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ABSTRACT. The objective of this study was to compare the multi-trait 
model using pedigree information and a model using genomic information 
in addition to pedigree information. We used data from 5896 lactations 
of 2021 buffalo cows, of which 384 were genotyped using the Illumina 
Infinium® bovine HD BeadChip, considering seven traits related to milk yield 
(MY305), fat (FY305), protein (PY305), and lactose (LY305), percentages 
of fat (%F) and protein (%P), and somatic cell score (SCS). We carried 
out two analyses, one using phenotype and pedigree information 
(matrix A) and the other using the relationship matrix based on pedigree 
and genomics information (a single step, matrix H). The (co)variance 
components were estimated using multiple-trait analysis by the Bayesian 
inference method. The model included the fixed effects of contemporary 
groups (herd-year and calving season), and the age of cow at calving as 
(co)variables (quadratic and linear effect). The additive genetic, permanent 
environmental, and residual effects were included as random effects in the 
model. The estimates of heritability using matrix A were 0.25, 0.22, 0.26, 
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0.25, 0.37, 0.42, and 0.17, while using matrix H the heritability values were 
0.25, 0.24, 0.26, 0.26, 0.38, 0.47, and 0.18 for MY305, FY305, PY305, 
LY305, %F, %P, and SCS, respectively. The estimates of breeding values in 
the two analyses were similar for the traits studied, but the accuracies were 
greater when using matrix H (higher than 8% in the traits studied). Therefore, 
the use of genomic information in the analyses improved the accuracy.
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INTRODUCTION

The traditional methods of genetic assessment rely on the simultaneous use of phenotypic 
and genealogical records. There have been many recent suggestions to include information 
contained in high-density panels of single-nucleotide polymorphisms(SNPs) for the purpose of 
increasing the accuracy of estimating breeding values, and hence to increase the genetic progress 
of breeding programs. The integration of this information is a challenge, and many methods have 
been proposed for this purpose, based on estimating the effects of markers or through correction 
of the relationship between animals (VanRaden, 2008). 

With respect to this last approach, understanding the genomic relationships can improve 
estimation of the proportion of chromosome segments that are shared by individuals, in view of the 
possibility of identifying genes that are identical by state, shared through common ancestors. Therefore, 
the genomic relationship matrix, calculated by different methods (VanRaden, 2008; Gianola and Van 
Kaam, 2008), can be employed to replace the additive relationship matrix, without major changes in 
the methods currently used, in what is called the genomic best linear unbiased prediction (GBLUP) 
method. However, in genomic selection models it is not clear how to account for selection (Aguilar et 
al., 2010; Chen et al., 2011). Furthermore, it must be assumed that the genotyped animals come from 
an unselected population (Hayes et al., 2009), something that is often not true in practice.

Another limiting factor is that commercial populations contain non-genotyped and 
genotyped animals (typically fewer of the latter), making it necessary to integrate data from both 
groups. For this purpose, a new approach for genomic assessments was proposed by Misztal et 
al. (2009), who suggested a single-step evaluation with complete data on pedigree, phenotypes, 
and SNPs (GBLUP). This one-step procedure has a unified structure, eliminates some hypotheses 
and parameters, and offers the opportunity to calculate genomic assessments more precisely 
than multistep procedures (Legarra et al., 2009). Furthermore, in comparison with other genomic 
methods, this approach enables the use of multi-trait models.

Since multi-trait analysis is of great importance in any animal improvement program, the 
objectives of this study were to compare the estimates of the genetic parameters and the accuracy 
of values using the BLUP and HBLUP methods, in a simultaneous analysis of milk yield and milk 
quality traits in dairy buffaloes.

MATERIAL AND METHODS

Data structure

We used information from 5896 complete lactations by 2021 buffalo cows, daughters of 
114 sires, with calving between 1996 and 2010, supplied by the buffalo milk control program of 
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the School of Agrarian and Veterinary Sciences of São Paulo State University (UNESP). Of these 
animals, 384 cows had been genotyped using the Illumina Infinium® bovine HD BeadChip because 
of the unavailability of a specific chip for buffaloes. We used the following traits: milk yield (MY305), 
fat yield (FY305), protein yield (PY305) and lactose yield (LY305), truncated at 305 days, along with 
the average percentages of fat (%F) and protein (%P), and the somatic cell count (SCC) per lactation. 
Since the data for this last trait were not normally distributed, they were log-transformed (SCS) using 
the formula SCS = [log2(CCS/100,000)] + 3, as proposed by Dabdoub and Shook (1984).

We considered control information obtained by the fifth day of production and retained 
only the lactations with durations longer than 90 days. For contemporary group (CG) formation, 
we used the following variables: herd, year, and calving season (October-March and April-
September), with restriction of each CG, which had to contain at least four animals. The analysis 
used the pedigree file with 6,664 animals in the relationship matrix. The general structure of the 
data is presented in Table 1.

With respect to the high-density panels, approximately 688,593 SNPs were genotyped, 
of which 26,042 had fixed alleles and 645,971 presented an allele frequency lower than 0.05, so 
that it was possible to use 16,580 SNPs in the analyses. The call rate for all samples varied from 
54 to 90% (mean of 85%). For comparison, in bovine samples, call rates above 98% are reported.

Table 1. Summary of the structure and statistical description for yield of milk (MY305), fat (FY305), protein 
(PY305) and lactose (LY305), percentages of fat (%F), protein (%P), and somatic cell count (SCC).

Description MY305(kg) FY305(kg) PY305(kg) LY305 %F %P SCC

Records 5896 3325 3325 3325 3325 3325 3325
Bulls   114   114   114   114   114   114   114
Cows  2021  2021  2021  2021  2021  2021  2021
Mean 1841.18 124.58 78.99 92.99   6.79   4.28   4.49
SD   629.42   38.16 23.49 28.54   1.29   0.62   1.34
CV (%)     35.21   31.19 28.96 30.66 18.86 14.30 29.28
CG   309   174   174   174   174   174   174

SD = standard deviation, CG = contemporary group, CV = coefficient of variation.

Estimation of the (co)variance components

To obtain the (co)variance components, we carried out a multi-trait analysis, in a Bayesian 
context, with the GIBBS2F90 program (Misztal et al., 2013). This program implements Gibbs 
sampling and enables the use of genomic relationship matrices. We considered the fixed effects 
CG, the number of milkings, and cow age at calving (linear and quadratic) as covariables, and the 
direct genetic, permanent environment and residual effects as random effects. Therefore, in matrix 
notation, the complete model can be presented as follows:

where β, a, p, and, e are, in this order, the fixed, direct genetic, permanent environment, and 
residual effects; and X, Z, and W are, respectively, the incidence matrices referring to the 
fixed effects, direct genetic random effect and permanent environment effect. We established 
a uniform distribution for β a priori, reflecting vague previous knowledge about this vector; 
Gaussian distributions for the random effects; and the inverted Wishart distribution for the (co)
variance components:

(Equation 1)
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where G, P, R, and In are, in this order, the covariance matrices of direct genetic, permanent 
environment, residual effects, and the identity matrix; ⊗ is the Kronecker product operator, in 
which Sg and vg, Sp and vp, and Sr and vr are the a priori values and degrees of freedom for the 
direct additive, permanent environment, and residual (co)variances, respectively. The matrix A* 
represents the relationship matrix between the animals, varying according to the method employed 
(BLUP or HBLUP).

As demonstrated by Legarra et al. (2009) and Aguilar et al. (2010), obtaining the matrix H 
through the one-step method can be simple, fast, and accurate. Subsequently, Aguilar et al. (2010) 
and Christensen and Lund (2010) derived the inverse of the matrix H: 

where G-1, A-1, and A-1
22 are, respectively, the inverse of the genomic matrix, as proposed by 

VanRaden (2008); the inverse of the traditional relationship matrix, following the rules proposed 
by Henderson (1978); and the inverse of the traditional relationship matrix considering only the 
section related to the genotyped animals.

A chain length of a million cycles was established, with a burn-in period of 100,000 cycles 
and a sampling interval of 100 cycles, which corresponds to 9,000 samples to make inferences. 
The convergence was verified by graphic inspection, using the R software, which was also used to 
obtain descriptive statistics of the posterior distributions of each parameter. The CODA computational 
package was employed to calculate the number of effective samples (NES) and the posterior highest 
probability density interval (HPD-95%), as recommended by Hyndman (1996) as an alternative to 
the confidence interval, since the latter is not very robust in asymmetric distributions. Samples of the 
breeding values were also stored to calculate the estimation accuracies, based on the procedure 
proposed by Gonzáles-Récio et al. (2006), in which the prediction error can be calculated as:

where ns is the number of samples in a stabilized chain; and a refers to the breeding value of the 
animal obtained in the i-th cycle.

RESULTS AND DISCUSSION

For all parameters estimated in the two models used in this study, the convergence 
was verified through inspection of graphs, indicating that the burn-in was sufficient to reach 
convergence. The effective sample sizes varied from 489 to 4,255, which are sufficient numbers 
to obtain the central tendency measures and the highest probability density interval (HPD) for 
each parameter. The number of samples discarded during the burn-in period and the serial 

(Equation 2)

(Equation 3)

(Equation 4)
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correlation obtained between the Markov chains samples are the main aspects of Bayesian 
analysis (Resende et al., 2001). In general, as the number of parameters to be estimated in the 
model increases, the burn-in period and serial correlation also increase, leading to a reduction 
in the effective sample size.

In the comparison between the BLUP and HBLUP, the greatest differences were 
obtained between the variance components, while the heritability estimates were similar (Tables 
2 and 3). However, considering the high-density intervals presented, there were no significant 
differences between the methods for any of the parameters estimated. The similarity between 
the two methods can primarily be attributed to the number of animals with phenotypic records, 
which was relatively small, thus causing large errors in the estimates (indicated by the HPD). 
Another factor was the small number of SNPs obtained (approximately 16,000), which might not 
have been sufficient to estimate the relationships arising from genes identical in state through 
the methods employed in this study.

Table 2. Mean, number of effective samples (NES), upper and lower limits of the highest probability density 
interval (HPD) of the posterior distributions of the variance and heritability components for yield of milk (MY305), 
fat (FY305), protein (PY305) and lactose (LY305), percentages of fat (%F) and protein (%P), and log-transformed 
somatic cell count (SCC) in buffaloes, using the BLUP model.

Trait Parameter Mean NES                                              HPD

    Lower limit Upper limit

MY305 σa
2   46,672.49 1024.48   35,883.60   58,364.40

 σp
2   36,946.85 1267.55   29,420.30   44,322.60

 σr
2 103,861.99 10,000.00 100,030.00 107,450.00

 h2     0.25 1276.26     0.20     0.30
%F σa

2     0.24   309.30     0.17     0.31
 σp

2     0.26   220.56     0.14     0.39
 σr

2     0.16 8051.20     0.15     0.17
 h2     0.37   219.06     0.24     0.49
%P σa

2     0.03   234.54     0.02     0.04
 σp

2     0.02   162.71     0.01     0.04
 σr

2     0.02 10,000.00     0.02     0.02
 h2     0.42   155.46     0.30     0.53
FY305 σa

2 276.58   975.30 188.75 363.87
 σp

2 286.06   756.04 212.33 364.54
 σr

2 693.03 8940.45 655.12 729.23
 h2     0.22   905.14     0.16     0.28
PY305 σa

2   96.18   567.01   73.79 118.69
 σp

2   80.69   265.57   62.85   99.36
 σr

2 196.06 10,000.00 188.05 204.03
 h2     0.26   444.84     0.20     0.31
LY305 σa

2     0.42   165.93     0.25     0.62
 σp

2     0.33   301.74     0.20     0.45
 σr

2     0.90 5305.79     0.82     0.96
 h2     0.25   162.02     0.16     0.35
SCS σa

2 115.21   645.58   87.88 142.34
 σp

2 128.63   683.24 100.78 156.15
 σr

2 434.70 10,000.00 416.90 451.35
 h2     0.17   747.98     0.13     0.21

σa
2 = additive genetic variance; σp

2 = permanent environmental variance; σr
2 = residual variance; h2 = heritability.

The heritability estimates were moderate to high in magnitude, except for the SCS 
values, indicating that for any of the traits studied, genetic gains can be obtained by selecting 
animals, since some of the differences between individuals are attributed to the average 
effect of the genes. Estimates with similar magnitudes are described in the literature, both for 
buffaloes and bovines.
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The heritability value found for MY305 was similar to that reported elsewhere in the 
literature for bubaline species (Hurtado-Lugo et al., 2006; Tonhati et al., 2008). Rosati and Van 
Vleck (2002), investigating buffaloes in Italy, reported lower heritability values for constituents of 
0.11, 0.14, 0.14, and 0.10 for FY, PY, %F, and %P, respectively. Values near to these were also 
reported by Aspilcueta-Borquis et al. (2010), working with animals in the same database: 0.208, 
0.229, 0.327, and 0.39 for FY, PY, %F, and %P were observed respectively. With respect to SCS, 
the values reported in the literature on dairy cattle vary from 0.07 to 0.23 (Da et al., 1992; Weller 
et al., 1992; Koivula et al., 2005), and in buffaloes, the estimate with the largest magnitude was 
reported by Aspilcueta-Borquis et al.(2010), with a value of 0.255.

Table 3. Mean, number of effective samples (NES), lower and upper limits of the highest probability density 
interval of the posterior distributions of the variance and heritability components for yield of milk (MY305), fat 
(FY305), protein (PY305) and lactose (LY305), percentages of fat (%F) and protein (%P), and log-transformed 
somatic cell count (SCS) in buffaloes, using the HBLUP model.

Trait Parameter Mean Samples                                            HPD

    Lower limit Upper limit

MY305 σa
2   49,878.863 1888.153   37,748.300   62,283.600

 σp
2   46,510.839 3069.609   37,147.500   55,905.000

 σr
2 104,583.810 10,000.000 100,674.000 108,217.500

 h2   0.25 2563.032     0.193     0.303
%F σa

2     0.274   176.006     0.191     0.356
 σp

2     0.270   182.023     0.139     0.407
 σr

2     0.179 7283.419     0.165     0.190
 h2   0.38   163.943     0.249     0.509
%P σa

2     0.036   226.958     0.026     0.043
 σp

2     0.025   150.334     0.012     0.038
 σr

2     0.016 10,000.000     0.015     0.017
 h2     0.467   158.226     0.337     0.595
FY305 σa

2 289.740   528.048 200.456 391.185
 σp

2 301.734   500.078 218.484 378.180
 σr

2 613.974 8962.676 581.048 646.656
 h2   0.24     48.748     0.166     0.310
PY305 σa

2   99.705   665.074   74.483 124.488
 σp

2   90.488   571.354   70.291 111.530
 σr

2 193.232 10,000.000 185.431 201.990
 h2   0.26   591.181     0.198     0.317
LY305 σa

2     0.389   436.535     0.227     0.570
 σp

2     0.353   651.833     0.195     0.445
 σr

2     0.803 7117.009     0.737     0.865
 h2   0.26   426.717     0.158     0.354
SCS σa

2 121.164   735.005   90.025 150.865
 σp

2 131.948 1040.411 103.501 158.530
 σr

2 421.091 10,000.000 404.352 437.616
 h2   0.18   711.678     0.137     0.223

σa
2 = additive genetic variance; σp

2 = permanent environmental variance σr
2 = residual variance; h2 = heritability.

Regarding the genetic correlations between the traits studied (Table 4), the BLUP and 
HBLUP methods presented similar estimates, except for the associations involving SCS, for 
which the values were antagonistic for the standard method and synergetic when using the 
genomic information. Through these estimates, regardless of the method used, the indirect 
genetic gains obtained through selection for milk yield would be minimal for the percentage of 
each constituent and for the somatic cell count.
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The genetic correlation estimates between MY305 and the constituents (both output and 
percentage) were near those described in the literature for the species (Tonhati et al., 2000; Rosati 
and Van Vleck, 2002). Studies of genetic correlation estimates of somatic cells in buffaloes are 
scarce, but for dairy cattle they indicate a low and positive correlation between the traits for yield 
and somatic cells (Carlén et al., 2004), like those found using HBLUP in this study.

The mean accuracy estimates of the genetic values predicted for the traits studied in 
the analysis using HBLUP were greater than those in the analysis employing BLUP (Table 4), 
providing increments of 8.67, 8.52, 8.97, 11.39, 12.74, 11.97, and 12.05%, respectively, for MY305, 
FY305, LY305 PY305, %F, %P, and SCS. There was also lower spread of the accuracy values 
(considering the standard deviation), and there was evidence of an increase in accuracy only for 
the genotyped animals. Regarding the comparison of the breeding value estimate (EBV) between 
the two methods, the Pearson correlations indicated few changes for the groups of genotyped 
animals and bulls, with the lowest values found in the comparison of the estimates in the whole 
population (Table 5). In the sample used, the genotyped animals and bulls presented relatively 
good accuracies, and the inclusion of this information caused few alterations in the estimation of 
the breeding values of these animals.

Table 5. Means and standard deviations (SD) of the prediction accuracy of the breeding values and Pearson 
correlation in the selection of animals classified by the classic breeding value (BLUP) and the breeding value 
using genomic information (HBLUP), for yield of milk (MY305), fat (FY305), protein (PY305) and lactose (LY305), 
percentages of fat (%F) and protein (%P), and log-transformed somatic cell count (SCS).

Traits                                                 Mean accuracy                                                                           Pearson correlation

 BLUP HBLUP Total Genotyped Bull

MY305 0.66 ± 0.16 0.72 ± 0.09 0.74 0.92 0.97
FY305 0.58 ± 0.15 0.63 ± 0.11 0.68 0.87 0.96
PY305 0.58 ± 0.16 0.63 ± 0.11 0.67 0.86 0.96
LY305 0.59 ± 0.15 0.66 ± 0.10 0.71 0.84 0.95
%F 0.61 ± 0.14 0.69 ± 0.09 0.70 0.89 0.94
%P 0.62 ± 0.13 0.69 ± 0.09 0.70 0.89 0.93
SCS 0.57 ± 0.19 0.64 ± 0.13 0.71 0.88 0.92

The results presented should be discussed in light of the properties of the HBLUP method. 
First of all, the HBLUP method considers homogeneous variance for all SNPs, while results for 
dairy cattle with other methods (BayesA, BayesB, and Bayesian Lasso) demonstrate that this 
assumption in many cases is wrong, causing lower efficiency of the genome matrix, as verified 
in simulation studies (Garrick et al., 2009). Considering the database used, some QTLs with 
greater effect may have occurred. This can diminish the efficiency of the HBLUP method, possibly 

Table 4. Means of the posterior distributions of the genetic correlations for yield of milk (MY305), fat (FY305), 
protein (PY305) and lactose (LY305), percentages of fat (%F) and protein (%P), and log-transformed somatic cell 
count (SCS) in buffaloes using the BLUP (below the diagonal) and HBLUP model (above the diagonal).

 MY305 FY305 PY305 LY305 %F %P SCS

MY305 -  0.78  0.94  0.66 -0.35 -0.16 0.10
FY305  0.73 -  0.74  0.10  0.38  0.11 0.05
PY305  0.93  0.64 -  0.08  0.23  0.42 0.09
LY305  0.68  0.12  0.12 -  0.13  0.11 0.12
%F -0.37  0.39  0.21  0.11 -  0.33 0.18
%P -0.21  0.12  0.49  0.13  0.29 - 0.17
SCS -0.10 -0.11 -0.12 -0.15 -0.08 -0.10 -
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making the control even more difficult when considering the small number of SNPs evaluated. 
Nevertheless, to enable a multi-trait analysis, alternatives have been developed for the HBLUP., 
To allow using the heterogeneity of variance of the SNPs in the HBLUP method Wang et al. (2012) 
proposed an interactive method that, despite the results presented in simulations in the same 
study, demonstrated questions with respect to the convergence of the process. Nevertheless, this 
process is still being used in uni-trait form. Other possibilities to increase the accuracy are based 
on the use of specific genome matrices for each trait, so that only a single-trait analysis is carried 
out, as occurs in the Bayesian regression methods.

CONCLUSIONS

The heritability estimates for all the traits under analysis were moderate, allowing them to 
be used in selection programs, but the genetic correlations between milk yield and percentages of 
fat and protein, and somatic cell score are not desirable because they can alter the milk quality. In 
this process, a balance should be sought between increased milk yield and milk quality. The use 
of genomic information, based on the results presented, lead to better accuracy of the heritability 
estimates (lower standard deviation) and accuracy of the genetic values, since a better relationship 
structure was available. 
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