C41(DE3) and C43(DE3) under the same induction conditions. The expression situations 
contribute to the intensity of the fluorescent band. Overall, high protein expression levels usually 
tended to produce aggregated proteins. Decreased speed of expression could sometimes give 
the strain more time for proper protein folding, and promoting the expression of fluorescent bands. 

The gene deletion results indicated that OppC in E. coli was essential for the uptake 
of peptides, and not essential for cell viability. Protein-protein interaction results confirmed the 
essential role of OppC in oligopeptide permease system.

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6621_supplementary.pdf
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CONCLUSIONS

Membrane proteins are usually very important, as a majority are perfect drug targets. 
However, research on membrane proteins is limited according to the quality and quantity of properly 
folded proteins. Organisms such as E. coli are usually very sensitive to the massive membrane 
protein insertion. Therefore, in most cases, membrane proteins are expressed as inclusion bodies. 
Refolding of membrane proteins from the aggregated inclusion bodies is a huge challenge, and is 
not suitable for all membrane proteins, especially the inner membrane proteins, with intrinsic lower 
stability. This is because inner membrane proteins are mainly composed of α-helices, which are 
merely connected by side chain interactions.

The expression and purification protocol for a protein is usually unique. It depends mainly 
on the target protein sequence. However, some fusion proteins could obviously promote the 
expression level and solubility of target proteins. GFP is a very popular fusion protein, which helps 
in the proper folding of the target protein, and also works as a reporter. GFP is convenient for proper 
optimization of protein over-expression and purification. GFP is very stable, which tends to form 
well-folded fluorescent proteins. The stable structure of GFP might help the N-terminal-fused target 
protein to fold properly. On the other hand, proper folding of GFP usually depends on the correct 
folding of the target protein. Proper folding of the fusion protein results in fluorescence of the GFP. 
Therefore, the fluorescent GFP might represent the functionally expressed fusion proteins. The 
observed dual in-gel migration of the GFP fusion proteins could somewhat represent the folded 
and aggregated protein populations.

In this study, the expression and purification conditions of OppC were optimized using GFP. 
Noticeably, in-gel analysis showed that OppC-GFP expression was very obscure in the BL21(DE3) 
and Rosetta(DE3) strains, and brighter in the C41(DE3) and C43(DE3) strains. SDS-PAGE 
analysis revealed the aggregation of the OppC-GFP protein in BL21(DE3) and Rosetta(DE3). This 
phenomenon might be a result of too high expression levels. Optimization of the expression strain 
and induction conditions led to over-expression of the protein. Functional and pure OppC protein 
could be recovered easily from GFP fusion using the TEV protease digest.

The inner membrane protein OppC and OppB could form the transmembrane pore. 
Peptides have been proven to function as nitrogen sources; deletion of OppC in E. coli will impair 
the oligopeptide uptake. However, Opp is not the only peptide transporter in Gram-negative 
bacteria. Dipeptide transporters and glutathione transporters might contribute to the survival of the 
∆OppC strain in the peptide-containing medium. Therefore, OppC is essential for the oligopeptide 
permease system, and not for the cell viability.

The interaction proteins might put insights into the functional mechanism of a protein, 
and reflect their functions. The protein-protein interaction of OppC with other components was 
determined in E. coli based on the irreversible reassembly process of GFP fragments. OppA did not 
interact with other Opp proteins. This could be a result of non-binding to the oligopeptide. Binding 
with oligopeptide is speculated to cause changes in the OppA conformation, which may initiate the 
oligopeptide transport by interacting with the channel proteins OppB and OppC. OppB and OppC 
could interact with OppD and OppF, which could hydrolyze ATP to support the transport process. 
Interestingly, OppD and OppF do not directly interact with each other, despite serving as ATP-binding 
components. This could be a result of the inactivation state of the oligopeptide permease system.

Using as a fusion tag, GFP promotes the soluble expression of OppC and improved the 
time-effectiveness of the purification process. Availability of the functional protein makes it possible 
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for future structural and functional studies. GFP, which is used as a reporter, directly reports on 
the interactions. The detection of protein-protein interactions is critical to our understanding of 
biological processes. In conclusion, effective and flexible use of GFP is greatly advantageous for 
the study of membrane proteins.
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