

Molecular identity of ramie germplasms using simple sequence repeat markers

M.B. Luan^{1*}, B.F. Chen^{2*}, Z.Z. Zou³, J.J. Zhu¹, X.F. Wang¹, Y. Xu¹, Z.M. Sun¹ and J.H. Chen¹

¹Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/ Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, China ²Department of Medical Biology, North Sichuan Medical College, Sichuan Nanchong, China ³Yiyang Medical School, Yiyang, China

*These authors contributed equally to this study. Corresponding author: J.H. Chen E-mail: luanmingbao2002@126.com

Genet. Mol. Res. 14 (1): 2302-2311 (2015) Received April 7, 2014 Accepted October 15, 2014 Published March 27, 2015 DOI http://dx.doi.org/10.4238/2015.March.27.15

ABSTRACT. DNA identity is highly effective and efficient for distinguishing crop varieties regardless of their phenotypic similarities. To establish DNA identity in ramie, 21 simple sequence repeat primers were amplified in 108 accessions of domestic and exotic ramie germplasms. Sixty polymorphic bands were obtained, with an average of 2.9 bands per locus and 2-8 band types per primer locus (average of 5.19 band types). The Simpson's diversity index of the 21 simple sequence repeat loci ranged from 0.158 to 0.808 with an average of 0.612. There was large difference in the specific index in the germplasm tested, from 44.082 to 218.163, with an average of 83.620. Based on allele band type, 8 primer pairs were selected for DNA fingerprinting of the 108 genotypes. The combination of the 8 primer pairs were found to be very effective for distinguishing these genotypes, indicating that they can be used in the molecular DNA identity of ramie.

Key words: Molecular identity; Ramie; Simple sequence repeat

INTRODUCTION

Ramie (*Boehmeria nivea* L.), also called Chinese grass, is principally used for fabric production and is one of the oldest fiber crops cultivated in China; this crop has been cultivated for more than 6000 years. It is a popular perennial plant and native to eastern Asia (Xiong, 2008). The bark of the vegetative stalks is the source of bast fiber. A series of ramie industry products have become popular in domestic markets, including shirts, underwear, and socks (Liu, 2002). In previous studies of ramie, various applications of ramie were established, with the exception of the fiber industry. Ramie is also cultivated as fodder crop in the southern regions of China because of its excellent nutritional value, containing 22% crude protein, 18% crude fiber, 1% Lys, 4% Ca²⁺, and other nutrient elements needed by livestock regardless of the fresh leaf or its processing into dry power or silage (Yu et al., 2007; Xiong et al., 2010). Recently, ramie has become an optimal crop for conserving soil and water in the Yangtze River valley because of its abundant roots and luxuriant foliage (Tu and Chen, 2007).

In the ramie germplasm collection process, it is necessary to conduct cultivar identification for breeding selection and germplasm reservation. Traditionally, ramie germplasms are identified based on morphology, but this is laborious. Morphological traits must be obtained through multi-years and multi-sites, which is time consuming and costly. Additionally, the differences between morphological traits among germplasms are sometimes difficult to identify.

Molecular markers have been widely used to characterize ramie germplasms. For instance, random amplified polymorphic DNA (RAPD) (Jie et al., 1999; Guo et al., 2001; Meng et al., 2010), simple sequence repeats (SSR) (Zhou et al., 2004; Zou et al., 2012; Guo et al., 2013), inter-simple sequence repeat (ISSR) (Liu et al., 2006; Hou et al., 2006; Ding et al., 2008), sequence-related amplified polymorphism (SRAP) (Liu et al., 2008; Wen et al., 2011; Zou et al., 2012), restriction site amplification polymorphism (Zou et al., 2012), and random amplified microsatellite polymorphism (Zhou et al., 2004) were developed and shown to be rapid, accurate, and economical in ramie germplasm research. Moreover, several reports have illustrated the advantage of using molecular ID in crop species. Zheng et al. (2010) established 51 kenaf germplasms using of ISSR and RAPD markers. Liu et al. (2013) established 127 kenaf germplasms using SRAP markers. Wang et al. (2010) first distinguished 42 germplasms of ramie using 7 ISSR markers, and developed the first molecular ID of ramie. However, this plant shows poor stability and it is complex to record molecular ID because of the 16-digit code in the ID constructed using ISSR markers. Comparing with ISSR and other molecular markers, SSRs are highly polymorphic, informative, codominant, technically simple, and reproducible, and have become commonly used for constructing the molecular ID in the crop species (Fang et al., 2001). Some species have been evaluated by molecular ID using SSR markers. Gao et al. (2009) established 83 soybean germplasm molecular IDs using 9 SSR markers. Yang et al. (2010) established 36 tea germplasm molecular IDs using 17 SSR markers. Chen et al. (2011) established 202 peach germplasm molecular IDs using 8 SSR markers. Wang et al. (2011) established 142 sweet sorghum variety molecular IDs using 11 SSR markers. Zhang et al. (2014) established 20 pear variety molecular IDs using 2 SSR markers. However, there have been no reports related to molecular ID using SSR markers in ramie.

Therefore, the objective of this study was to construct molecular IDs of the 108 ramie germplasms using SSR markers.

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

MATERIAL AND METHODS

Materials and DNA isolation

A total of 108 ramie accessions (Table 1) growing in a national ramie germplasm nursery affiliated with the Institute of Bast Fiber Crops, CAAS, China, were used in this study. DNA was isolated from young leaves collected from each ramie accession using the DNeasy plant mini prep kit (Qiagen, Hilden, Germany).

Code	Entry	Origin	Code	Entry	Origin
1	Wayaozhuma	Guangxi	55	Xinmingingma	Guizhou
2	Ganzaerhao	Jiangxi	56	Yougima	Hunan
3	Miaobazhuma	Sichuan	57	Baivema	Jiangxi
4	Simaohongzhuma	Yunnan	58	Lichuanhoupizhuma	Jiangxi
5	Shuigingzhuma	Chongging	59	Boyanghuangyema	Jiangxi
6	Yichuntongpiging	Jiangxi	60	Xiaoqinggan	Sichuan
7	Yachibaima	Guizhou	61	Yihuangijama	Jiangxi
8	Rongchangzhuma	Chongging	62	Xiangningdayely	Hubei
9	Guangdonghuangpidouerhao	Guangdong	63	Yedouzi	Jiangxi
10	Oingyezhuma	0.000-000-00	64	Tiantaitiema	Zheijang
11	Hexianiiama	Guangxi	65	Davehongzhameng	Jiangxi
12	Guangpimavihao	Jiangxi	66	Jiangkougingpizhuma	Guizhou
13	Juandongtuma	Chongging	67	Longtangbaima	Chongging
14	Limuaingma	Guizhou	68	Wuchangshannozhumavihao	Hubei
15	Dadaoma	Guizhou	69	Jinninggingma	Guizhou
16	Liningqingma	Guizhou	70	Oingnigan	Ijangxi
17	Lidazhuma	Yunnan	71	Fenvihuangguangdou	Iianovi
18	Gebugingma	Guanovi	72	Huangijuma	Hunan
19	Tongmugingma	Guangxi	73	Guangnimaerhao	Iianovi
20	Oingpidamayihao	Chongging	74	Oianzhuvihao	Guizhou
21	Gaoanma	liangyi	75	Loushanhuangnima	Guizhou
21	Yujiangma	Jiangxi	76	Anlongzhumaerhao	Sichuan
22	Fulisima	Chongging	70	Linggonggingnima	Guizhou
23	Wuchuanhaima	Guizbou	78	Japanzhumagihao	Ianan
25	Huanhancongma	Sichuan	79	Xieligingma	Chongging
25	Nanchongzhuma	Sichuan	80	Kuguaging	Hunan
20	Viningxianma	Chongging	81	Longhuibaimavibao	Hunan
28	Pugidavelyzihao	Hubei	82	Vongshanzhuma	Vunnan
20	Wulonghonggan	Chongging	83	Hongguijn	Hubei
30	Xiaogubai	liangyi	84	Vushanma	Jiangyi
31	Rongijanghajmavihao	Guizhou	85	Vinnivihao	Indonesian
32	Niutima	Hunan	86	Sichuangaodibaima	Chongging
32	Nanchenghounizhuma	Tianavi	87	Vinnierbao	Indonesian
37	Huanggingdou	Jiangxi	88	Shanginghaima	Chongging
35	Zivima	Jiangxi	89	Frshigingmaerhao	Hubei
36	Datianhuangganzhuma	Vunnan	90	Vinninggingma	Hunan
30	Ningduyema	Tunnan Tiangyi	90	Vimatuma	Guanavi
38	Heinima	Guangxi	92	Vinnisanhao	Indonesian
30	Tianhaomavihao	Ijangvi	92	Zunvichuangenma	Guizhou
40	Changshagingyema	Hunan	94	Davajiandaobaj	Hubei
40	Chuanzhuarhao	Sichuan	94	Viaovelugan	Jiangyi
41 42	Nanchanghaonizhuma	Jiangyi	95	Pinachangijama	Sichuan
42	Ningdugingzhuma	Jiangxi	90	I nigenangjianna Leivenghuengkeme	Hunan
43	Mangiangzhuma	Uuboi	08	Goodigingma	Chongging
44	Lyzhubai	liongyi	90	Dingyozhuma	Guangyi
45	Davajiandaohai	Juligai	100	Vonlozhumo	Muonmor
40	Ouvionzhumo	Thousand	100	Shanghayianma	Unboi
4/ 19	Zhuzihian	Liongvi	101	Vinnugingma	Guizhen
40	Ziiuzi0iaii Vanashuojiauhoj	Guangyi	102	Tionnaishanyama	Guizilou
+7 50	Hunimo	Jiangyi	105	Huongiindou	Uuboi
50	Vanavinvivaly	Jangxi	104	Changranzhuma	Huber
51 52	Vienerhyliuhaa	Hubel	105	Chongrenznuma	Hunan
52 52	Ningdudahaima	Hunan	100	Tionhoomoorhoo	Hunan
55 54	Ningdudabaima	Jiangxi	107	Luca anin abuon acommo	Jiangxi
54	Xiangzhuyihao	Hunan	108	Huangpinghuangganma	Guiz

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

©FUNPEC-RP www.funpecrp.com.br

SSR primers

Twenty-one SSR primer combinations (Table 2) were synthesized according to Chen et al. (2011).

Table 2. Pri	Table 2. Primer sequence of simple sequence repeat (SSR) used among ramie accessions.			
Locus	Primer sequences (5'-3')	Primer sequences (5'-3')		
b50	F: AACAATCCAGGAGTGGCAATC	R: ACAAGCGAAGATCGTCTCATC		
b35	F: CGTTCAGTCACCAGCAAGG	R: GAGGGAAGCAGGGAGAGC		
b38	F: TAATCCCTCAATGGCTCTTTTC	R: GAGAAGGATACGAATTGACAGG		
b40	F: TGTATAGAACTGAGTAAATGATTG	R: CAACTTTCTTAAACCACTTTCG		
b43	F: CGAGCCTTCTTCTTCTTCTGG	R: GCAAGCAATACGGACAGTAGG		
c03	F: CGTGAAAATAGTGATATGTGTG	R: ACTGTAACAATCAAGAAGAAACC		
c07	F: GCCACAGCCGAGGAAGAG	R: TCTCATCACCACCACCTTAGG		
b27	F: AGCCAGGTTCCAGAAGTCC	R: CATAATCACAAAGTCTCGGTTCC		
b28	F: TCCCACCACGGACTACTG	R: AACCACCATCATCATCATCATC		
b11	F: GCGGAGGCTTAATTTGCTTTG	R: ACTCAATACATACACGGCACTAG		
b16	F: ACCTCTACGGACCTCTTCTTC	R: CATAACATAACATGACACACAAGC		
b24	F: GAGCCAGAGCCAGGTTCC	R: ACAAAGTCTCGGTTCCTTACAC		
b34	F: AATAGAATGTGGAGGCGATAGAG	R: AAACCATAAATCAACTACCGAACC		
b64	F: CTTGAGATACAGCCTTCCATTAG	R: CACACCTCGCTTCCCTTG		
c17	F:GAAACTATTTCCACCAACAAAG	R: ACACACATTCCTACACACC		
b57	F: CGGATATGGTGGAGGTTATGC	R: CAGAACGACGACGACGAC		
b65	F: ACGAACCACAACACAGAGAG	R: ACGAGGGAACACCAGAGAG		
c18	F: AAGCCGAGCGTGAAGAAG	R: ACACACAGAAAGAACACAAGAC		
b53	F: GGCTCAAGTTTGCTCATAGATTC	R: CGGCTTCGCTTTAGGATTTG		
b56	F: CGGTCTGTGGATACGAATGG	R: GACGACGACGACGATGATG		
c10	F: AGTGCGGAGATAACTGTTC	R: GGCTACTTTATTCTAAACCAAAC		

SSR analysis

SSR-polymerase chain reactions (PCRs) were carried out in 10- μ L reaction volumes with 1X PCR buffer, 0.2 mM dNTPs, 1 U *Taq* DNA polymerase (Tiangen, Beijing, China), 0.5 μ L forward primer (10 nM, Tiangen), 0.5 μ L reverse primer (10 nm, Tiangen), and 0.5 μ L DNA of each accession under the following PCR conditions: 5 min at 94°C, followed by 30 cycles for 30 s at 95°C, 30 s at the primer-specific annealing temperature, 30 s at 72°C, and final extension for 10 min at 72°C.

PCR products were separated on 8% polyacrylamide gels, and silver staining was conducted according to the method described by Zhang et al. (2000). Molecular weights were estimated using a DNA marker (DNA Marker 2000, BioTeke Co., Beijing, China). SSR analysis was repeated at least twice. Clear bands from PCR products were recorded types 1-8. Faint bands were recorded as 0.

Diversity index (DI) of SSR primers and CHEN specialty index (CHEN-SI) of germplasms

The diversity index of SSR primers and CHEN specialty index (CHEN-SI) of germplasms were calculated using Genetics Statistics 3.0 (2007SR11872) developed by North-East Agriculture University, China.

Simpson's DI (Simpson):

$$D = 1 - \sum (Pi^2)$$

(Equation 1)

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

M.B. Luan et al.

In the formula, Pi was the proportion of band types of a locus. Simpson's unbiased DI (unbiased Simpson):

$$D = 1 - \sum((ni \times (ni - 1)/(N \times (N - 1))))$$
(Equation 2)

In the formula, ni was the number of band types in a locus; N was the total number of all band types counted in a locus.

Shannon-Weiner's DI (Shannon-Weiner):

$$\mathbf{H}' = -\sum (\mathbf{Pi} \times \log(\mathbf{Pi}))$$
(Equation 3)

In the formula, Pi was the proportion of band types in a locus. Brillouin's DI (Brillouin):

$$H = (1/N) \times \log(N!/n1!n2!n3!...ns!)$$
 (Equation 4)

In the formula, n1!n2!n3!...ns! was the factorial product of each band type in a locus. CHEN specialty index (CHEN-SI):

CHEN-SIi =
$$(\sum (1/(Nij/Mj)))/(m \times n)$$
 (i = 1,2,3...m; j = 1,2,3...n) (Equation 5)

In the formula, Nij was the total distributive number of band type in the m individual of the ith individual in the j locus; Mj is the total number of band type of the j locus, its number is m in the data of dominant molecular marker.

The Chi-square analysis was used to analyze the data. $P \le 0.01$ indicated extreme significance; $P \le 0.05$ indicated significance; and P > 0.05 indicated no significance.

ID construction

The molecular ID of ramie germplasms was constructed using ID Analysis 3.0 (Northeast Agriculture University, China).

RESULTS

Band type developed by SSR primers

The number of alleles per locus ranged from 2 to 3 among the 21 primer pairs. Fourteen primers amplified 2 alleles, while 7 primers amplified 3 alleles.

The number of band types developed by SSR primers was 2-9. Of the 21 primers, b50 amplified the largest number of band types (9 band types), while b64 and c17 amplified the smallest number of band types (2 band types).

DI of SSR primers

The DI of SSR primers is listed in Table 3, including 4 type DI consisting of Simpson's diversity index, Simpson's unbiased diversity index, Shannon-Weiner's diversity index,

2306

Genetics and Molecular Research 14 (1): 2302-2311 (2015) ©FUNPEC-RP www.funpecrp.com.br

and Brillouin's diversity index. Values ranged from 0.158 to 0.808, 0.159 to 0.816, 0.146 to 0.747, and 0.133 to 0.702, respectively. Among the 21 SSR primers, primer c10 showed the highest DI and primer c07 showed the lowest DI.

Table 3. Diversity of simple sequence repeat (SSR) primers.					
SSR primers	Band type	Simpson	US	SW	BR
b50	9	0.751	0.758	0.663	0.619
b35	5	0.701	0.708	0.55	0.521
b38	4	0.527	0.532	0.349	0.332
b40	7	0.664	0.67	0.569	0.532
b43	3	0.477	0.481	0.291	0.281
c03	5	0.688	0.694	0.542	0.514
c07	4	0.158	0.159	0.146	0.133
b27	4	0.614	0.62	0.44	0.421
b28	6	0.619	0.626	0.487	0.455
b11	4	0.664	0.67	0.475	0.456
b16	4	0.602	0.608	0.428	0.408
b24	4	0.641	0.647	0.46	0.44
b34	5	0.587	0.592	0.455	0.43
b64	2	0.356	0.359	0.235	0.225
c17	2	0.486	0.491	0.295	0.285
b57	4	0.672	0.678	0.543	0.516
b65	7	0.617	0.623	0.522	0.488
c18	8	0.735	0.743	0.701	0.65
b53	7	0.709	0.715	0.636	0.595
b56	8	0.783	0.791	0.715	0.666
c10	7	0.808	0.816	0.747	0.702

Simpson indicated Simpson's diversity index; US indicated Simpson's unbiased diversity index; SW indicated Shannon-Weiner's diversity index; BR indicated Brillouin's diversity index.

Special band type

Two primers amplified special band types. The 5th special band type developed by primer b50 could distinguish Lipingqinma among 108 ramie germplasms. The 1st and 5th special band types developed by primer b65 could distinguish Ganzaerhao and Shanqingbaima, respectively.

CHEN-SI of germplasm

The CHEN-SI values of 108 germplasms are listed in Table 4. There were significant differences (P < 0.01) among the CHEN-SI of the 108 ramie germplasms, ranging from 44.082 to 218.163. There were 2 germplasms with CHEN-SI values greater than 200, including the 88th with 218.163 and the 16th with 201.988. There were 4 germplasms showing CHEN-SI values less than 50, including the 68th with 49.825, the 69th with 48.216, the 70th with 45.86, and the 74th with 44.082. The high CHEN-SI indicates that ramie germplasms have a large number of special band types, and thus the results may be useful for identifying and preserving germplasm resources of ramie.

Germplasm ID construction

The PCR amplification banding pattern of 108 ramie germplasms was recorded, which was amplified by 21 SSR primer combinations, as well as being expressed 1, 2...n, respectively. Next, the molecular identity card of ramie was constructed according to the following

M.B. Luan et al.

Table 4 CHEN index and ID of germalasm

Germplasm code	CHEN index ID		Germplasm code	CHEN index	ID
1	79.267	43311132	55	99.914	17646213
2	176.671	23122223	56	95.824	12326313
3	74.214	23413323	57	69.994	74323113
4	52.968	24434323	58	153.699	35326332
5	71.503	12435223	59	101.934	47640132
6	56.267	24221233	60	136.545	11324132
7	58.93	54326123	61	67.944	43325322
8	96.198	25221113	62	97.201	74626233
9	92.772	42444113	63	59.451	44235332
10	85.013	45425323	64	82.951	32211132
11	98.284	37214303	65	98.17	34415312
12	92.397	54215323	66	95.376	30265122
13	107.657	27221113	67	59.35	30244122
14	73.91	24336333	68	49.825	74236133
15	98.006	32227223	69	48.216	50236133
16	201.988	32453122	70	45.86	44224123
17	68,989	34436223	71	75.213	34231122
18	79,796	25248123	72	80.116	17221222
19	72.202	24223213	73	96,707	14446232
20	81.511	24221123	74	44 082	40256033
21	57.924	22334133	75	61.489	54233133
22	98.259	24321233	76	59.744	44233032
23	87 989	13224123	77	68 141	25221133
24	89 338	55201333	78	72 132	54220233
25	59.163	34323323	79	89.832	72334332
26	80.615	35329322	80	81 766	44424122
27	92,963	45221232	81	96 743	4465123
28	85.17	24625223	82	85 892	77333223
29	123.05	37225222	83	85 563	37621333
30	71 814	54221133	84	57 149	44225132
31	68 646	43226223	85	59 287	20225132
32	57.626	34233323	86	110 208	72334222
33	59.482	54221333	87	55 507	2225232
34	68.98	27226323	88	218 163	21541132
35	76 586	53225323	89	89 272	23424323
36	130 457	27235323	90	58 964	54224323
37	58 597	7226123	91	84.068	72430222
38	62 598	37234123	92	66 301	72130222
30	110 406	54215123	93	96.842	27637332
40	81.42	43224332	94	84 532	54615322
41	108 933	24265323	95	73 37	77225222
42	70.83	72225113	96	68 476	34225225
42	70.85	52234112	97	61 951	24225212
4.5	67.845	32234112	97	74 080	14223232
15	07.045	11121322	98	67 123	2222
45	07 761	3/231123	100	62 668	47321322
17	84.048	34231123	101	80.758	75212122
т, 19	75 360	14214103	101	67.52	23313123
10	83 857	23217312	102	71 001	14323232
+2 50	60 210	2321/312	105	62 002	5/22/122
50	09.219	24221312	104	02.803	24324132
51	/4.1//	44420312	105	09.151	34432323
32 52	108.04	23418313	106	82.076	24325222
33	00.518	24251213	107	81.69	22333332

steps. First, we deleted SSR primers when the proportion of blurred amplification belt was above 4%. Six SSR primer combinations were deleted, including b35, c03, b28, b16, c18, and b56. The second step was to delete SSR primers when the similarity coefficient was greater than 0.8 with others. Two SSR primers were deleted, including c07 and b24. Finally, we constructed a molecular identity card based on the specificity index of SSR primers. The germ-

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

plasm resources of ramie were distinguished using the specific allele of more than 2 marker combinations. The distinction would be made by increasing the number of markers until they were not distinguished entirely using 2 markers, i.e. the k-th marker combinations amplified n banding patterns corresponding to the k-th bits of molecular identity. In current study, the 108 germplasm resources of ramie were distinguished using 8 SSR primer combinations (k = 8), including c10, b53, b65, b40, b50, b11, b27, and c17; the 8-bit molecular identity card (ID) was constructed (Table 4). For instance, the molecular ID of ramie known as Wayaozhuma was 43311132. The 1st 4 indicated that the b20 primer (ki) amplified its 4th banding pattern (nj), and the 3rd 3 indicated that the b65 primer amplified its 3rd banding pattern.

DISCUSSION

The banana fingerprints developed by Wang et al. (2009) can be considered molecular identification, and the authors combined letters with numbers to determine the digits of molecular identification and different alleles amplified by SSR primers. For example, the 11th allele amplified by the first marked primers was referred to as A11, resulting in a large number of string code digits in the molecular identification. Wang et al. (2010) previously constructed ramie molecular identification using 0 or 1 notation including the 16-digit code using ISSR markers. In the present study, the amplification results of the Nth marker's primers directly corresponded to the Nth bit in molecular identification, omitting the expression of a tag name. Additionally, the molecular identification only had 1 digit in each position because the amplified band pattern of each labeled primers did not exceed 9. Compared to the previous ramie molecular identification studies, this method is very simple to record.

With the continuous development of DNA molecular markers and improvement of detection technology, identifying crop variety resources traditionally based on morphological characteristics has become focused on the DNA level. Recently, molecular identity cards have been used for variety characteristic digitization. In this study, we concluded that a string code could be applied to express the molecular identification of crop variety resources and to determine the differences among varieties.

Although appraisal using molecular markers has advantages that morphological appraisal does not, there were some limitations to our study. Choosing concrete molecular markers may influence the analysis because of their respective shortcomings. Our previous study established 42 molecular IDs of ramie using ISSR molecular markers. However, ISSR technology is prone to error and deviations because of the large number of amplified bands and the difficulties in duplication. SSR molecular markers frequently result in high duplication. However, this method is easy and does not require a DNA digestion step. These characteristics make it possible to establish molecular IDs. SSR markers are stable over different generations, according to SSR analysis of parents and their descendants in the study of barley genealogy. The SSR stability of different individuals of the same species has been verified in rice (Akagi et al., 1997). Therefore, SSR marker-based molecular ID is more accurate and reliable compared with ISSR markers.

Although we identified 108 ramie germplasms using 8 pairs of SSR primers in this study, the character differences for each germplasm could not be directly determined because the corresponding relationship between various allele and their corresponding agronomic characters were not identified. Although traditional morphological identification requires a longer period and is greatly affected by environmental factors, it is simple, visible, and easy

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

M.B. Luan et al.

to operate, which is in contrast to molecular markers. Therefore, this method is applicable for identifying ramie germplasm resources, combining traditional morphological identification with molecular marker identification to establish a system for germplasms ID.

Understanding the genetic background of germplasms is vital for breeding. The samples tested in this study were collected from different origins, indicating the wide applicability for breeding. Thus, the molecular identification (ID) of each species can represent specificity. The results showed that molecular ID is a powerful approach for distinguishing germplasm resources regardless of their origin, genetic pedigree, or morphological similarity. For example, the xiangzhu1 and qianzhu1 ramie varieties have similar genetic backgrounds because they have the same same parent, huangkezao, with the molecular IDs 14246213 and 40256033, respectively. Therefore, molecular ID may provide a reference for germplasm identification and variety selection.

For additional ramie germplasms, a larger number of special bands from special germplasms developed using suitable primers can be used to construct the molecular ID in ramie. However, it is possible for ramie germplasms of different varieties to have the same molecular ID because of the limited number of SSR primers available. Thus, it is necessary to expand the number of SSR primers.

ACKNOWLEDGMENTS

Research supported by the National Natural Science Foundation of China (Youth Program) (Grant #30900913), Hunan Provincial Natural Science Foundation of China (Grant #13JJ4116), and Science and Technology Funds Program of CAAS (2009). We specially thank for Dr. Zhenbang Hu of North-east Agricultural University who provided the Genectics 3.0 and IA1.0 software and guidance.

REFERENCES

- Akagi H, Yokozeki Y, Inagaki A and Fujimara T (1997). Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci. *Theor. Appl. Genet.* 94: 61-67.
- Chen CW, Cao K, Wang LR, Zhu GR, et al. (2011a). Molecular ID establishment of main china peach varieties and peach related species. *Sci. Agric. Sin.* 44: 2081-2093.
- Chen JH, Luan MB, Song SF, Zou ZZ, et al. (2011b). Isolation and characterization of EST-SSRs in the ramie. *Afr. J. Microbiol. Res.* 5: 3504-3508.
- Ding MZ, Pan GT, Zhang ZH, Yang Y, et al. (2008). Genetic relation analysis of *Boehmeria nivea* cultivars or lines from Sichuan with ISSR and construction of the molecular markers linked Tomale sterile gene. J. Nuclear Agric. Sci. 22: 183-187.
- Fang XJ, Wu WR and Tang JL (2001). DNA marker assisted selection in crop breeding. Science Press, Beijing.
- Gao YL, Zhu RS, Liu CY, Fu LW, et al. (2009). Establishment of molecular ID in soybean varieties in Heilongjiang, China. Acta Agron. Sin. 35: 211-218.
- Guo AP, Zhou P, Peng S and Zheng X (2001). Factors affecting the reaction system of RAPD analysis in Boehmeria Jacq. Chin. J. Trop. Crops 22: 64-69.
- Guo Y, Xiong HP, Chen P, Wang YZ, et al. (2013). Analysis on genetic diversity of S1 progeny of ramie variety Zhongzhu No. 2 by SSR markers. *Plant Fiber Sci. China* 35: 75-80.
- Hou SM, Duan JQ, Liang XN, Ding XW, et al. (2006). Detection for mtDNA of cytoplasmic male sterile (CMS) line and maintainer line of ramie [*Boehmeria nivea* (L.) Gaud.] by ISSR. *Plant Physiol. Commun.* 42: 705-707.
- Jie YC, Zhou QW and Chen PD (1999). Genetic relation analysis of ramie genetypes with RAPD marker. *China Fiber Crops* 21: 1-6.

Liu FH (2002). The ramie germplasms. China Agricultural Science and Technology Press, Beijing.

Genetics and Molecular Research 14 (1): 2302-2311 (2015)

- Liu LJ, Sun ZX and Peng DX (2006). Optimization for ISSR reaction system in ramie (*Boehmeria nivea* L. *Gaud.*). *Chin. Agric. Sci. Bull.* 22: 64-68.
- Liu LJ, Peng DX and Wang B (2008). Genetic relation analysis on ramie (*Boehmeria nivea* L. Gaud.) inbred lines by SRAP markers. *Agric. Sci. China* 7: 944-949.
- Liu Q, Dai ZG, Chen JQ, Wen L, et al. (2013). Establishment of molecular identity for kenaf germplasm using SRAP marker. *Sci. Agric. Sin.* 46: 1974-1983.
- Meng ZQ, Liu LJ, Wang B and Peng DX (2010). Double orthogonal optimization for RAPD-PCR reaction system in Boehmeria Jacq. J. Yunnan Agric. Univ. 25: 758-762.
- Tu X and Chen SC (2007). Ramie-an effective plant for soil and water conservation in the southern sloped farmlands. *Global Seabuckthorn Res. Dev.* 5: 45-48.
- Wang JY, Chen YY, Huang BZ, Fei Y, et al. (2009). Establishment of fingerprinting for bananas (*Musa nana*) by SSR marker. J. Fruit Sci. 26: 733-738.
- Wang LM, Jiao SJ, Jiang YX, Yan HD, et al. (2011). Establishment of molecular identity in 142 sweet sorghum varieties. Acta Agric. Sin. 37: 1975-1983.
- Wang XF, Chen JH, Luan MB, Qi JM, et al. (2010). Establishment of molecular identification in ramie germplasms. J. Plant Genet. Germplasms 11: 802-805.
- Wen L, Yu CM, Wang YZ, Chen P, et al. (2011). Application of molecular marker SRAP on analysis of genetic diversity of polyembryonic ramie seedlings. J. Hunan Agric. Univ. (Nat. Sci.) 37: 243-247.
- Xiong HP (2008). Bast-fiber crops breeding. China Agricultural Science and Technology Press, Beijing.
- Xiong HP (2010). The production status and policy suggestion of bast and leaf fiber crops in China. *Plant Fiber Sci. China* 32: 301-304.
- Yang Y, Liu Z, Zhao Y and Liang GG (2010). Construction of DNA fingerprints for tea cultivars originated from Hunan province. J. Tea Sci. 30: 367-373.
- Yu CM, Chen JR, Wang YZ, Zhu AG, et al. (2007). Research progresses of molecular breeding in ramie and forage ramie. *Plant Fiber Sci. China* 29: 389-392.
- Zhang J, Wu YT, Guo WZ and Zhang TZ (2000). Fast screening of microsatellite markers in cotton with page/silver staining. *Acta Gossypii Sin*. 12: 267-269.
- Zhang JG, Tian R, Chen QL, Yang XP, et al. (2014). Establishment of molecular ID for pear cultivars based on SSR markers. J. Huazhong Agric. Univ. 33: 12-17.
- Zheng HY, Su JG, Dai ZG, Li Y, et al. (2010). Establishment of molecular identity for kenaf germplasm using ISSR and RAPD markers. *Sci. Agric. Sin.* 43: 3499-3510.
- Zhou JL, Jie YC and Jiang YB (2004). Genetic relation analysis on ramie cultivars with microsatellite markers. *Acta Agron. Sin.* 30: 289-292.
- Zou ZZ, Chen JH, Luan MB, et al. (2012). Evaluation of genetic relationship in ramie based on RSAP, SRAP, and SSR. *Acta Agron. Sin.* 38: 840-847.

Genetics and Molecular Research 14 (1): 2302-2311 (2015)