
Genetics and Molecular Research 6 (4): 799-820 (2007) FUNPEC-RP www.funpecrp.com.br

On the characterization of energy  
networks of proteins

C.J.M. Veloso1,2, C.H. Silveira1,2, R.C. Melo1,2, C. Ribeiro1,2,  
J.C.D. Lopes4, M.M. Santoro2 and W. Meira Jr.1

1Departamento de Ciência da Computação, UFMG, Belo Horizonte,  
MG, Brasil
2Departamento de Bioquímica e Imunologia, UFMG, Belo Horizonte, 
MG, Brasil
3Instituto de Informática, PUC Minas, Betim, MG, Brasil
4Departamento de Química, UFMG, Belo Horizonte, MG, Brasil
Corresponding author: C.J.M. Veloso
E-mail: cveloso@pucminas.br

Abstract. The construction of a realistic theoretical model of 
proteins is determinant for improving the computational simulations of 
their structural and functional aspects. Modeling proteins as a network 
of non-covalent connections between the atoms of amino acid residues 
has shown valuable insights into these macromolecules. The energy-
related properties of protein structures are known to be very important 
in molecular dynamics. However, these same properties have been ne-
glected when the protein structures are modeled as networks of atoms 
and amino acid residues. A new approach for the construction of protein 
models based on a network of atoms is presented. This method, based 
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Introduction

The principles of protein folding that result in a balance of stability and flexibility, 
while maintaining its function, are not perfectly understood and have been difficult to exploit 
for the development of thermo-stabilized proteins. A key mechanism for thermo-stabilization 
appears to be the optimization of interactions between atoms within a protein. The underlying 
principles of protein stability and folding have been studied by a variety of analyses of a large 
number of different protein structures. Some theoretical studies of protein structures and other 
empirical methods have been used to understand the stability of proteins. Hitherto, different 
kinds of experiments have been carried out to understand the stability of proteins, and to deter-
mine whether any specific residues exist that could be identified as playing a relevant role in 
the phenomenon (Fersht and Daggett, 2002; Onuchic and Wolynes, 2004).

Protein structure networks have been modeled based on varying concepts of nodes and 
edges (Vendruscolo et al., 2002; Bagler and Sinha, 2005). These previous studies focused on 
understanding network properties, such as shortest path length and clustering coefficient, and 
other properties. Similarly, in this study, the protein structures are modeled as networks and 
the representative graph of protein structure (RGPS) is constructed by defining the constitu-
ent atoms of amino acid residues in the polypeptide chain as the vertices and the non-covalent 
interactions among them as edges.

Modeling proteins as graphs has been used in the identification of clusters of atoms that 
could stabilize the protein structure. An important feature of such graph is the definition of edges 
based on the energy of interaction between the atoms in proteins. In order to deal with the report-
ed dependence on the cut-off value of the interaction distance between atoms used in such graph 
construction (Vendruscolo et al., 2002; Greene and Higman, 2003; Atilgan et al., 2004; Bagler 
and Sinha, 2005), the spatial occlusions among the atoms are analyzed. Such approach suggests 
that the subjacent protein network should be different from those previously reported.

Other important features that must be identified are the highly connected atoms and the 
crucial residues for the stability of the protein structure network. These elements constitute the 
“hubs” of the protein network. An important, but not exclusive, aspect of these elements is that 
many other real-world networks are known to be resilient to random attacks on nodes but very 

on interatomic interaction, takes into account the energy and geometric 
aspects of the protein structures that were not employed before, such as 
atomic occlusion inside the protein, the use of solvation, protein mod-
eling and analysis, and the use of energy potentials to estimate the ener-
gies of interatomic non-covalent contacts. As a result, we achieved a 
more realistic network model of proteins. This model has the virtue of 
being more robust in face of different unknown variables that usually 
are arbitrarily estimated. We were able to determine the most connected 
residues of all the proteins studied, so that we are now in a better condi-
tion to study their structural role.
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susceptible to targeted attacks on hubs (Barabasi, 2002). In such way, some specific mutations of 
the hub residues can lead to the rupture of the protein structure. Finally, we have demonstrated 
that the network parameters are able to classify the protein according to its folding family. Thus, 
we believe that this study will be able to motivate new experiments in protein structure.

This study focuses on understanding the principles of protein structure by considering 
them as complex networks of noncovalent interactions. We adopt a novel approach on how pro-
tein structures could be modeled, with the energy of atomic interactions and the spatial occlusions 
among them playing important roles in determining the characteristics of the network.

In this study, we also showed the need of solvation of the protein before the analysis 
of the atomic interactions, in order to avoid unrealistic results when no cut-off value is used to 
limit the distance between the atoms when their interaction is calculated. Concomitantly, the 
residues exposed to the solvent tend to show an excessive number of links established with 
other atoms on the surface of the protein. The solvation of the protein mimics more realisti-
cally the scope where this kind of interaction happens. Therefore, the number of links among 
the atoms decreases drastically and the mathematical patterns of the resulting network become 
more realistic.

Complex Networks Theoretical Review

In recent years, some relevant studies have applied the principles of networks for 
modeling complex systems, such as in epidemiological processes, social processes, metabolic 
networks, micro-electronic devices, etc. For networks of tens or hundreds of vertices, it is a 
relatively straightforward matter to draw a picture of the network with actual points and lines 
and to answer other specific questions about diverse kinds of network structure by examining 
this picture. There are some (Newman, 2003) advances towards providing answers to questions 
related to characterizing and modeling the network structure. On the other hand, studies of the 
structural effects on system behavior are shown to be still incipient. 

A central concept when analyzing complex networks is its topology, and two different 
topological models have been adopted: “small-world” and “power law” models. For instance, 
the following concept of “small world” topology is adopted in this study: If the number of ver-
tices within a distance r of a typical central vertex grows exponentially with r, and this is true 
for many networks including the random graph, then the value of the mean geodesic distance 
between all pairs of vertices l that have a connecting path will increase by log n. The term 
“small-world effect” has thus taken on a more precise meaning: Networks are said to show the 
small-world effect if the value of l scales logarithmically or more slowly with network size 
for a fixed mean degree. Logarithmic scaling can be proved for a variety of network models 
and has also been observed in various real-world networks. Some networks have mean vertex 
- vertex distances that increase more slowly than by log n. Bollobás et al. (2001) have shown 
that networks with power-law degree distributions have values of l that increase no faster than 
log n/log log n.

A small-world network is one that has a relatively short characteristic path length, 
L, and a high clustering coefficient, C. Small-world models can be built on lattices of any di-
mension or topology, but the best-studied case by far is the one-dimensional one. If we take a 
one-dimensional lattice of L vertices with periodic boundary conditions, i.e., a ring, and join 
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each vertex to its neighbors k or smaller lattice spacing away, we get a system, with Lk edges 
(Newman, 2003). The small-world model is then created by taking a small fraction of the edges 
in this graph and “rewiring” them (Newman, 2003). The rewiring procedure involves going 
through each edge in turn and, with probability p, moving one end of that edge to a new loca-
tion chosen uniformly at random from the lattice, except that no double edges or self-edges 
are ever created. Furthermore, these features will be important to characterize the structural 
aspects of the proteins studied. In the next sections, other important features of complex net-
works will be explained.

Transitivity and clustering

In the present study, we adopt the concept of clustering C defined as: if a vertex v has 
kv neighbors, then the maximum number of links between these neighbors is [kv (kv - 1)]/2. 

The term Cv gives the fraction of these possible links that actually exist, and C is then 
defined as the average Cv over all vertices v. C is a measure of local clustering, which means 
that if two vertices X and Y are both connected to a third, Z, then for large C there is a high 
probability that X and Y are also directly linked to one another. 

In terms of network topology, transitivity means the presence of a heightened number 
of triangles in the network (sets of three vertices each of which is connected to each of the oth-
ers). It can be quantified by defining a clustering coefficient C (Newman, 2003):

� (Equation 1)

where a “connected triple” means a single vertex with edges running to an unordered pair of 
others. In simple terms, C is the mean probability that two vertices that are network neighbors 
of the same other vertex will themselves be neighbors.

The clustering coefficient measures the density relationships in a network. An obvious 
generalization is to also ask about the density of longer loops, that is, loops of length four and higher. 
The clustering coefficient may identify densely connected groups of vertices and the “hubs” inside 
these structures. Therefore, the clustering coefficient may provide evidence of a modular view of the 
network’s dynamics (Holme et al., 2003; Guimerá and Nunes Amaral, 2005).

Degree distributions

The degree of a vertex in a network is defined as the number of edges incident on (i.e., 
connected to) that vertex (Newman, 2003). We define pk to be the fraction of vertices in the 
network that have degree k. Equivalently, it should be expressed:

� (Equation 2)

where pk is the probability that a vertex chosen uniformly at random has degree k. A plot of pk 
for any given network can be formed by making a histogram of the degrees of vertices. This 
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histogram is the degree distribution for the network. Real-world networks are mostly found to 
be very unlike the random graph in their degree distributions. Far from having a Poisson distri-
bution, the degrees of the vertices in most real networks are highly right-skewed, meaning that 
their distribution has a long right tail of values that are far above the mean. 

Although in theory one has just to construct a histogram of the degrees, in practice one 
rarely has enough measurements to get good statistics in the tail, and direct histograms are thus 
usually rather noisy. There are two accepted ways to get around this problem. One is to construct 
a histogram in which the bin sizes increase exponentially with degree. This method of construct-
ing a histogram is often used when the histogram is to be plotted with a logarithmic degree scale, 
so that the widths of the bins will appear even. Because the bins get wider as we get out into the 
tail, the problems with statistics are reduced, although they are still present to some extent as long 
as pk falls off faster than k-1, which it must if the distribution is to be integrable. 

An alternate way of presenting degree data is to make a plot of the cumulative distribu-
tion function

� (Equation 3)

which is the probability that the degree is greater than or equal to k. Such a plot has the ad-
vantage that all the original data are represented. When we make a conventional histogram by 
binning, any differences between the values of data points that fall in the same bin are lost. The 
cumulative distribution function does not suffer from this problem. The cumulative distribution 
also reduces the noise in the tail.

The degree distribution of a network is interesting as a measure to identify the most 
connected vertices (i.e., the “hubs”) of the network which provide the connectiveness among 
the existing communities inside the network.

Summarizing

All the real network topologies discussed in the literature so far - chains, grids, lattices and 
fully connected graphs - have varied from a completely regular lattice to a quite random lattice. 
Newman (2003) exemplifies three different types of lattice: regular, random and scale-free. These 
simple models allow us to focus on the complexity caused by the nonlinear dynamics of the nodes, 
without being burdened by any additional complexity in the network structure itself (Newman, 
2003). Ignoring in this approach the dynamic aspects, it is possible to turn our attention to describing 
the structural aspects of the more complex architectures. For instance, these previously explained 
features of the networks will be helpful in characterizing the structure of the proteins studied.

Material and Methods

Data set

The data set used in this analysis consisted of structures of 12 myoglobins obtained from 
the protein data bank - PDB (Berman et al., 2000). This non-redundant set of proteins with a resolu-
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tion better than 1.8 Å was submitted to a simulated annealing procedure at 312 K in order to achieve 
their physiological arrangement. The sizes of the proteins considered vary from 2300 to 2700 atoms. 
Traditionally, the three-dimensional folds of proteins have been perceived as a construct based on ele-
ments of secondary structure and fold arrangement. An alternative way to conceptualize and model 
protein structures, used in our study, is to consider the contacts between atoms, that constitute the 
amino acid residues, as a network of interactions irrespective of secondary structure and fold type.

Hydropathic nature of interactions

Here, the concepts presented by Sobolev et al. (1999), and implemented in STING (Higa 
et al., 2004), were adopted in order to distinguish the nature of interactions. For a protein, based 
on PDB file assignment, one must take a pair of atoms and, according to the nature of each atom 
in that pair and on an analysis of the interatomic distance, a class is assigned to each atom. How-
ever, other aspects must be taken into account as described by Sobolev et al. (1999).

Need of solvation

Constituent atoms of the exposed residues at the surface of the proteins tend to show an 
excessive number of links established with other atoms on the surface of the protein, when the 
molecule is considered in vacuo and no distance cut-off is used. Aiming at a solution to this prob-
lem, a solvation of the protein was done before the analysis of the atomic interactions in order to 
avoid unrealistic results. The solvation of the protein mimics more realistically the scope where 
this kind of interaction happens. In order to solvate the molecules analyzed in this study, the pack-
age SOLVATE of NAMD (Phillips et al., 2005) was used, using its default parameters.

Problem of occlusions

Physically, it is unrealistic to consider non-covalent interactions between different atoms 
of the protein without taking into account the occlusion due to the spatially intervening atoms. 

In order to address this problem, we developed an algorithm that does not consider un-
realistic interactions that could not occur between two atoms having a third (or more) atom(s) 
occluding one from the other. Calculation of the occlusion between atoms implies the determi-
nation of the Euclidian distance and the angle between them. 

Let T = { Ai; Aj; Ak } | i ≠ j ≠ k be a set of three atoms as shown in Figure 1.

Figure 1. Schema showing the occlusion between atoms.
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Let Vij be the vector linking (Ai;Aj) and let Vik be the vector linking (Ai;Ak). Let θ be the 
angle formed by Aj -Ai -Ak. If cos(θ) > 0 and the perpendicular from Ak to Vij is less than the sum 
of the van der Waals radii of Ak and Aj, then Aj is taken to be occluded from Ai by Ak. 

In this way, it is important to measure how the energy of interaction between Ai and Aj 
decreases as the atom Aj becomes obfuscated from Ai by Ak. A reasonable approach would be to 
take the energy of interaction to be proportional to the remaining exposed projected area from 
Aj “visible” by Ai. This approach is analogous to a “lunar eclipse”, where the earth sheds its 
shadow over the moon. Geometrically, this rationale can be illustrated as shown in Figure 2.

Figure 2. Schema showing the occlusion of the atoms Aj by the atom Ak as “viewed” by Ai.

In order to better explain this concept, let the projections of two circles of radii rk and 
rj, and centered at (0; 0) and (d; 0) that intersect both of them in a region shaped like an asym-
metric lens. The equations of the two circles are:

� (Equation 4)

� (Equation 5)

In order to find the area of an asymmetric “lens” in which the circles intersect, we may 
adopt an expression for the circular segment of radius R’ and triangular height d’ where:

� (Equation 6)

Since there are two “lens” at the sphere intersection, the total area of intersection will 
be found by performing this calculation twice. For instance, the heights of the two segment 
triangles are
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� (Equation 7)

� (Equation 8)

The total area of the “lens” may then be expressed as

� (Equation 9)

or

 � (Equation 10)

Figure 3. Graph comparing the exposed and occluded areas as functions of the distance between the centers of atoms 
Ak and Aj. The term Ao is the occluded area of Aj. The term Af  is the “visible” area of Aj. The continuous curve shows 
the percentage of total area of Aj that is exposed to Ai as the distance between the centers of Ak and Aj decreases.
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The limiting cases of this expression may be checked varying d = 0 until d = rj + rk. 
As can be seen in Figure 3, the exposed area of Aj (Af ), decreases quite linearly as Ak intersects 
the space between Ai and Aj. In the scope of this study, this function will be used as an attenu-
ation factor for the energy of interaction, in order to reproduce the interferences caused by the 
presence of a third atom in an atomic pair interaction.

Construction of the representative graph of protein structure

The RGPSs are constructed from the three-dimensional atomic coordinates of the pro-
tein structures obtained from the PDB. Each protein in the data set is represented as a graph 
consisting of a set of vertices and edges. Each atom in the protein structure is represented as a 
vertex and these vertices are connected by edges based on the energy of non-covalent interac-
tion between them. The energy of interaction between two atoms is given by:

� (Equation 11)

where Eij is the total energy associated with the atomic interaction between the atoms Ai and Aj (i ≠ j) 
such that Ai and Aj are not part of the same amino acid residue. The total energy associated with each 
atomic interaction has two components: the energy derived from the Coulomb potential (EC

ij):

� (Equation 12)

in kcal/mol, where: C - proportionality constant; qi, qj - charge is in electron-charges; εij - appar-
ent dielectric constant of the medium; r(ij) - distance in Angstroms; and the energy associated 
with the Lennard-Jones potential (ELJ

ij ):

� (Equation 13)

where: εij - apparent dielectric constant of the medium between i and j; n - large coefficient 
(usually 12); m - low coefficient (usually 6); reqm(ij) - parameter distance for an interaction 
between i and j; r(ij) - present distance between i and j; as described in the AMBER98 (Morris 
et al., 1998) potential.

Initially, let a protein P be formed by a sequence of NR residues {R1;R2;R3; … ;RNR}. 
Let a residue R be formed by a sequence of NA atoms {A1;A2;A3; … ;ANA}. The total number of 
atoms in a protein NAP is calculated as:

� (Equation 14)
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A protein P may be viewed as formed by a set of NAP atoms {A1;A2;A3; … ;ANAP}.
The following procedure is used in order to identify the pairs of atoms (Ai, Aj) that 

establish an interaction:

         1. For each Ai ∈ P
      1.1. For each Aj ∈ P | Aj ≠ Ai ^ ((Ai;Aj) not in the same residue R)
   1.1.1. Evaluate the contact between Ai and Aj 
   1.1.2. For each Ak ∈ Pj | (Ak ≠ Ai ^ Ak ≠ Aj)
1.1.2.1. Af = area of Aj that is not occluded from Ai by Ak
1.1.2.2. Eij = (EC(Ai;Aj) + ELJ(Ai;Aj)) (Af /Aj)

where Af is the exposed area of Aj.
In this procedure no arbitrary cut-off for the distance between the pair (Ai, Aj) is need-

ed, since the most relevant criterion for establishing an interaction is the presence or not of a 
third atom Ak that could hide, totally or partially, Aj from Ai. Therefore, if Aj is “visible” by Ai 
there is an interaction and the energy of interaction is calculated.

For practical reasons, we limited our calculations to a sphere of influence with radius 
of 10 Å in order to avoid an unnecessary amount of computation. On the one hand, the Len-
nard-Jones potential is usually calculated from this limit and below. On the other hand, we 
studied other values beyond this limit but all pairwise interactions, where the distance between 
the atoms was greater than 9 Å, were occluded. In this study, the dielectric constant for calcula-
tions focusing on the atoms inside the proteins was fixed at 4.

Analysis of representative graph of protein structures

The networks are analyzed for the distribution of nodes with k links. For each RGPS, 
the number of nodes N(k) with k edges (links) is evaluated. The value N(k) for all proteins in 
the data set is taken, and then N(k) versus k is plotted. 

In order to calculate some properties of the RGPS, they are represented as an adja-
cency matrix AE, where:

•	 AE
ij = Eij,

 if i ≠ j and i and j are not occluded from each other;
•	 AE

ij = 0,
 if i ≠ j and i and j are hidden from each other;
•	 AE

ij = 0, if i = j

The adjacency matrix AE is then analyzed using standard graph techniques to identify 
distinct clusters and the cluster-forming nodes (atoms) in the RGPS. The largest cluster is then 
identified, and its size is determined for all the RGPSs. The normalized value of the largest 
cluster size (with respect to the total number of residues in the protein) is plotted for all the 
proteins in the data set. Specifically, the high contact number atoms (NAP > 10), and residues, 
will be referred as “hubs”.
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Edge distribution profile of atoms and residues of amino acids

For a given atom Ai, the total number of contacts established by it, may be defined as:

� (Equation 15)

For a given residue Rm, the total number of contacts for this residue NCR(m) is calcu-
lated as:

� (Equation 16)

where P is the protein studied, and:

i ≠ j ^ Ai ∈ Rm ^ Aj ∉ Rm ^ {Ai;Aj} ∈ P. �

These calculations are made for all the proteins in the data set. The values obtained 
using all the proteins and the frequency distribution are plotted.

Results

Aiming at the evaluation of the structural features shown by all 12 proteins present in 
our data base, the interactions among the atoms from each protein were analyzed as explained 
in the previous section. As a result, some graphs and tables were constructed.

Firstly, these interactions were analyzed under the condition where the proteins are not 
solvated and using a distance cut-off value of 10 Å. For this scenario, the number of interac-
tions per atom (NCA) and the frequency of these interaction values (f (NCA)) were plotted, for 
each of the 12 proteins in our data base, as shown in Figure 4.

As can be seen in Figure 4, these results reveal that the pattern of link distribution of 
f (NCA) values tends toward a bell-shaped Poisson distribution, similar to preliminary results 
presented by Greene and Higman (2003). These results also show that, for all 12 proteins, the 
mode number of links for a given node is approximately 35.

However, when the interactions were analyzed taking into account the solvation of 
the proteins and using the occlusion criteria, the plotting of NCA and f (NCA) gives the distribu-
tion shown in Figure 5. In these distributions, there are a small number of nodes with many 
links and a large number of nodes with only a small number of links. This distribution pattern 
is consistent with scale-free behavior and initially suggested that, under these conditions, the 
interaction network may be scale-free.

This second approach shows a more regular distribution without any arbitrary inter-
vention. In order to better analyze these data, the cumulative distribution for each protein was 
plotted using a log × log scale, as shown in Figure 6. A central tendency line fit of data on a 
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Figure 4. Distributions of the frequencies of the number of contacts per atom (f (NCA)) and the number of contacts 
per atom (NCA) for unsolvated proteins without occlusion criteria. Each set of different symbols and colors represents 
a different protein studied.

Figure 5. Distributions of f (NCA) and NCA for solvated proteins with occlusion criteria. Each one of the proteins 
studied is represented by a different colored set of points.
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log × log plot is a standard way in which to measure the distribution by calculating the slope. 
As can be seen in Figure 6, all distributions start to show distributions that coarsely follow an 
exponential distribution:

�
(Equation 17)

For instance, for all the 12 plotted distributions, the tendency curve can be expressed as 

� (Equation 18)

with R2 = 0.98. 
In spite of the tendency of link distributions towards an exponential distribution, which 

indicates that the observed networks show a small-world distribution, a more representative 
analysis of the networks may be conducted when the energies of links are taken into account. 
The most relevant aspect of this approach is that a weight may be given to each link of the 
networks studied. In this way, the associated weights show a physical significance expressed as 
the energy of non-covalent interaction between the atoms. 

Figure 6. The log × log cumulated distributions of f(NCA) and (NCA) for solvated proteins with occlusion criteria and 
solvation for the same set of proteins analyzed in Figure 5. The central thick line was fitted to the data according to 
Equation 18.



Genetics and Molecular Research 6 (4): 799-820 (2007) www.funpecrp.com.br

C.J.M. Veloso et al. 812

The plot of the mean energy per atom (EMA) and the number of links per atom (NCA) is 
presented in Figure 7. As can be observed in Figure 7, there is a strong correlation between the 
number and the energy of non-covalent interactions related to each atom of the protein. Indeed, 
the energy associated with each non-covalent interaction can be viewed as the edge’s weight 
when modeling the structure of the proteins as networks. Furthermore, modeling the protein 
structures could be based on a weighted network model.

However, other different aspects must be analyzed, especially the most connected at-
oms (and the related amino acid residues) that play the role of “hubs” in the network models 
of the proteins studied. In Figure 5, the tail of the graph indicates that the atoms with NCA ≥ 
10 will be elected as the hubs of the networks studied. Selecting these atoms from the data-
base, it is possible to identify the most connected amino acid residues present in the proteins 
studied. The residues in Table 1 were found to be the most frequent residues acting as hubs 
in our database.

The mean number of connections per atom for the hub residues is close to 12 as seen in 
Table 1. This value is very similar to that shown by the packing of identical spheres, found also 
in crystals of small organic compounds and proteins (Richards and Lim, 1994). These values 
indicate that atoms inside proteins share an environment of high atomic density.

Interestingly, six of those ten most connected residues shown in Table 1 have rings in 
their side chains. As an example, Figure 8 shows where these most connected residues are in 
the 3-dimensional structure of the 1MYT globin.

Figure 7. Relationship between the average energy of interaction and the number of interactions per atom and the 
number of connections per atom. The thick line shows the linear correlation existing between these two variables.
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In this particular case, the ten most connected residues were found at loci 1, 2, 3, and 4 
in Figure 8. At locus 1, three PHE (B13, CD1, CD4) residues and a LEU (B9) tie together the 
helices B, C and D and the heme group (not shown in Figure 8). At locus 2, a HIS (E5) residue 
connects the helices B and E. At locus 3, a VAL (H9) residue connects the helices A and H, and 
at locus 4, a HIS (F9) and a TYR (H21) residue connect the helices F and H. These residues 
are found to be the most conserved in the structural alignment studies of globins (Lesk and 
Chothia, 1980; Dickerson and Geis, 1983; Bashford et al., 1987; Kapp et al., 1995; Ptitsyn and 
Ting, 1999; Süel et al., 2002).

Another interesting point is that one of the most connected PHE (CD1) residues keeps 
its side chain parallel to the heme group of the myoglobins studied. For instance, Figure 9 gives 

Table 1. Most frequent residues acting as hubs in the database.

Quantity Residue Mean connections 
per atom

Locus # Structural elements

2 PHE 12 2, 1 B13, CD1
1 PHE 11 1 CD4
1 VAL 11 3 A8
1 LEU 11 2 B10
1 HIS 13 4 F8
1 LYS 12 3 EF2
1 HIS 12 2 E7
1 TYR 12 4 H23
1 ILE 11 3 E18
The positions indicated in the column “Structural elements” were taken from PDBID-1A6G.

Figure 8. Hub residues in 3-dimensional structure of 1MYT globin. Figure generated by using VMD. The regions 
of this globin structure where the ten most connected residues were found are shown as loci 1 to 4.
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a more detailed view of locus 1, where the aromatic ring (1) of the PHE (CD1) residue is shown 
positioned parallel to the heme group (2) of the 1MYT myoglobin. The PHE in the CD1 posi-
tion is one of the most conserved residues in globins. This fact is described in the literature, 
having a strong relation to the anchorage and binding of the heme group (Dickerson and Geis, 
1983; Hargrove et al., 1994). It shares with the proximal HIS (F8) an absolute conservation in 
all globins known to date (Kapp et al., 1995).

Figure 9. The aromatic ring (1) of a highly connected PHE (CD1) is positioned parallel to the heme group (2) of 
1MYT myoglobin. Figure generated using VMD.

In order to better locate these “hubs” in these conserved loci, a structural alignment of 
all proteins in the dataset was performed as shown in Figure 10. Figure 10 also shows where 
the “hubs” are spatially located after the spatial alignment, and Figure 11 indicates where they 
can be found when this multiple spatial alignment is presented in a linear way.

These results lead to conclusion that, in these structures, the “hubs” are not only con-
served in their positions, but that some properties shared by the residues are conserved in each 
spatial locus. For example, at loci 50 and 60, in Figure 11, the PHE residues may be replaced 
by an ILE residue or a MET residue, and all these three different residues show three covalent 
interactions of distance from the Cα to the tip of the side chain and atoms able to establish high 
number of contacts.

A detailed analysis of conserved patterns of these structures extrapolates the scope 
of this study and will be the subject of future researchs. The analysis of these “hubs” must 
provide interesting insights about the conserved attributes of the structures of the myoglob-
ins under study.



Genetics and Molecular Research 6 (4): 799-820 (2007) www.funpecrp.com.br

On the characterization of energy networks of proteins 815

Figure 10. The ten most connected residues are spatially conserved after the structural superimposition of the 
myoglobins studied. These residues are shown highlighted in the figure.

Figure 11. The ten most connected residues (shaded) after the structural alignment of the myoglobins studied.
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However, all these findings suggest that the analysis of the atomic interactions 
that form the structure of the proteins, based on the previous solvation of proteins and 
original occlusion method presented in this study, allows one to identify the underlying 
complex network pattern of proteins in an unsupervised way and without an arbitrary cut-
off parameter. At the same, the identified links of the network have weights with physical 
significance expressed in terms of non-covalent interaction energy, which is another virtue 
of the approach presented.

Discussion

The thermodynamic stability of the proteins should emerge as a property of the ro-
bustness of the inherent atomic network. The approach adopted here gives the opportunity to 
associate a more realistic weight with the edges of the model network. An exhaustive analysis 
was necessary in order to identify the energies of interaction of all atomic pairs that form the 
structure of the proteins analyzed. However, aiming at validating the methodology presented 
here, a discussion of the results is necessary.

Initially, the protein structures were considered as atomic clusters taking into account 
the aspects of occluded interactions. These structures were then analyzed and the subjacent net-
works were characterized. Our first goal was to determine whether the pattern of weighted links 
keeps resembling a small-world or random networks according to the results in the literature 
(Dokholyan et al., 2002; Greene and Higman, 2003).

The initial rounds of experiments modeling the proteins as networks used data of 
atoms directly from PDB files. These raw data were then used in drawing the networks. 
However, the initial results showed some unreal characteristics when no cut-off value was 
used to limit the distance between the atoms in order to evaluate the interactions among 
them. When an arbitrary cut-off value for the distance is used, the numbers of edges linked 
to hubs tend to increase or decrease. This raises a question: what would be the most appro-
priate cut-off value to be applied in the structural studies of proteins? Different strategies 
have been used in order to deal with this problem (Greene and Higman, 2003; Amitai et al., 
2004; Bagler and Sinha, 2005). Constituent atoms of the exposed residues at the surface of 
the proteins tend to show an excessive number of interactions established with other atoms 
on the surface of the protein, when the molecule is considered in vacuo and no distance 
cut-off is used. Indeed, residues exposed to the solvent tend to show an excessive number 
of links established with other atoms on the surface of the protein when no cut-off is used. 
Aiming at a solution to this problem, solvation of the protein was performed.

The results, after solvation of the protein, showed a drastic decrease in the number 
of links among the atoms without any kind of intervention even in the absence of any cut-off 
value for interatomic distances. Consequently, the behavior of the resulting network becomes 
acceptable, showing hubs with no excessive number of links.

The mean clustering coefficient for all proteins in the set studied was 〈C〉 = 0.089 and 
standard deviation σ = 0.020. Table 2 shows the clustering coefficients for the proteins studied.

When these values are compared to values reported by other authors (Newman, 2003), it 
is possible to conclude that the range of values is similar to other biological networks (Table 3).



Genetics and Molecular Research 6 (4): 799-820 (2007) www.funpecrp.com.br

On the characterization of energy networks of proteins 817

This comparison highlights the complex pattern of protein structures. Data in Table 3 
show that the energy interactions inside the protein establish some atomic clusters in the same 
way as in other similar biological structures studied by different authors. These results give evi-
dence of the dependence of protein structures on the hubs of energy of interaction between atoms 
of the protein. In order to deal with this kind of analysis, a set of hubs was elected for each protein 
in study. In this context, all the nodes that show 4 or more links are said to be “hubs”.

Figure 4 shows the distribution of f (NCA) × NCA for the set of proteins when the contacts 
among the atoms of each protein are analyzed employing a sphere of influence with a radius 
of 10 Å around each atom, and no occlusion nor solvation is used. As can be viewed, these 
data tend to follow a Poison distribution as an indication of a random distribution. However, in 
Figure 5, the same set of proteins is analyzed using the same sphere of influence of 10 Å but 
applying the occlusion criteria for solvated proteins; all distributions in these conditions seem 
to coarsely follow an exponential distribution.

In spite of the fact that an extensive discussion of the present results is beyond the 
scope of this study, we may briefly compare them with the results presented by Brinda and 
Vishveshwara (2005). In that study, the authors adopted an arbitrary cut-off of 4.5 Å, in order 
to limit the distance between the atoms, and also restricted their attention to the hydrophobic 
non-covalent interactions aiming at the analysis of the structural features of the proteins. They 
identified a set of “clusters” for the globin PDB ID 4MBN, as presented in Table 4.

Table 2. Mean cluster coefficient for proteins in the dataset.

PDBID 〈C〉
1A6G 0.070
1BZP 0.072
1ECD 0.070
1EMY 0.062
1HLB 0.133
1HLM 0.090
1JF3 0.097
1LHS 0.105
1MBS 0.103
1MYT 0.095
2FAL 0.096
2MM1 0.106
Mean 0.092 ± 0.02

Table 3. Some biological network coefficients.

Description 〈C〉
Metabolic networks 0.090
Protein interactions 0.072
Marine food web 0.160
Freshwater food web 0.020
Neural network 0.038
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Comparing the residues presented in Table 4 to those highlighted in Figure 11 for 
PDB ID 1A6G, the results are quite similar, despite the different approaches adopted in both 
researchs in order to conduct their analysis: on the one hand, an arbitrary cut-off value of 4.5 Å 
and, on the other hand, the occlusion criteria. Almost all of the hydrophobic or aromatic resi-
dues in 1A6G taken as “hubs” (namely, V10, F33, F43, F46, I75, Y146) were found to be part 
of Brinda and Vishveshwara’s highly connected clusters, except the residue L29. However, this 
leucine is present between I28 and I30 in the primary structure of 4MBN, which are present in 
clusters 1 and 5, respectively. This fact suggests that all these residues may be sharing the same 
structural neighborhood.

Other “hub” residues in 1A6G, H64 and H93 were not identified by Brinda and Vish-
veshwara (2005), since they are not classified as hydrophobic. However, the residues H64 and 
H93 are respectively the distal and proximal histidines, which are essential for the maintenance 
of globin function. As they are buried in the ligand pocket, they are expected to have a high 
number of contacts. These findings reinforce our conviction that the approach proposed in this 
paper is robust enough to be adopted as a general procedure, cut-off free, in order to analyze 
protein structures.

The identification of the “hubs” of these structures allowed us to map the loci where 
they occur in the 3-dimensional structure of the proteins studied. Interestingly, these identified 
loci prompt the deduction of some relevant structural characteristics of these proteins and about 
the amino acid residues that are present in these loci. It is well known that the biological syn-
thesis of a myoglobin involves the conversion of an apomyoglobin to a holomyoglobin, a proc-
ess that involves the binding of heme, the prosthetic group of all globins. In the context of this 
study, it is worth mentioning that none of the heme group atoms were described as an energy 
“hub” within the network of the globin, minimizing the possible role of heme in the folding of 
this protein, although it is known to contribute to the stability of these proteins.

As proposed by Watts and Strogatz (1998), connection topology of some biological, 
social, and technological networks is neither completely regular nor completely random. These 
networks, that are somehow in between regular and random networks, have been called “small 
worlds” analogous to the “small world” phenomenon empirically observed in social systems.

The algorithms implemented in our study lead to a more refined description of a protein 
structure as a complex network of energy interactions between all atoms of the protein. The most 
relevant contribution of the new approach presented in this study is the identification of pairwise 
interactions among atoms inside a protein, taking into account the steric interference of other 
atoms. The approach presented takes into account also the total energy of non-covalent interac-
tion and pruning out those interactions where implicit energy is above the “kT” limit, and reveals 

Table 4. The residues taken as “hubs” by Brinda and Vishveshwara (2005).

Set Residues
1 I28, I111, V114, L135
2 F123, V13, L115, M131, V10, W7, M131
3 F138, I75, I142, L86, A94, Y146, Y151, I101
4 F33, L40, F43, M55, F46, L49, L61, I30
5 W14, V17, L72, L76



Genetics and Molecular Research 6 (4): 799-820 (2007) www.funpecrp.com.br

On the characterization of energy networks of proteins 819

the atomic contacts that fulfill the physical predicates that assure their existence. At present, only 
a merely geometric criterion has been adopted in the analysis of protein structure (Vendruscolo 
et al., 2002; Greene and Higman, 2003; Amitai et al., 2004; Bagler and Sinha, 2005; Brinda and 
Vishveshwara, 2005), where arbitrary distance cut-offs are elected that lack physical meaning.

The network behavior described in this study may be a characteristic of globin structures; 
whether it may be extended to all globular proteins is a matter that deserves further studies.
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