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ABSTRACT 

Infectious diseases have gotten less scientific focus and funding than cancer and 

cardiovascular ailments. Furthermore, interdisciplinary cooperation has not traditionally 

been actively used to create extracorporeal devices. However, significant technical issues 

in the area can be resolved by interdisciplinary research involving complex fluid 

dynamics, medicine, biology, nanotechnology, and polymer sciences. By collaborating, 

researchers can transform current extracorporeal treatment approaches by targeting active 

leukocytes, which may improve therapeutic efficacy while eliminating pathogenic 

elements from the patients’ blood. More basic and clinical assessments are required to 

fully comprehend the underlying mechanisms and effects of sepsis progression, which are 

mostly unknown. Beyond lowering septic patient mortality, it's necessary to consider 

additional advantages like enhancing the post-therapeutic quality of life. Exploring 

whether extracorporeal therapy can lessen post-sepsis syndrome, which affects about half 

of the sepsis survivors, would be worthwhile. 

Keywords: Sepsis; Nanotechnology; Therapeutic efficacy; Mortality; Polymer sciences 

INTRODUCTION 

Sepsis is a life-threatening organ dysfunction disease triggered by a dysregulated host immune response to 

infection and has been known for over 2700 years [1]. In 2017, the World Health Organization (WHO) regarded sepsis 

as a critical unmet medical need [2]. To understand sepsis in practical and conceptual frameworks, the American 

College has defined the word SIRS (system inflammatory response for an infection) in various forms, as shown in 

Figure 1 in a consensus conference organized by Society of Critical Care Medicine (SCCM) at Chicago, USA. The 

definition of sepsis has provided criteria to design the inclusion criteria for conducting different clinical experiments or 

trials to understand better the aspects of the pathophysiological association with sepsis and its related pathological 

disorders (Figure 1).  
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Figure 1. Classification of sepsis. 

A recent study has reported that sepsis incidences were severely underestimated and are at least double the 

previously predicted [3]. The annual burden of sepsis is expected to be nearly 48 million sepsis cases, with 11 million 

mortalities across the globe, representing approximately 19% of all global deaths. Although huge progress in early 

diagnosis and treatment, sepsis still has a mortality rate of nearly 30%, and effective drug treatments are unavailable at 

clinics [4]. Antibiotics are used as major cornerstones to treat sepsis; administering proper antibiotics, defined as those 

that exhibit in vitro activity against pathogens that cause infection, in a fast mode to gain sufficient drug concentration 

at the infection site can enhance the survival of patients with sepsis [5-7]. Nonetheless, prescribing correct antibiotics 

to sepsis patients is a major challenge for physicians because of infection risk due to multidrug-resistant bacteria. In 

addition, most standard antibiotics regimens are failed to provide suitable antibiotics concentration at the infection site 

[8]. The major factor which reduces antibiotics efficacy is the emergence of antibiotic resistance [9]. Therefore, 

identification of more effective treatment strategies is urgently needed to treat sepsis and provide a new hope to 

patients suffering from sepsis. 

LITERATURE REVIEW 

Molecular mechanism of sepsis pathophysiology 

Sepsis is a lethal clinical syndrome with heterogeneous malignancy courses. Sepsis can be characterized by an 

altered response against infection induced by Pathogen-Associated Molecular Patterns (PAMPs) from insidious 

microorganisms by the innate immune system. PAMPs are extremely conserved fungal or bacterial origin. They are 

distinguished by four types of receptors: C-type lectin receptors, toll-like receptors, nucleotide-binding oligomerization 

domain-like receptors, and retinoic acid-inducible gene 1-like receptors [10]. The resulting inflammatory response led 

to the activation of complex intra-and extracellular cascades that mediate cell lysis and spillover of intracellular 

molecules towards extracellular space. Damage-Associated Molecular Patterns (DAMPs) can also be excreted 

following extensive tissue trauma, and behave like PAMPs on the host immune system, with induction of inflammation 

threat [11,12]. Along with, the body triggers a Compensatory Anti-Inflammatory Reaction (CARS) which results in an 

enhanced glucocorticoid release, a key inducer of anti-inflammatory cytokine such as IL-10 [13]. The net upshot of 

inflammatory pathway contributes to enhanced capillary permeability and vasodilation, thereby leading to hypotension. 

In sepsis, overexpression of tissue factors results in the downregulation of the anti-thrombin and a subsequent 

amplification in plasmathrombin. In addition, overexpression of plasminogen activator inhibitor type 1 and reduced 

production of protein C suppresses fibrinolysis. Collectively, these events mediate a hypercoagulable state. 

Hypotension and enhanced coagulation in sepsis contribute to multi-organ dysfunction, the most critical and life-

threatening sepsis outcome [14]. Various inflammatory mechanisms are involved during sepsis, and several 

mechanisms have been studied for clinical use. 

The Lipopolysaccharide (LPS) has been found as a major organic chemical component in the bacterial cell 

membrane of gram-negative bacteria. German scientist conducted research and coined the term ‘‘endotoxin’’ which are 

usually produced by micro-organisms (Figure 2). It has been found that the bacterial cell contains up to 2 million 

molecules of LPS, which covers up to nearly 75 % of the cell membrane surface. The LPS is a complex organic 

molecule comprising an O-specific chain (O-antigen), a core oligosaccharide, and a covalently bounded Lipid A 
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moiety. The LPS has been found in the well-known Pathogen-Associated Bio-molecular Pattern (PAMP), which is well 

known to elicit its actions through a type of Pattern Recognizing Receptor (PRR) following the Toll-like receptor-4 

(TLR4), expressed on the bacterial cells for maintaining the cell internal immune system. Activating the TLR4 through 

LPS is not a simple mechanism involving many important molecules which carry the LPS molecule to the TLR4. 

During the acute sepsis phase, a protein is produced in the liver cells where the LPS binding proteins mediate the 

decisive LPS recognition stage. The LPS, after binding, produced the LPS-LBP complex. The LPS-LBP complex is 

then recognized using the cluster differentiation 14 receptors, which binds it to create the complex tertiary compound. 

The TLR4 linker molecular dimerization occurs with the Myeloid Differentiation factor 2 (MD2) while bringing the 

intracellular Toll/interleukin-1 receptor or TIR linking molecular domains, which allows the binding of LPS with other 

cellular adaptor protein molecules.  

Figure 2. A schematic presentation for Toll-like receptor (TLRs) cellular signaling pathways. 

The nuclear translocation of NF-jB and its activation usually ends up in the TLR4 binding and signaling as an 

adaptor protein molecule [15,16]. It also leads towards up-regulating pro-inflammatory cytokines, including IL-6, IL-

1b, TNF-a, and IL-8 (Figure 2). It also involves other biomolecules and molecules such as E-Selectin, COX-2, iNOS, 

and MCP-1. It has been reported that monoclonal antibodies and LPS showed antagonistic effects against each other, 

leading TLR4 to block harmful activities [17,18]. At the same time, LPS from the cell membrane of bacterial cells 

became a poisonous compound to induce acute or severe types of sepsis and septic shock. It has also been discovered 

in another study on mice with a mutation in the Tlr4 gene (C57BL/10ScCr and C3H/HeJ) showed resistance to LPS 

action. At the same time, a very high susceptibility was found in gram-negative bacterial infection; it was suggested 

that there might be an involvance of some other biochemical in the bacterial membrane that elicit the inflammation 

disease [19-21]. 

The TLRs usually recognize bacterial cells and/or their cell products. The activation usually depends upon the 

MyD88. However, the activation of TLR2 and TLR4 started similarly during the activation for NFjB, along with highly 

notable variations between both pathways. The interferon (a/b) genes are predominantly upregulated through the 

activation of TLR4, the TLP2 is activated by the Casapase 8-dependent cellular apoptotic machinery. The Tenascin C, 

a glycoprotein, is upregulated in the response due to the activation of TLR2 while studying the in vitro models. The 

Lipopolysaccharide-Binding Protein (LBP), MD2 lymphocyte antigen 96, TIRAP Toll-Interleukin 1 Receptor (TIR) 
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domain-containing adaptor protein, TLR toll-like receptor, Interleukin-1 Receptor-Associated Kinase (IRAK), CD-14, 

the TRAM toll-like receptor-4-adaptor protein, myeloid differentiation factor 88 (MyD88), nuclear factor jB (NF-jB), 

PI3K phosphoinositide 3-kinase, receptor-interacting protein 2 (RIP2), TIR-domain-containing adapter-inducing 

interferon-b (TRIF), IFN interferon, the Tumor necrosis factor Receptor-Associated Factor (TRAF) and the FADD was 

associated death domain protein,  

Nanotechnology 

Delays in sepsis treatment can impact patient’s clinical outcomes. More specific and fast tests are immediately 

required to avoid inappropriate, unnecessary, and ineffective antibiotics. Considering all pitfalls linked with sepsis, 

there is a critical need to establish fast, sensitive and pathogen-specific detection tools and novel antimicrobial 

approaches. Previously, various effective targets were suggested as potential sepsis detection and therapy tools. 

However, they were proved unfeasible for clinical implementation due to hurdles in modeling highly variable septic 

responses in preclinical systems [22]. Sepsis involves various pathological pathways; thus, there are not enough 

representative animal models that reflect sepsis's heterogeneity and sufficiently simulate its complexity. To date, 

limited preclinical data shows increased specificities and sensitivities compared with clinically employed tools, which 

poses a major challenge during clinical trials [23]. Advancement in nanotechnology and its application in medicine 

have revolutionized the traditional pharmaceutical industry and medical field [24]. This emerging field has already 

provided innovative solutions for improving diagnostic and therapeutic management of various pathologies [25,26]. 

Strikingly, although nanotechnology has emerged in the last few decades, above 200 nano-medicine constructs are 

being tested for clinical use [27]. Various nano-formulations have been developed and identified for possible treatment 

of sepsis.  

Nanotechnology-based combination therapy 

The complexity of sepsis pathophysiology with different signs and symptoms, such as microbial infection in 

infected areas leads to organ dysfunction. Thus, it is critical to eradicate this severe issue for the more effective 

treatment of sepsis. There is no debate that the delivery of a single drug is insufficient to treat sepsis, and a high dose of 

a single drug causes severe toxicity. In recent years, many scientists have investigated dual targeting strategies. A 

recent study has developed a novel combinatorial approach by co-administrating rutin and moxifloxacin loaded in 

polycaprolactone nanoparticles (PCL). In this novel approach, rutin has been used to down regulate cytokines 

production and reduce inflammation, while moxifloxacin has been used to kill bacteria. The lyophilized formation has 

been investigated in vitro in the J774 cell line. Research findings obtained from this study have validated the 

phagocytic action of the newly developed PCL nanoparticles platform and suggested that rutin and moxifloxacin are 

safe to use and may be used for combination therapy [28]. In another recent study, scientists have formulated an 

Antimicrobial Peptide (AMP) with cathepsin B in lysosomes incorporated in vitamin C nanocarriers for the adoptive 

translocation in the macrophages. In this study, cathepsin B has been used to transport AMPs into lysosomes, and AMP 

has been used to destroy bacteria. This novel combinatorial approach was developed to overcome multidrug resistance 

(MDR) bacteria tempted sepsis. Research findings obtained from in vivo experiments demonstrated that AMP 

conjugated with cathepsin B in lysosomes eliminates MDR bacteria, thereby promoting the recovery of septic mice 

[29]. 

DISCUSSION 

Identification of novel biomarkers in sepsis 

Many promising diagnostics tools are being established to assist in managing septic patients. Developing novel 

diagnostics tools can allow early sepsis diagnosis, facilitating the characterization of the specific infecting organisms 

and molecular pathways that become dysfunctional in sepsis. Despite substantial development in our understanding of 

sepsis pathophysiology, no single sepsis biomarker has yet to address all the diagnostic needs.   Previous studies have 

reported many host biomarkers [30]. However, none of them demonstrated a sufficient level of sensitivity and 

specificity [31]. Several new approaches have been used in distinguishing sepsis from sterile inflammation by using 

metabolomics, transcriptomics, or microfluidics [32-34]. In addition, combined analysis of leukocyte-based biomarkers 

has also been explored. Finally, transcriptomics and proteomics have also been reported to permit discrimination 

between viral and bacterial infections [35,36]. Identifying novel specific biomarkers is urgently needed to improve 

sepsis patients’ evaluation and treatment. 
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Blood cleansing devices 

Magnetic separation is a tried-and-true method for isolating particular cells, chemicals, or contaminants from 

complicated mixtures such as whole blood or biological samples. In vitro and in vivo animal models have both used it 

to lower pathogen levels in the blood. Methods for treating blood using magnetic particles have several advantages 

over conventional methods, including a greater diffusion collision rate constant and bigger active surface areas for 

pathogen entrapment [37-39]. Additionally, unlike other techniques that call for repeated blood passages, which may 

gradually reduce their efficacy, these approaches permit continuous replenishment of capturing reagents in the 

bloodstream. The effectiveness of magnetic blood treatment in eliminating germs from septic blood depends on several 

factors. First, catching various infections without prior identification depends critically on choosing opsonin molecules 

[40,41]. Creating a universal opsonin molecule that targets various infections that express different protein or 

carbohydrate chains has been difficult. Researchers have explored using magnetic particles or metal chelators coupled 

to antibody molecules to remove germs or chemicals from the blood [42-44]. 

The size and number of magnetic particles are also significant factors. The blood cleaning system's effectiveness 

can be maximized by using ideal values. A theoretical model integrating collision and magnetophoretic principles has 

predicted the appropriate size and concentration of magnetic nanoparticles for efficient pathogen depletion in various 

blood components. A crucial element of magnetic separation is also played by the magnetic force acting on the 

complexes of magnetic particles linked to pathogens [44,45]. The gradients in magnetic flux density along the direction 

of magnetic tugging immediately affect the force. The magnetic forces can be turned on and off easily with 

electromagnetic devices, but the flux density gradients they can produce are constrained by electromagnetic heating. 

Alternately, permanent magnets with alternating polarisation can produce significantly increased flux density gradients, 

and magnetic nanoparticle manipulation using the Halbach magnetic array has been successfully demonstrated [46,47]. 

For manipulating super paramagnetic nanoparticles with weak magnetic moments, ferromagnetic microstructures 

have recently been used to increase the magnetic flux density gradients. Furthermore, even in pure whole blood, the 

magnetic separation efficiency has been markedly enhanced by novel microfluidic channel designs, including 

secondary spiral flows and magnetophoresis [45,46,48]. The magnetic separation principle could probably be applied 

to biomedical equipment to aid septic patients soon, given the success and persistent efforts in magnetically eliminating 

pathogens from whole blood. 

Commercial products available in the market 

Extracorporeal biomedical devices approved by regulatory authorities worldwide for septic patient treatment 

predominantly rely on surface-adsorption principles, as indicated in Table 1. The therapeutic efficacy of 

ToraymyxinTM filters has shown regional variations and inconsistent clarity. This has led to differences in pricing, 

with general health insurance providers in the Republic of Korea currently not subsidizing their use, while the Japanese 

national health insurance has been able to do so since 1994. Despite insufficient encouraging outcomes from 

Randomized Controlled Trials (RCTs) evaluating the adjunctive use of extracorporeal treatments, sporadic clinical 

studies have reported positive efficacy in treating septic patients, supporting the continued utilization of these devices 

in intensive care units [47,48]. Conducting RCTs for extracorporeal devices in sepsis treatment poses challenges, 

primarily due to the limited availability of eligible patients for participation. However, as the therapeutic efficacy of 

these devices demonstrates exceptional and unquestionable outcomes, this limitation may be resolved. Additionally, 

alongside the products listed in Table 1, numerous startup companies are actively pursuing the translation of their 

innovative approaches to clinical practice [49,50]. 

Table 1. Regulatory approved extracorporeal biomedical devices for sepsis treatment and their therapeutic 

efficacy variations by region. 

Product name Principle Company Country Targets of removal 

Seraph
®

 ExThera Medical USA 

Bacteria (MRSA, E.coli, ESBL-K. 

pneumoniae, VRE, etc.) 

Toraymyxin
™

 Toray Industries Japan Gram-negative bacteria, endotoxin 

Under 

development 

BOA Biomedical 

Inc.
*
 USA A broad range of pathogens 

Alteco
®
 LPS 

Adsorber Alteco Medical AB Sweden Endotoxin 

oXiris
®

 Adsorption Baxter USA Endotoxins, cytokines, 
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Int. Inc. uremic toxin 

Under 

development 

Magnetic particle 

separation 

hemotune
*

Switzerland 

Endotoxin, cytokines, drugs, 

heavy metals 

Cytosorb
®
 CytoSorbents USA Cytokines 

Technical and experimental challenges 

The primary objective of extracorporeal adjuvant therapy is to reduce the levels of Pathogen-Associated 

Molecular Patterns (PAMPs) in the bloodstream of septic patients. Despite the availability of the Endotoxin Activity 

Assay (EAATM) since 2004, there is currently no internationally approved instrument for quantifying PAMP levels in 

whole human blood [51,52]. Recent research investigating pathogen sequencing in septic patient blood has revealed a 

considerable percentage of inaccurate results, particularly when low pathogen concentrations. In addition to depleting 

PAMPs, extracorporeal therapy's effectiveness is influenced by antibiotic efficacy, highlighting the importance of 

developing rapid diagnostic tools for antibiotic susceptibility testing. Clinicians must adopt modern diagnostic 

techniques and capabilities to treat sepsis effectively [53-55]. 

Addressing safety concerns related to magnetic particle-based blood-cleansing technology requires conducting a 

phase I clinical trial focused on assessing the biocompatibility of the particles. As magnetic particles reach the nano-

scale range, the effectiveness of magnetic removal becomes challenging, and cytotoxicity increases. Long-term 

exposure studies have shown that intravenous administration of carbon-coated magnetic particles may not pose 

hazards. To meet the unmet needs in this field, future research should explore alternative approaches involving 

magnetic particles decorated with various functional features [56-58]. It is crucial to efficiently detect any remaining 

magnetic nanoparticles in the bloodstream after blood-cleansing treatment, ensuring that only a minimal amount of 

nanoparticles return to the patients. Existing tools for quantifying magnetic nanoparticles or measuring the magnetic 

susceptibility of whole blood require specialized equipment not commonly found in standard research laboratories. 

Researchers have developed microfluidic systems and detection methods to measure the concentrations of magnetic 

particles and detect extremely low levels in complex fluids, providing potential solutions for monitoring nanoparticle 

levels in conjunction with extracorporeal devices [59,60]. 

While the main focus of extracorporeal blood treatment methods has been reducing endotoxin or cytokine levels 

in septic patients, eradicating viral particles has received limited attention. Although the opsonin molecule FcMBL has 

been shown to bind various viral particles, there is currently no evidence of the effective elimination of viruses from 

human blood [61,62]. Further investigation is needed to determine the effectiveness of extracorporeal devices in 

reducing viral particle concentrations in the bloodstream. Animal models, particularly rodents, have been commonly 

used in in vivo experiments, such as Cecal Ligation and Puncture (CLP) and intravenous or intraperitoneal infection 

studies. However, these animal models cannot accurately predict human therapeutic outcomes. Before progressing to 

clinical trials, evaluating the effectiveness of developed technologies in larger animal models, such as swine, rabbits, or 

baboons, is essential [63,64]. Despite limitations in accurately replicating human septic pathophysiology and 

pharmacokinetics, developing extracorporeal blood treatment devices has been feasible using sepsis animal models, 

primarily focusing on pathogen level reduction, which may have comparable efficacy to human blood depletion. 

Development of new strategies 

Emerging evidence has shown that multiple strategies that proved effective in preclinical or phase II clinical trials 

have failed at the bigger multi-centre trial stage. Increasing appreciation of the different phenotypes in sepsis syndrome 

and post hoc analyses of the trial data indicating outcome benefits in specific subsets [65,66] suggest that these old 

agents should be revisited, particularly with the advent of diagnostics enabling fast subset identification. 

CONCLUSION 

Sepsis remains a significant global health challenge with high mortality rates and limited effective treatments, 

exacerbated by multidrug-resistant bacteria. Interdisciplinary research, particularly involving nanotechnology, holds 

promise for advancing extracorporeal treatments and enhancing therapeutic efficacy. Addressing the complexity of 

sepsis requires developing novel biomarkers, optimizing blood-cleansing devices, and exploring post-sepsis syndrome 

impacts. Collaborative efforts and innovative approaches are crucial to reducing sepsis mortality and improving 

survivors' quality of life. 
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