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ABSTRACT. We propose a novel representation of RNA secondary 
structure for a quick comparison of different structures. Secondary 
structure was viewed as a set of stems and each stem was represented 
by two values according to its position. Using this representation, 
we improved the comparative sequence analysis method results 
and the minimum free-energy model. In the comparative sequence 
analysis method, a novel algorithm independent of multiple sequence 
alignment was developed to improve performance. When dealing with 
a single-RNA sequence, the minimum free-energy model is improved 
by combining it with RNA class information. Secondary structure 
prediction experiments were done on tRNA and RNAse P RNA; 
sensitivity and specificity were both improved. Furthermore, software 
programs were developed for non-commercial use.
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INTRODUCTION

During the last few years, many studies have shown the key function of non-
coding RNA (ncRNA). For instance, microRNAs play important roles in the post-tran-
scriptional mechanism, and small nucleolar RNAs (snoRNAs) can guide RNA ribose 
methylation and pseudouridylation. Secondary structure information is necessary when 
mining these non-coding genes, analyzing the function of ncRNA or predicting RNA-
RNA interaction.

There are two main RNA secondary structure prediction approaches according 
to different input data. For a single sequence, the minimum free-energy model is the 
best choice, but it is not as accurate as the comparative sequence analysis (CSA) method 
(Gardner and Giegerich, 2004), which suits dealing with a group of homologous sequences. 
However, multiple sequence alignment (MSA) is always used in CSA and may influence 
accuracy if the homologous sequences are not similar. Furthermore, RNA class informa-
tion may be helpful for secondary structure prediction. When non-coding RNA genes are 
mined or RNA-RNA interactions are predicted, the class information is always known by 
biology scientists. Thus, it is meaningful to get more accurate structure using the class 
information. In this paper, we propose a novel representation of RNA secondary structure 
and a convenient structure comparison method. We then try to solve the above-mentioned 
problems.

MATERIAL AND METHODS

A novel representation of RNA secondary structure

Comparing different RNA secondary structures is time-consuming if structure is rep-
resented as a forest (Zhang et al., 2007). We consider that secondary structure consists of 
stems and that similar secondary structures always have similar stems. If two stems in differ-
ent RNAs are similar, it means that the length and the position of the two stems are similar, as 
shown in Figure 1.

From Figure 1, we can see that if we describe the position of a stem with two 
center points, the points will fall in small regions when stems are homologous in different 
RNA sequences. Thus, we can compare the position of different stems with the distances 
of the center points and describe a stem position with information on the two center 
points’ positions.

Figure 2 gives a geometric expression of our concept. When facing bugles or internal 
loops, the concept can also be extended as the average of the first and the last base pair position.

Bugles and internal loops can be viewed as broken lines in dot plots. The center is 
shifted as the line is broken, as shown in Figure 3.

When predicting secondary structure, candidate stems are always listed in a “stem pool” 
first. Then, position relation is computed for every two stems in the stem pool. The position rela-
tion can be categorized as compatible, conflicting and pseudoknot. If a stem is drawn in dot plots, 
the regions of different position relation can be easily identified as in Figure 4. Therefore, we can 
easily calculate the relationship of two different stem candidates in one sequence by the centers and 
length information.
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Figure 1. Position-conservative stems in homologous RNA sequences.
Definition 1. For a possible stem ((ai,ai+1,…,ai+k), (aj-k,aj-k+1,...,aj)) in an RNA sequence {a1,a2,…,an}, we define 
(i+k/2,j-k/2) to be the center of this stem. Dot plots are always used in bioinformatics (Leland, 1999). When 
representing RNA secondary structure, the stem is a diagonal line in dot plots and the center of a stem is the 
coordinate values of the diagonal’s center, as shown in Figure 2.

Figure 2. The geometric meaning of center of stem.
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Figure 3. Centers of a bugle and internal loop.

Figure 4. Position relation in dot plots.
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The center only tells the position information of a stem. A stem can be fixed with the 
center together with length information. Therefore, if we want to assess the difference between 
two stems in two different RNA sequences, we should consider both the distance between 
centers and the length distance.

First, we discuss the distance between centers. For different homologous RNA se-
quences, the length is always different. Thus, alignment will be useful when assessing the 
position difference of two stems. After alignment, the center can be viewed as the center point 
of the stem in the aligned sequence. The distance between the aligned centers together with 
the length difference can then be used to assess the difference between two stems, as shown 
in Figure 5.

Figure 5. Distance between two stems.
Definition 2. Given homologous RNA sequences, for any two stems from different RNAs, we denote the 
distance between the two stems as D(S1,S2) = dis(S1,S2)+λ*|L1-L2| in which S1 and S2 are two stems from different 
homologous RNA sequences, L1 and L2 are their lengths, dis(S1,S2) is the Euclidean distance between the centers 
in the aligned sequences, and λ is a weight parameter. Based on these concepts, we can easily assess the position of 
stems. Furthermore, different stems together with secondary structure can be compared quickly. Therefore, we can 
improve the two main secondary structure prediction approaches using our novel representation.

All current multiple sequence alignment algorithms attempt to search the most simi-
lar alignment. However, incorrect gaps or spaces may disconnect real stems. If gaps are 
inserted incorrectly into a stem, it is difficult to predict it as a whole stem with the prediction 
software. 
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Comparative sequence analysis method independent of multiple sequence 
alignment

Comparative sequence analysis methods are effective in RNA secondary struc-
ture prediction, when dealing with a group of homologous sequences with consensus 
structure.

Most of the comparative sequence analysis methods are based on multiple se-
quence alignment. They attempt to find the consensus structure or covariance information 
from the aligned sequences, as shown in Figure 6. However, structural information may be 
ignored in the first step, and incorrect gaps or spaces may be involved when doing multiple 
sequence alignment.

From Figure 7, we can see that the incorrect gaps in the 22nd to 27th sequences will 
make the corresponding bases (70 and 69) unpaired. Thus, the acceptor arm is improperly 
folded, as shown in Figure 7. 76 tRNA sequences are aligned with ClustalW as shown in 
the upper part of this figure. They are Acinetobacter sp ADP1 from the Genomic tRNA 
Database (Lowe and Eddy, 1997). The left secondary structure is the prediction of the 22nd 
sequence from Pfold (Knudsen and Hein, 1999), while the right is the real structure drawn 
by PseudoViewer3 (Byun and Han, 2006). The real acceptor should be a 7-base length 
stem, but Pfold gives an internal loop.

Figure 6. The process of comparative sequence analysis method.

Here we propose a novel algorithm for predicting secondary structure for homologous 
RNA sequences. Our algorithm takes advantage of the “center” concept mentioned above and 
avoids the influence of multiple sequence alignment. Next is the detailed description, and Fig-
ure 8 shows the algorithm flow chart (Zou et al., 2008).

If there are k sequences and the average length is n, it is easy to determine that all the 
7 steps cost O(kn3) time and O(kn2) memory. The process will be repeated r times, where r is 
less than the number of the stem candidates in one sequence. Since r<<n and k<<n, the overall 
complexity is O(n3) time and O(n2) memory, which is the same as with RNAalifold (Hofacker, 
2003) and hxmatch (Witwer et al., 2004).
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Further supplement on minimum free-energy model

Most of the time, we do not have enough homologous sequences to fold. The mini-
mum free-energy model is the best and the only choice for dealing with a single sequence. 
However, many special RNA structures are very different from the minimum free-energy 
ones. For instance, C/D box snoRNA is a short stem with a big loop. The sequence of this 
loop may fold into a more stable structure with lower energy. However, other molecules will 
interact with the C/D box snoRNA and influence the structure. Therefore, we can conclude 
that sequence information alone cannot decide the structure, further supplemental information 
is important when predicting secondary structure.

Figure 7. An example of multiple sequence analysis influence on secondary structure prediction.
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Class information is useful, because biology knowledge can tell the approximate shape 
of the predicted RNA secondary structure. RNA sequences from same class always have simi-
lar secondary structure. If we know the class of a predicted RNA, we can fold it as a known 
structure of other sequence in this class. This idea is similar to “threading” in protein folding.

Class information is always known if the sequence is known. An unknown sequence 
can be aligned with an RNA database, such as RFAM (Griffiths-Jones et al., 2005) and ERPIN 
(Lambert et al., 2004). Even for a new class, which is not recorded in these databases, a new 
technique called atomic force microscopy (AFM) (Rounsevell et al., 2004) can also tell the ap-
proximate shape. Here, we fold the RNA sequence to an approximate shape using the concepts 
introduced above. If we know the structure together with a homologous sequence, we can first 
align the sequence with the predicted one, and then for every stem in the known structure, we 
search in the stem pool of the predicted ones for the one with minimum distance. If a homolo-
gous sequence is unknown and the approximate shape comes from AFM, we can also search 
the stems with Definition 2. Differently, we should denote the stems in approximate shape 
with Definition 1.

This is the main idea of our method. Stems are predicted by computing the minimum 
distance with the stems in approximate shape. However, the predicted stems sometimes con-
flict, especially when the conflicting stem is real but longer than the native stem. This problem 
was discussed in detail by Zou et al. (2009b), and a software was also developed, called zqfold.

RESULTS

We use tRNA to test the performance of our algorithms. Sensitivity and specificity 
are selected to measure and compare with other software. The structures of tRNA come from 

Figure 8. Algorithm flow chart of folding homologous RNA sequences independent of multiple sequence analysis.
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Lowe and Eddy (1997) and Chan and Lowe (2009). This database divides tRNA into three 
kinds: Bacteria, Eukarya and Archaea. We tested the algorithm on three groups of tRNAs se-
lected from Halobacterium sp, Plasmodium falciparum and Anaplasma marginale St. Maries.

First, we compare our method on a group of homologous sequences with Pfold 
(Knudsen and Hein 1999), MARNA (Siebert and Backofen, 2005) and CARNAC (Touzet 
and Perriquet, 2004). These three software programs come from three approaches of CSA 
method. The first approach is to do an MSA first, then to fold. Pfold is the main software 
program of this approach. For Pfold, homologous sequences are first aligned by ClustalX 
(Larkin et al., 2007) with default parameters. The second approach is to perform alignment 
and folding simultaneously. It is time-consuming, so CARNAC from this approach cannot 
deal with sequences longer than 80 nt. The third approach is to fold the sequences first, then 
to align all the structures to find a consensus structure. MARNA is an example software of 
this approach.

The performance is shown in Figure 9. We can see that our method performs as well as 
Pfold, and outperforms MARNA and CARNAC with regard to both sensitivity and specificity.

Here, we can conclude that the first approach performs better than the other two ap-
proaches, and that tRNA is conservative for MSA, and therefore, Pfold can perform well. If 
more complex or less conservative sequences are folded, our method will work better.

Furthermore, we also tested our method on simple sequence folding. With regard to 
a tRNA molecule, our method performs better than the main software based on a minimum 
free-energy model, including RNAfold (Hofacker, 2003), mfold (Zuker, 2003) and Srna (Ding 
et al., 2004), as shown in Figure 10.

Figure 9. Performance comparison on multiple-sequence folding of tRNA. sn = TP / (TP + FN); sp = TP / (TP + FP).
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It is known that tRNA is a class of simple and conservative molecules. We also 
tested RNAse P RNA, which is more complex and less conservative. Here, we study SM-
A46(74), Lake Griffy B#41, Volunteer ESH212C, and Pond Scum#26 (Brown, 1999). The 
average performance with these four molecules also shows the robustness of our algo-
rithms. Figures 11 and 12 show the performance comparison of multiple folding and single 
folding, respectively.

DISCUSSION

The above experiments prove the performance of our representation and prediction 
algorithms. As is known, secondary structure prediction is always a preliminary process for 
some problems, rather than an ultimate process. Successful application is much more mean-
ingful than prediction accuracy. Here, we apply our prediction method instead of RNAfold in 
microRNA and snoRNA mining research, and achieve improvement.

First, we apply our prediction algorithms on mining H/ACA box snoRNA. H/ACA 
box snoRNA is a class of non-coding RNA, which is usually required for regulating RNA 
pseudouridylation. It has a hairpin-hinge-hairpin-tail consensus structure, as shown in Figure 
13. Secondary structure features are selected when identifying native snoRNA from pseudo 
ones, and we fold the candidates with our algorithm instead of RNAfold, which is used in 
snoReport (Hertel et al., 2008). Experiments have shown that our mining method outperforms 
snoReport (Zou et al., 2009a).

Figure 10. Performance comparison on single-sequence folding of tRNA. sn = TP / (TP + FN); sp = TP / (TP + FP).
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Figure 11. Performance comparison on multiple-sequence folding of RNAse P RNA. sn = TP / (TP + FN);  
sp = TP / (TP + FP).

Figure 12. Performance comparison on single-sequence folding of RNAse P RNA. sn = TP / (TP + FN);  
sp = TP / (TP + FP).
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The prediction method in this paper is also used in localizing the mature part of a microRNA 
precursor. This is a key problem in ab initio mining of microRNA. As is known, a microRNA precur-
sor folds as a hairpin to keep low energy. Some precursors are proved by Northern blot analysis or 
RT-PCR; however, they are not folded as a hairpin by RNAfold or RNAStructure. This will influence 
further analysis. Our above algorithm replaces RNAfold when we perform studies on localizing the 
mature part and achieves a more accurate result (Zou et al., 2010).

In this paper, we propose a novel representation of RNA secondary structure and 
develop new folding algorithms. Experiments and application prove their performance. The 

Figure 13. Schematic of the consensus structure of H/ACA box snoRNA.
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software is available at http://nclab.hit.edu.cn/~zouquan/zqfold/ or http://59.77.16.75/main/
software/zqfold/index.htm.
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