
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (2): gmr.15028061

Network spatio-temporal analysis predicts 
disease stage-related genes and pathways in 
renal cell carcinoma

X.H. Li1, C.Z. Yang2 and J. Wang3

1Department of Internal Medicine, Ji’nan Central Hospital, Ji’nan, China
2Department of Clinical Laboratory, 
Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
3Department of Nephrology, 
Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China

Corresponding author: J. Wang
E-mail: wangjingwenzhang@163.com

Genet. Mol. Res. 15 (2): gmr.15028061
Received November 17, 2015
Accepted January 15, 2016
Published May 6, 2016
DOI http://dx.doi.org/10.4238/gmr.15028061

ABSTRACT. The purpose of this study was to screen the key genes 
and pathways of renal cell carcinoma (RCC) and lay the foundation 
for its diagnosis and therapy. Microarray data of normal subjects 
and RCC patients at different stages of disease were used to screen 
differentially expressed genes (DEGs). Based on the DEGs in the four 
disease stages, four co-expression networks were constructed using the 
Empirical Bayes method and hub genes were obtained by centrality 
analysis. The enriched pathways of the DEGs and the mutual hub 
genes in the cluster of each disease stage were investigated. The mutual 
hub genes of the four disease stages in RCC tissue were validated 
using reverse transcription-polymerase chain reaction (RT-PCR) and 
western blot analysis. A total of 432 DEGs were screened, including 
233 upregulated and 199 downregulated genes, by statistical analysis. 
Centrality analysis of co-expression networks in different disease stages 
suggested that PLXDC1, IKZF1, RUNX2, and RNF125 were mutual 
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hub genes. Pathway analysis showed that the DEGs were significantly 
enriched in seven terms. The hub modules in stage I disease were 
significantly enriched in the complement coagulation cascade pathway 
and the hub modules of the other three disease stages were enriched 
in natural killer cell-mediated cytotoxicity. The expression levels of 
PLXDC1, IKZF1, RUNX2, and RNF125 were significantly different 
between normal subjects and RCC patients by RT-PCR and western 
blot. Our study revealed four hub genes (PLXDC1, IKZF1, RUNX2, 
and RNF125) and two biological pathways that might be underlying 
biomarkers involved in RCC.

Key words: Renal cell carcinoma; Hub genes; Western blot; RT-PCR;
Pathway-enrichment analysis

INTRODUCTION

Renal cell carcinoma (RCC) is a kidney cancer that originates in the renal parenchyma 
(Zhai et al., 2012). It is the second most common genitourinary tumor, accounting for 
approximately 3% of all adult malignancies (Siegel et al., 2012); global incidence and mortality 
rates are rising at a rate of approximately 2-3% every decade (Wei et al., 2013). Owing to a 
lack of early diagnostic biochemical indicators and the cancer’s resistance to radiotherapy and 
chemotherapy (Zhu et al., 2012), early diagnosis and postoperative adjuvant therapy of RCC 
are hindered. Approximately, 30% of RCC patients are diagnosed with metastatic disease at 
first diagnosis, and postoperative recurrence rates of localized RCC is as high as 30% (Motzer 
et al., 1996; Cohen and McGovern, 2005). Although the new treatment programs have been 
improved, the prognosis of RCC is still poor, especially in later tumor stages (Jiang et al., 
2006; Suh et al., 2009).

The use of high-throughput experimental techniques, such as microarray, has 
increased in recent years. Microarray technology has been used to discover the diagnostic gene 
signatures of diseases (Liu et al., 2013). Complex diseases are usually characterized by diverse 
etiology, activation of multiple-signal transduction pathways, and various gene mutations. 
Thus, a robust genetic marker will be beneficial to the diagnosis and targeted treatment of 
complex diseases in clinical practice. Although human tumors have been profiled extensively 
by genomics-based studies (Dalgliesh et al., 2010; Morris et al., 2011), little is known about 
how they form a network that contributes to aggressive disease and poor outcome. A systematic 
analysis of the network and pathways in which these genes interact may enable us to observe 
a set of alterations in a more accurate perspective.

Therefore, in order to better understand the complex pathology and identify the molecular 
networks involved in RCC, we adopted a systems biology approach to acquire and analyze 
changes in gene expression between samples from RCC patients and normal controls. Herein, we 
examined the differentially expressed genes (DEGs) between RCC and normal controls and the 
DEGs in four stages of the disease group. Then, the co-expression networks of the four disease 
stages were constructed and the hub genes were identified by centrality analysis. In addition, the 
related metabolic pathways were identified. Finally, several hub genes were validated by reverse 
transcription-polymerase chain reaction (RT-PCR) and western blot analysis. These results may 
provide significant information for the understanding of RCC.
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MATERIAL AND METHODS

Data recruitment and preprocessing

A search on the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) to 
research gene expression microarray data between normal subjects and RCC patients was 
conducted. Three microarray datasets were extracted under accession numbers E-GEOD-53757 
(von Roemeling et al., 2014), E-GEOD-36895 (Peña-Llopis et al., 2012), and E-GEOD-6344 
(Gumz et al., 2007). Each dataset contained expression data for all four disease stages of RCC.

Before the analysis, the original expression information from all conditions was 
preprocessed. For each dataset, background correction and normalization were performed to 
eliminate the influence of nonspecific hybridization via the robust multichip average (RMA) 
method (Ma et al., 2006) and quantile-based algorithm (Rifai and Ridker, 2001), respectively. 
Perfect match and mismatch values were revised by Micro Array Suite 5.0 (MAS 5.0) algorithm 
(Pepper et al., 2007), and the expression value was selected using the median polish. Then, the 
data were screened by the feature filter function of gene filter package (http://bioconductor.
org/packages/genefilter/). Each probe was mapped to one gene by getSYMBOL, and the probe 
was discarded if it did not match any.

The three filtered expression datasets were merged and calculated using the 
inSilicoMerging package (InSilico Genomics S.A., Brussels, Belgium) (Taminau et al., 2012). 
The data distribution was visually estimated using Batch Mean-centering (BMC), a merged 
data method after adaptation according to Support Vector Machines (SVM).

Detection of DEGs

DEGs refer to genes with different expression profiles between the cases and controls. 
If one gene has a high (or low) expression in the case and it is the opposite in the normal 
group, the gene may be related to the occurrence of the disease, and merits further research 
and analysis.

In this study, DEGs between the four disease stages and normal subjects were screened 
by the LIMMA package (Smyth et al., 2005). t-test and F-test were performed on the matrix, 
and then the P values were transformed to -log10. Empirical Bayes (Datta et al., 2004) (eBayes 
or EB) statistics and a false-discovery rate (FDR) (Reiner et al., 2003) calibration of P values 
(£0.05) for the data were conducted by lmFit function. The genes were extracted from the 
linear model after inspection, which needed to meet the following conditions: |logFC| ≥ 2, P 
values <0.05 (P < 0.05).

Construction of co-expression networks of the four disease stages by using EB

It is critical to construct a co-expression network for identifying modules and the 
intra-modular connectivity. The EB approach (Dawson and Kendziorski, 2012) has proven 
to be a useful complement to the existing differential expression methods by simulations and 
case studies. In this section, we used this method to achieve the co-expression relationships 
between co-expressed gene pairs of the four disease stages.

Differently co-expressed (DC) gene pairs were processed using the following method. 
The expression values in an m-by-n matrix of X (where m indicated the number of genes/probes 
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under consideration, and n indicated the total number of microarrays over all conditions) were 
generally represented on the log2 scale. The members of the conditional array with length n 
took values in 1, ……, K (K indicated the total number of conditions). They were then used 
to define the equal DC classes based on the unique values in the conditions array. Intra-group 
correlations for all p = m*(m - 1) / 2 gene pairs from X and the condition array were calculated 
using bi-weight mid-correlation. The p-by-K of D matrix with correlations was obtained. 
MakeMyD function (Fraley and Raftery, 2002) was used to initialize the hyper-parameters to 
find the component normal mixture model, which could best fit the empirical distribution of 
correlations. The values of the component in a normal mixture model with component means, 
standard deviations, and weights were used to initialize the expectation-maximization (EM) 
algorithm. Finally, DC genes were distinguished from gene pairs having invariant expression 
by controlling the posterior expected FDR at 0.05 and the co-expression network of the four 
disease stages was constructed to represent the correlation between each pair of genes.

Centricity analysis of the co-expression network of each disease stage

To further obtain the hub genes in each disease stage of RCC, we had a centricity 
analysis based on the degree of nodes in different networks (Scardoni and Laudanna, 2012). 
The degree is the simplest topological index and is the equivalent of the number of nodes 
directly adjacent to a given node v (indicates the degree of the vertex). Calculation of the 
degree allows determining the “degree distribution”, P (k), which gives the probability that 
a selected node has exactly k links. P (k) is obtained by counting the number of nodes N (k) 
with k = 1, 2, 3,... links and dividing by the total number of nodes N. Nodes with a high degree 
(highly connected) are called “hubs”. At last, we selected the mutual hub genes in all disease 
stages for subsequent research.

Module analysis

In order to explore the interconnected areas and the function of the network, we had 
a module analysis using the MCODE method (Xu et al., 2002) for the co-expression network. 
The module can more clearly reflect the genes involved in biological processes. In order to 
identify the network module, we made a series of important basic parameters including node 
density cutoff = 1, node score cutoff = 0.2, K-core = 2, and max. depth = 100. Meanwhile, the 
modules which comprised the mutual hub genes were considered as hub modules and were 
selected for further pathway analysis.

Pathway-enrichment analysis

To further investigate the enriched pathways of the total DEGs and hub modules in 
the four disease stages, a pathway analysis was performed based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (www.genome.jp/kegg/), a widely used and 
comprehensive resource for pathway mapping of genes. We imported the DEGs and the 
genes of hub modules in the four disease stages to the online tool of Database for Annotation, 
Visualization and Integrated Discovery (Huang et al., 2009) (DAVID, http://david.abcc.ncifcrf.
gov/tools.jsp), and obtained all pathways in which these genes were enriched. We obtained the 
enrichment pathways according to the threshold of P value <0.05.
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Validation by RT-PCR

RT-PCR was used to validate the selected mutual hub genes, which had the highest 
degree in the network, at the four disease stages. RT-PCR was performed as follows:

RNA extraction and cDNA synthesis

Total RNA was extracted from the tumor tissue of 10 kidney cancer patients and the 
normal tissues 2 cm away from the tumor by using Trizol RNA kit (Invitrogen, Carlsbad, CA, 
USA). cDNA was synthesized using the following reaction: 4.0 µL RNA and 3 µL Oligo(dT) 
18 were mixed and placed in a 70°C water bath for 5 min degeneration, then immediately put 
on ice, mixed in 2 µL RNasin (40 U/µL), 5X reverse transcription buffer (8 µL), 8 µL dNTPs, 
and 2 µL AMV reverse transcriptase (5 U/µL) were added and the mixture was placed in a 
37°C water bath for 60 min. AMV reverse transcriptase was inactivated (95°C for 5 min) and 
the mixture was stored at -20°C.

PCR amplification

The data were normalized to the cDNA template and the β-actin reference gene. The 
upstream and downstream primers are shown in Table 1. PCR reagents were mixed as follows: 
10X PCR Buffer (10 µL), TaqDNA polymerase (1 µL of 5 U/µL), upstream and downstream 
primers (3 µL each), and dNTPs (8 µL). PCR conditions are shown in Table 2. We computed 
the mean and standard deviation of individual gene (PLXDC1, IKZF1, RUNX2, and RNF125) 
expression values in patient and normal samples.

Table 1. Primer sequences and product length of the hub genes.

Gene Primer sequences (5'-3') Length (bp) 
Forward Reverse 

PLXDC1 CTCAGAATTCGGGAGCAGGTCACG ACGCAAGCTTCAGGTTGTTCTGAA 317 
IKZF1 CTCTTCGCCCCCGAGGATCAGTCTT GAAGGCGGCAGTCCTTGTGCTTTTC 266 
RUNX2 TCGGAGAGGTACCAGATGGG TGTAAACTTCCTTTCAGCTCTCA 459 
RNF125 GTGACACCGTTGTTTGCCTC TTGGGTACGCTGTGTTCGAG 396 
-actin AAGTACTCCGTGTGGATCGG TCAAGTTGGGGGACAAAAAG 615 

 

Table 2. PCR amplification reaction conditions of the hub genes.

Gene Reaction condition 
PLXDC1 95°C (1 min); 30 cycles of 95°C (1 min), 56°C (30 s), 72°C (1 min); 72°C (10 min) 
IKZF1 95°C (5 min); 35 cycles of 94°C (30 s), 55°C (40 s), 58°C (1 min); 72°C (10 min) 
RUNX2 95°C (1 min); 35 cycles of 94°C (30 s), 60°C (30 s), 72°C (30 s); 72°C (7 min) 
RNF125 95°C (1 min); 35 cycles of 94°C (30 s), 55°C (30 s), 72°C (30 s); 72°C (7 min) 
-actin 95°C (1 min); 30 cycles of 94°C (10 s), 51°C (1 min), 72°C (30 s); 72°C (7 min) 

 
Validation by western blot

The samples were ground to a powder in liquid nitrogen. Then, the samples were 
treated with lysis buffer and centrifuged at 10,000 g for 20 min at 4°C. Protein concentration 
was determined by the Bradford protein assay (Bio-Rad, Hercules, CA, USA). We used 10 mg 
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protein for SDS-PAGE (12%) and transferred the protein (4°C, constant current 300 mA, 2 h) 
to a nitrocellulose membrane (NC). The NC was blocked in TBS-T containing 5% skimmed 
milk powder at 37°C for 2 h, following which a 1:10,000 dilution of rabbit anti-human IgG 
antibody (Sigma-Aldrich, St. Louis, MO, USA) was added and incubated at 37°C for 2 h. 
Unbound antibody was washed away with TBS-T (3 times) and the NC was incubated with 
horseradish peroxidase-labeled sheep anti-rabbit IgG secondary antibody (1:5000) at 37°C 
for 2 h. After washing with TBS-T, the NC was treated with chemiluminescence (Genview, 
Houston, TX, USA) for 3 min and exposed to film in a darkroom.

Data analysis

PCR products were analyzed by 1.5% agarose gel electrophoresis and images were 
obtained using the Bio-Rad gel imaging analyzer. Result analysis was performed using the 
gel imaging system Quantity One (Bio-Rad) and values are reported as the relative levels 
of the target gene and β-actin. Gray value of target bands by western blot analysis was done 
by Image J (NIH, USA) and values are reported as the relative levels of the target protein 
and GAPDH. Data were analyzed using the Student t-test comparison between groups 
(SPSS19.0, USA).

RESULTS

Detection of DEGs

In the present study, 4214 genes were screened using the intersection of the microarray 
datasets. In the conditions of the threshold for |logFC| > 1.5 and FDR < 0.05, we identified 432 
genes that were consistently differentially expressed in RCC. Of these, 233 were upregulated 
and 199 were downregulated. The numbers of DEGs in stages I, II, III, and IV of disease were 
417, 431, 429, and 408, respectively.

Construction of gene co-expression networks using EB

The EB approach was used to identify DC gene pairs based on the 417, 431, 429, 
and 408 identified DEGs in stages I, II, III, and IV of disease, respectively. A total of 93,096 
protein pairs were produced and the relational values of all pairs were yielded after analyzing 
gene expression relationship using meta-analysis. The gene interaction network containing 
nodes and edges was constructed using the 93,096 protein pairs in our analysis.

Centrality analysis of the co-expression network

After performing centricity analysis on the co-expression network, we got the number 
of hub genes in stages I, II, III, and IV of disease, which were 42, 42, 41, and 41, respectively. 
Meanwhile, four mutual hub genes were found across all four disease stages: PLXDC1, IKZF1, 
RUNX2, and RNF125. These genes are likely crucial to maintain function and coherence of 
metabolic mechanisms.
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Module analysis

After performing a cluster analysis for co-expression networks, we identified many 
modules. Among them, we found that 13 modules comprised the common hub genes in all 
four disease stages. They were 3 hub modules at stage I, 4 hub modules at stage II, 3 at stage 
III, and 3 at stage IV.

Pathway-enrichment analysis

Pathway analysis showed that the DEGs were significantly enriched in seven terms. 
Then, the pathways in which the hub modules of the four disease stages were enriched were 
mapped on to the total pathway. In stage I, the hub modules were significantly enriched in 
the complement coagulation cascade pathway. In stages II, III, and IV, the hub modules 
were enriched in the same pathway, which was natural killer cell-mediated cytotoxicity. The 
pathway results are shown in Table 3.

Table 3. Enriched pathways of total differentially expressed genes and hub modules of four periods.

Total DEG-enriched pathways Stage I Stage II Stage III Stage IV 
Nicotinate and nicotinamide metabolism     
Aldosterone-regulated sodium reabsorption     
Complement and coagulation cascades     
Natural killer cell-mediated cytotoxicity    
Focal adhesion     
Toll-like receptor signaling pathway     
ECM receptor interaction     

 

Validation by RT-PCR and western blot

We performed RT-PCR and western blot to validate the microarray data and examine 
the changes of each hub gene at the mRNA and protein levels. In the present study, the 
expression levels of four mutual hub genes (PLXDC1, IKZF1, RUNX2, and RNF125) were 
analyzed by RT-PCR and western blot in RCC patients. The results showed that the four 
mutual hub genes were significantly differentially expressed in RCC patients compared to 
those in normal subjects (Figures 1 and 2).

DISCUSSION

RCC is the sixth leading cause of cancer death and approximately one-third of patients 
present disease that is already metastatic and for which there is currently no adequate treatment 
(Perroud et al., 2006). Investigating biomarkers in complex diseases such as RCC will 
contribute to the understanding of the pathogenesis and diagnosis of the disease, potentially 
reducing its mortality and morbidity substantially. In this study, we identified 432 DEGs from 
RCC tissue and normal renal cortex, and obtained DEGs in different stages of RCC, then 
analyzed them by co-expression network, module analysis, and pathway-enrichment analysis. 
We found 4 mutual hub genes and several significant pathways associated with RCC. In the 
present study, four common hub genes (PLXDC1, IKZF1, RUNX2, and RNF125) associated 
with RCC were screened by network-based centricity analysis. 
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Figure 1. RT-PCR analysis of 4 hub genes from co-expression network. Lane M represents molecular marker, lane 
1 is RCC, and lane 2 is normal control. A. B. C. and D. PLXDC1, IKZF1, RUNX2, and RNF125, respectively. All 
gels are shown on the left with their quantitation on the right. Significance of relative expression of one gene in 
RCC compared to normal controls is indicated by its P value (*P < 0.05).
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Figure 2. Western blot analysis of 4 hub genes. G represents internal control, lane 1 is RCC, and lane 2 is normal 
control. A. B. C. and D. PLXDC1, IKZF1, RUNX2, and RNF125, respectively. All blots are shown on the left with 
their quantitation on the right. Significance of relative expression of one gene in RCC compared to normal controls 
is indicated by its P value (*P < 0.05).
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Their functional annotations have been widely studied by several previous studies. 
PLXDC1, also known as tumor endothelial marker 7, is the most abundantly expressed cell 
surface marker in the vascular endothelium of human tumors (St. Croix et al., 2000). PLXDC1 
has been discovered as one of the genes involved in many types of human tumors, including 
prostate cancer (Schwarze et al., 2005) and invasive ovarian carcinoma (Lu et al., 2007). 
Bagley et al. (2011) suggested that it should be taken as a novel and attractive target for tumor 
antiangiogenic therapy. IKZF1 (Ikaros family zinc finger protein 1) is a DNA-binding protein 
that displays crucial functions in the hematopoietic system, and has been proven a major 
tumor suppressor in several diseases, such as pediatric acute lymphoblastic leukemia (Kuiper 
et al., 2010), multiple myeloma (Krönke et al., 2014), and type 1 diabetes (Swafford et al., 
2011). RUNX2 and RNF125 were also reported to play important roles in the progression 
and development of several tumors (Sugawara et al., 2011; Ardura et al., 2013; Yang et al., 
2015). However, few studies have reported on the relationship between these hub genes and 
RCC. Therefore, this study focused on the RCC-related genes potentially contributing to its 
diagnosis and treatment.

Pathway analysis showed several significantly enriched pathways of total DEGs 
and hub modules of the four disease stages. When comparing these enrichment pathways, 
we found that the hub modules in stage I were significantly enriched in the complement 
coagulation cascade pathway and the hub modules in the other stages (II, III, and IV) were 
enriched in natural killer cell-mediated cytotoxicity. It has been proven that the metastatic 
potential of tumor cells correlated with natural killer cell-mediated cytotoxicity (Hanna, 1980). 
For example, it has been reported that natural killer cell cytotoxicity is related to multiple 
myeloma. Recent research highlights the fact that natural killer cells can affect lymphocytes 
by limiting or exacerbating immune responses (Vivier et al., 2008). Natural killer cells respond 
to the signals from the environment by producing effect molecules that can directly suppress 
tumor growth (Smyth et al., 2002). Only recently have we begun to appreciate the potential of 
natural killer cell-mediated cytotoxicity in the treatment of human RCC.

In conclusion, the present study screened key genes and pathways associated with RCC 
based on network spatio-temporal analysis and could be consider as a useful complement to the 
identification of early diagnostic biochemical indicators. Based on the research, the hub disease 
genes (PLXDC1, IKZF1, RUNX2, and RNF125) might be target genes for diagnosing RCC.
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