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ABSTRACT. Aimed to address the defects of the large mean square 
error (MSE), and the slow convergence speed in equalizing the multi-
modulus signals of the constant modulus algorithm (CMA), a multi-
modulus algorithm (MMA) based on global artificial fish swarm 
(GAFS) intelligent optimization of DNA encoding sequences (GAFS-
DNA-MMA) was proposed. To improve the convergence rate and 
reduce the MSE, this proposed algorithm adopted an encoding method 
based on DNA nucleotide chains to provide a possible solution to the 
problem. Furthermore, the GAFS algorithm, with its fast convergence 
and global search ability, was used to find the best sequence. The real 
and imaginary parts of the initial optimal weight vector of MMA were 
obtained through DNA coding of the best sequence. The simulation 
results show that the proposed algorithm has a faster convergence 
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speed and smaller MSE in comparison with the CMA, the MMA, and 
the AFS-DNA-MMA.
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INTRODUCTION

To eliminate inter-symbol interference (ISI) and improve the performance of 
the communication system, some blind equalization algorithms are used in the receiving 
terminal to compensate and eliminate the ISI of the channels. In the known blind equalization 
algorithms, traditional constant modulus algorithm (CMA) has lower complexity and stronger 
robustness, yet it has low convergence speed, local convergence, and large mean square 
error (MSE). Furthermore, it does not effectively equalize the higher-order multi-modulus 
quadrature amplitude modulation (QAM) signals (Yuan et al., 2012). The QAM signals have 
a plural modulus value and the signal constellations are distributed in circles with different 
radii. Therefore, the multi-modulus algorithm (MMA) can effectively equalize higher-order 
multi-modulus QAM signals (Paracha and Zerguine, 2011).

The focus of DNA coding is to avoid hybridization of biochemical reactions among 
DNA molecules as much as possible. Currently, many algorithms can optimize DNA encoding 
sequences, and intelligent algorithms such as the genetic algorithm (GA) (Vijayaraghavan et 
al., 2013; Garg et al., 2014a,b,c) and the artificial fish swarm algorithm (AFSA) have been 
studied (Li and Suohai, 2013). The global AFSA (GAFSA) is an efficient intelligence algorithm 
that has global search ability and can overcome the low accuracy, slow convergence, and high 
complexity of the AFSA.

In this paper, based on the advantages of DNA coding, MMA, and GAFSA, the 
MMA, which is based on the global artificial fish swarm (GAFS) intelligent optimization of 
DNA encoding sequences (GAFS-DNA-MMA), is proposed to overcome the defects of the 
CMA and the MMA.

MATERIAL AND METHODS

Multi-modulus algorithm

Output signals of the CMA are equalized to a circle with the radius R, which is a 
statistical modulus value of the transmitted signals. The constellation points of the higher-
order multi-modulus QAM signals are distributed on several circles of different radii. When 
we use the CMA to equalize higher-order QAM signals, the output constellations of the CMA 
are equalized to a fixed circle, so there is a larger MSE. The MMA, based on amplitude and 
phase information, replaces modulus values of in-phase and quadrature components with real 
and imaginary parts of the input signals, respectively. The principle is shown in Figure 1, 
and can effectively correct phase rotation; however, the MMA has some defects such as slow 
convergence rate and large MSE (Ni et al., 2012).
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In Figure 1, a(k) is a zero mean independent identically distributed transmitted 
signal vector, c(k) denotes the channel impulse response vector, and n(k)  is an additive white 
Gaussian noise vector, y(k) represents the signals by the equalizer, yR(k) and yI(k) are the real 
and imaginary parts of y(k) , f(k) is the equalizer weight vector, fR(k) and fI(k) are the real 
and imaginary parts of f(k). z(k) is the equalizer output signal, zR(k) and zI(k) are the real and 
imaginary parts of z(k). e(k) is the error term, eR(k) and eI(k) are the real and imaginary parts 
of e(k).

The cost function of the MMA is given by

(Equation 1)

The corresponding iterative formula of tap coefficients in the MMA is written as

(Equation 2)

where 2( ) ( )( ( ) )R R R Re n z n z n R= − , 2( ) ( )( ( ) )I I I Ie n z n z n R= − , µ is an iterative step-size.

Global artificial fish swarm algorithm

The GAFSA is an efficient intelligence algorithm, which can imitate the behavior 
of fish swarms, including preying, swarming, and rear-end collisions, to achieve the global 
optimal value (Ma and Wang, 2009; Gao and Chen, 2010).

Preying behavior: Let vi be the current position vector of the global artificial fish and a 
position vector v j in current visual distances is selected randomly, we use 1( )viY  to denote the 
fitness function of the global artificial fish. If the fitness function is value 1 1( )> ( )v vj iY Y , then 
the global artificial fish moves a step from position vi to position v j  according to Equation 3, 
otherwise, the global artificial fish selects another position vector v j  and judges whether it can 
reach the forward movement condition. If it cannot reach the forward movement condition, it 
randomly moves a step forward according to Equation 4.

Figure 1. Principle of the multi-modulus algorithm (MMA).
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where rand(0 1),  means random number within 0 to 1, step is a step-size, V is a visual range, 
bestv  is the best position vector.

Swarming behavior: Assume that the current position vector vi  of the global 
artificial fish, the center position vector vc in the current visual range, and the number of the 
companions of the artificial fishes are searched. If the fitness function value is 1 1( )> ( )v vc iY Y , 
the center position has more food and artificial fishes are not too crowded. Then the artificial 
fish goes a step towards the center position according to Equation 5. Otherwise, the artificial 
fish continues performing preying behavior according to Equations 3 or 4.

1
( ) ( ) rand(0 1)
( ) ( )
v v v vv v ,
v v v v

c i best i
i i

c i best i

step+

− + −
= + ⋅ ⋅

− + −
(Equation 5)

Following behavior: Assume that maxv  denotes the position vector corresponding to the 
maximum fitness function value in the current visual distance. If the number of companions of 
the artificial fishes in the visual distance meets the condition for /vN N δ> , where δ  denotes 
the degree of congestion and vN  is the number of companions within the visual distance. If the 
fitness function value is 1 1( )> ( )maxv viY Y , the artificial fish goes a step towards position vector 

maxv  according to Equation 6. Otherwise, the artificial fish performs swarming behavior as 
shown in Equation 5.

1
( ) ( ) rand(0,1)
( ) ( )

max

max

v v v vv v
v v v v

i best i
i i

i best i

step+

− + −
= + ⋅ ⋅

− + −
(Equation 6)

MMA based on optimization of GAFS DNA encoding sequence

Hamming distance constraint based on DNA encoding

The hamming distance between two DNA sequences is the sum of the different 
characters in all corresponding positions that describe that the two sequences are not 
similar (Cui et al., 2007; Wang and Geng, 2012). DNA sequence X  and Z are denoted as 

1 2 nX x x x=   and 1 2 nZ z z z=  , where n is the number of DNA bases in X  or Z , mx  
and lz  are any of the four bases (adenine, guanine, cytosine, and thymine). Their hamming 
distance is written as ( ),H X Z  and defined as

1 V rand(0 1)v v ,i i+ = + ⋅ (Equation 4)

1

( ) ( )
rand(0 1)

( ) ( )
v v v v

v v ,
v v v v

j i best i
i i

j i best i

step+

− + −
= + ⋅ ⋅

− + −
(Equation 3)

1
( )= ( )

n

i i
i

H X Z h x z
=
∑, , (Equation 7)
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where 
0  

( )=
1  

i i
i i

i i

if x z
h x z

if x z
=

 ≠

,
,

,
.

In the DNA encoding design, the number of different bases in sequence X and Y  
increases with an increase in hamming distance. Therefore, the possibility of hybridization is 
reduced (Tulpan et al., 2014).

Fitness functions

In this section, we define two fitness functions.
The first fitness function handles the question using the weighted average method 

according to Equation 8:

1( ) ( )= min ( ( ))s s , s s , sk R
i i i i in k n

Y wF w H σ
− < <

= ⋅ (Equation 8)

(Equation 9)

where is  is the i th DNA sequence and equals to the i th position vector vi, if 0( 0)k > < , ( )sk R
iσ  

denotes the sequence s R
i  shift to right (left). s R

i  is the anti-chain of si. k is the number of shifts 
and w  is set to 1 to enable convenient calculation.

The second fitness function of the AFSA is defined by the cost function of the MMA 
and is written as

where ( )fMMA iJ  denotes the cost function of MMA.

RESULTS

Steps of the proposed algorithm

Step 1: Initialization of DNA sequence. The initial population of DNA sequence 
1 2 N[ , , , ]s s s s=  , where sm is the m th DNA sequence and N is the number of DNA 

sequences. It is equal to the initial position vector of GAFS.
Step 2: The calculation of first fitness function. The first fitness function of each 

artificial fish is calculated according to Equation 8. The maximum value of the first fitness 
function and its corresponding position vector are recorded in the first bulletin board.

Step 3: DNA coding and calculation of the second fitness function. The position vector 
with DNA coding of the GAFS is obtained. The value of the second fitness function for each 
artificial fish swarm is calculated according to Equation 9, and the maximum value and its 
corresponding position vector are recorded in the second bulletin board.

Step 4: The preying, swarming, or following behavior of artificial fish. Each artificial 
fish in the swarm carries out following behavior according to Equation 6. If the following 
behavior does not occur, all fishes will carry out swarming behavior according to Equation 5. 
If swarming behavior is not successful, all fishes will carry out preying behavior according to 
Equations 3 and 4. Each behavior can cause the current position vector to change.
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Step 5: Update of the first bulletin board. The first fitness function of each artificial 
fish is calculated. The maximum value is selected and compared with the previous maximum 
value of first fitness function recorded in the bulletin board. If the maximum value is greater 
than the previous maximum value, the first bulletin board is updated by the current maximum 
value and its corresponding position vector.

Step 6: Coding DNA and the update of the second bulletin board. After one iteration, 
the position vector in the first bulletin board is obtained by the coding DNA. The second fitness 
function of each artificial fish is calculated. The maximum value is selected and compared with 
the previous maximum value of the second fitness function recorded in the second bulletin 
board. If the maximum value is greater than the previous maximum value recorded in the 
second bulletin board, the second bulletin board is updated by the current maximum value and 
its corresponding position vector.

Step 7: Determination of the termination condition. Judge whether the iteration is 
equal to the maximum value. If the condition does not hold, the iteration process returns to 
step 4; otherwise, the record in the second bulletin board is the output.

Step 8: The record in the second bulletin board is used as the real and imaginary parts 
of the initial optimization weight vector and is updated according to Equation 2.

Simulation analyses

In the simulations, the transmitted signals were 16 QAM signals, the channel was 
[0.9656 -0.0906 0.0578 0.2368]h = , signal-to-noise ratio was 20 dB, the number of equalizer 

weight coefficients was L = 11, and the step-sizes of the AFS-DNA-MMA and the GAFS-DNA-
MMA was µ = 0.002. The step-size of the MMA was µ = 0.01. The number of GAFSA was 110N =
, the crowding factor was 0 5.δ = = 0.5. The simulation results are shown in Figure 2.

Figure 2. Simulated results. a. The curves of MSE. b. The constellations of the transmitted signals. c. The 
input constellations of the equalizer. d. The output constellations of the MMA. e. The output constellations of 
the AFS-DNA-MMA. f. The output constellations of the GAFS-DNA-MMA. MSE, mean square error; MMA, 
multi-modulus algorithm; AFS-DNA-MMA, multi-modulus algorithm based on artificial fish swarm intelligent 
optimization of DNA encoding sequences; GAFS-DNA-MMA, multi-modulus algorithm based on global artificial 
fish swarm intelligent optimization of DNA encoding sequences.
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From Figure 2, we can see that the GAFS-DNA-MMA outperforms the AFS-DNA-
MMA and MMA in improving the convergence speed and reducing MSE. The MSE of the 
GAFS-DNA-MMA is smallest and its convergence speed is fastest. Moreover, the output 
constellations of the GAFS-DNA-MMA are more compact and clearer than the MMA and 
have no phase rotation.

DICUSSION

After DNA encoding and the GAFSA are applied to the MMA to optimize its initial 
weight vector, the GAFS-DNA-MMA is proposed. The results of the simulation show that 
the MSE of the GAFS-DNA-MMA has the fastest convergence rate and the lowest MSE, as 
well as more compact and clearer output constellations in comparison with the AFS-DNA-
MMA and MMA. Compared with the global artificial fish swarm algorithm based on the DNA 
genetic algorithm (GA-GAFSA), the GAFSA takes longer to find the optimal value. Therefore, 
in future, we can investigate the GA-GAFSA in combination with the MMA. Alternatively, 
the current novel methodology can also be compared with soft computing methods such as 
genetic programming.
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