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ABSTRACT. A 948-bp sequence of the UL2 gene was amplified from
the pseudorabies virus (PRV) Becker strain genome using polymerase
chain reaction, and the gene identity was confirmed through further
cloning and sequencing. Bioinformatic analysis indicated that the
PRV UL2 gene encodes a putative polypeptide with 315-amino acid
residues. Its encoding protein, designated UL2, has a conserved uracil-
DNA glycosylase (UDG) F1 domain, which is closely related to the
herpesvirus UDG family and is highly conserved among its counterparts
encoded by UDG genes. Multiple nucleic acid and amino acid sequence
alignments suggested that the product of PRV UL2 has a relatively
higher homology with UL2-like proteins of Alphaherpesvirinae than
that of other subfamilies of Herpesviridae. In addition, phylogenetic
analysis showed that PRV UL2 had a close evolutionary relationship
with members of Alphaherpesvirinae, especially members of the genus
Varicellovirus of bovine herpesvirus 1 and bovine herpesvirus 5. Antigen
prediction indicated the presence of several potential B-cell epitopes
in PRV UL2. In addition, secondary structure and 3-dimensional
structure prediction revealed that PRV UL2 consisted predominantly of
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an a-helix. Taken together, these results provide molecular biological
insight for the further study of the function and mechanism of UL2
during PRV infection.

Key words: Pseudorabies virus; Cloning; Bioinformatic analysis; UL2;
UDG; Molecular characterization

INTRODUCTION

Pseudorabies virus (PRV) is the agent of Aujeszky’s disease, a frequently fatal dis-
ease that has a global distribution and primarily affects swine and incidentally affects other
domestic and wild animals. Owing to its neurotropic nature, PRV has been used as a tool to
trace circuits in the neuronal system. In addition, PRV has served as a useful model organism
for the study of herpesvirus pathogenesis. PRV causes considerable economic losses in the pig
industry worldwide, and although efforts to eradicate it have shown great progress, it is still an
endemic problem in many countries (Kramer et al., 2011).

Comprehensive investigation of the function of each PRV gene during viral replica-
tion is particularly important for the elucidation of the fundamental mechanisms underlying
the spread and pathogenesis of PRV. PRV UL2, a UL2-encoded nonstructural protein predicted
to be a uracil-DNA glycosylase (UDG), is less well understood thus far. However, the homo-
logs herpes simplex virus 1 (HSV-1) UL2 (Mullaney et al., 1989), HSV-2 UL2 (Winters and
Williams, 1993), varicella zoster virus ORF59 (Reddy et al., 1998), and Epstein-Barr virus
BKRF3 (Lu et al., 2007) have been extensively studied. UDG is reported to be involved in
the DNA excision repair pathway that specifically removes an inappropriate uracil from DNA
(Prichard et al., 2005; Bogani et al., 2009). UDG is also associated with the viral replisome
via interaction with DNA polymerase (Prichard et al., 2005; Bogani et al., 2009). Moreover,
UDG may be indispensable for viral replication in culture cells, because the UL2 mutant vi-
rus exhibits reduced neurovirulence, decreased frequency of reactivation from latency (Pyles
and Thompson, 1994) and impairment of efficient viral gene expression and DNA synthesis
as well as efficient production of virus in vivo (Lu et al., 2007; Ward et al., 2009; Strang and
Coen, 2010).

In this study, UL2 was amplified from the PRV Becker strain genome using poly-
merase chain reaction (PCR) followed by cloning and sequencing. Subsequently, a compre-
hensive bioinformatic analysis was carried out to determine the molecular characteristics of
UL?2 and provide molecular biological insight for further study of the function and mechanism
of UL2 during PRV infection. The study used several bioinformatic tools, including open read-
ing frame (ORF) Finder, Conserved Domains, DNAstar 7.0, Bioedit 7.0, SignalP-4.0, NetPhos
2.0, PSIpred, and CPHmodels 3.2.

MATERIAL AND METHODS
Cloning of PRV UL2

PCR amplification primers for UL2 (accession No. U02512) were designed using Oli-
g0 6.0 and Primer 5.0 and were synthesized by TaKaRa (Dalian, China). The upstream primer
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(synthesized by Sangon Biotech, Shanghai, China) 5'-CGGAATTCATGGAGGGCCCCCCG
CCGAGT-3" annealed with the first 21 nucleotides of UL2 and was introduced with EcoRI (un-
derlined) to facilitate subsequent cloning. The downstream primer 5'-TCCTCGAGTCAGTC
CACGCTCCAGTCGACGG-3' was complementary to the final 23 nucleotides of UL2 and
was introduced with X7%ol (underlined).

UL?2 was amplified via PCR by KOD-Plus-Neo (TOYOBO), from the genomic DNA
of the PRV Becker strain using a genome previously purified from vBecker2-infected PK-15
cells (Smith and Enquist, 2000; Li et al., 2011a,b) as the template. The purified PCR product
was digested with EcoRI and Xhol and ligated into the correspondingly digested prokaryotic
expression vector pET28a(+) (Novagen, Madison, WI, USA) to generate pET28a(+)-UL2.
The presence of the appropriate insert in the obtained plasmid was then verified using PCR,
restriction analysis, and sequencing.

Bioinformatic analysis of the nucleotide sequence of PRV UL2

To determine the nucleotide sequence similarity and identify the ORF, we applied the
National Center for Biotechnology Information (NCBI) nucleotide Basic Local Alignment Search
Tool [BLAST; http://www.ncbi.nlm.nih.gov/BLAST/ (accessed November 23, 2012)] and ORF
Finder [http://www.ncbi.nlm.nih.gov/gorf/gorf.html (accessed November 23, 2012)], respective-
ly. Subsequently, Clustal V in the MegAlign program of DNAStar (version 7.0, DNAStar, Inc.)
was used to conduct the nucleotide sequence homology analysis of 61 UL2-like proteins (Table 1).

Bioinformatic analysis of the deduced amino acid (aa) sequence of PRV UL2

For aa sequence comparison, homology search, and conserved domain analysis, the
aa sequence of UL2 was analyzed using protein BLAST and the Conserved Domains search
tool [http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (accessed November 23, 2012)],
respectively. To compare UL2 with UL2-like proteins of other species (see Table 1), we analyzed
the aa sequence homology and phylogenetic relationships using DNAstar 7.0. To predict the
signal peptide sequence, transmembrane domain, glycosylation site, phosphorylation site,
hydrophobic and hydrophilic regions, B-cell epitope, secondary structure, and 3-dimensional
(3-D) structure of UL2 we used SignalP-4.0 Server [http://www.cbs.dtu.dk/services/SignalP/
(accessed November 23, 2012)], TMHMM [http://www.cbs.dtu.dk/servicess TMHMM/
(accessed November 23, 2012)], NetNGlyc 1.0 [http://www.cbs.dtu.dk/services/NetNGlyc/
(accessed November 23, 2012)], NetPhos 2.0 [http://www.cbs.dtu.dk/services/NetPhos/
(accessed November 23, 2012)], Bioedit7.0 software, DNAstar7.0 software, PSIpred [http://
bioinf.cs.ucl.ac.uk/psipred/ (accessed November 23, 2012)], and CPHmodels 3.2 [http://www.
cbs.dtu.dk/services/CPHmodels/ (accessed November 23, 2012)], respectively.

RESULTS
PCR amplification and cloning of PRV UL?2
To obtain the UL2 gene, we performed PCR based on the DNA template from the

purified genome of the PRV Becker strain. As shown in Figure 1, a target fragment of 948
bp, which is consistent with the expected size, was amplified from DNA purified from PRV-
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infected PK-15 cells (see Figure 1, lane 1), whereas no specific band was amplified from the
mock-infected control (see Figure 1, lane 2). The DNA fragment of UL2 was then cloned into the
prokaryotic expression vector pET28a(+) to yield pET28a(+)-UL2 (see Figure 1, lane 3), which
was confirmed via restriction digestion analysis (see Figure 1, lanes 4 and 5), PCR amplifica-
tion (see Figure 1, lane 6), and DNA sequencing. The sequencing result demonstrated that no aa
mutation was present in the clone compared to the PRV Becker strain (accession No. U02512).

M 6

15000 —
—2000 10000 —
7500 —

s000—
I s
100
750
750
500
1000— ]
— 250 i
__jon 250— 100

Figure 1. Polymerase chain reaction (PCR) amplification and restriction analysis of the recombinant plasmid
pET28a(+)-UL2. Lanes I and 2 = PCR amplification product of UL2 using DNA purified from pseudorabies virus
(PRV)- and mock-infected PK-15 cells as the template, respectively; lane 3 = recombinant plasmid pET28a(+)-
UL2; lane 4 = restriction digestion product (approximately 5335 and 954 bp) of pET28a(+)-UL2 with EcoRI and
Xhol; lane 5 = restriction digestion product (approximately 4457, 925, and 907 bp) of pET28a(+)-UL2 with BamHI
and Mlul; lane 6 = PCR amplification product of UL2 from pET28a(+)-UL2. Samples were electrophoresed using
a 1% agarose gel and stained with ethidium bromide. The electrophoresis migration of molecular mass marker (M,
TaKaRa) is also shown.

Bioinformatic analysis of the PRV UL2 nucleotide sequence

ORF Finder analysis revealed an integrated PRV UL2 ORF consisting of 948 bp. In
addition, nucleotide sequence similarity search using nucleotide BLAST (see Table 1) yielded
3 nucleotide sequences (accession Nos. JF797217, JQ809328, and L13855) with strong simi-
larity to the PRV Becker strain UL2 (up to 98.9, 99.1, and 99.4%, respectively; Table 2), and
these accessions corresponded to UL2 of the PRV Bartha, Kaplan, and Indiana-Funkhauser
strains, respectively. Multiple alignment of PRV UL2 with 58 homologous reference species
demonstrated a remarkably high homology of 50.4 to 65.5% with members of the subfamily
Alphaherpesvirinae, that is, HSV-1, HSV-2, cercopithecine herpesvirus 1 (CeHV-1), CeHV-
2, bovine herpesvirus 1 (BoHV-1), and BoHV-5. However, low homology (less than 30%)
was detected between PRV and other members of subfamilies Betaherpesvirinae, Gammaher-
pesvirinae, and Alloherpesviridae, that is, human herpesvirus 6, human herpesvirus 7, caviid
herpesvirus 2, saimiriine herpesvirus 2, rodent herpesvirus Peru, ateline herpesvirus 3, murid
herpesvirus 4, and cyprinid herpesvirus 3 (see Table 2).
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Bioinformatic analysis of PRV UL2 polypeptide sequence

An aa sequence similarity search using protein BLAST (see Table 1) yielded 3 aa
sequences (accession Nos. AEM63999, AF170835, and AAA16422) that strongly matched the
target sequence of PRV Becker UL2 (accession No. AAA18856; up to 98.4, 98.4, and 99.0%,
respectively), and these corresponded to UL2 of the Bartha, Kaplan, and Indiana-Funkhauser
strains, respectively (see Table 2). In addition, multiple alignments of UL2 with homologs in
57 other reference species showed relatively high homology of 50.2 to 65.2% between UL2
and its equine herpesvirus 1 (EHV-1), EHV-8, EHV-9, CeHV-2, HSV-2, BoHV-1, BoHV-5,
CeHV-1, and CeHV-16 counterparts. However, UL2 shared no substantial homology with
UL2-like proteins from cyprinid herpesvirus 3 or caviid herpesvirus 2, with values of only
15.2 and 18.7%, respectively (see Table 2).

Phylogenetic analyses of PRV and other species were performed based on the aa se-
quences of UL2 and the UL2-like proteins of 60 reference species. The proteins were prelimi-
narily separated into families or subfamilies (Figure 2), that is, the families Neisseriaceae, En-
terobacteriaceae, Pasteurellaceae, and the subfamilies Alphaherpesvirinae, Betaherpesvirinae,
Gammaherpesvirinae, and Alloherpesviridae, which was consistent with the existing classifica-
tion within the assigned Herpesviridae family. Furthermore, the PRV Becker, Bartha, Kaplan,
and Indiana-Funkhauser strains were different from other species (see Figure 2). They clustered
together and formed a separate branch and then clustered with members of subfamily Alpha-
herpesvirinae such as BoHV-1 and BoHV-5 of Varicellovirus; CeHV-1, CeHV-2, CeHV-16,
HSV-1, HSV-2, and saimiriine herpesvirus of Simplexvirus; and other members of Mardivirus.
Subsequently they clustered with other members of families Neisseriaceae, Enterobacteriaceae,
Pasteurellaceae, and members of subfamilies of Betaherpesvirinae, Gammaherpesvirinae, and
Alloherpesviridae. Therefore, PRV might have a closer evolutionary relationship to members of
Varicellovirus of subfamily Alphaherpesvirinae than to members of other herpesvirus subfami-
lies or the Neisseriaceae, Enterobacteriaceae, and Pasteurellaceae families.

Signal polypeptide prediction indicated no signal polypeptide cleavage site (Figure
3A) and no potential transmembrane domain in UL2 (Figure 3B). However, the N-linked
glycosylation site (Asn-X-Ser/Thr) prediction demonstrated a potential N-glycosylation site
in UL2 (Figure 3C). Interestingly, 12 potential phosphorylation sites were found in UL2 (Fig-
ure 3D), including 3 serine, 8 threonine, and 1 tyrosine residues. In addition, hydrophobicity
analysis revealed 8 hydrophobic regions located at aa positions 13-45, 65-76, 91-105, 113-
123, 148-159, 171-204, 208-221, and 232-262 (Figure 4A). Compared with the hydrophobic
region, the hydrophilic region was slightly smaller (Figure 4B). Analysis of a potential B-cell
epitope determinant demonstrated several potential B-cell epitopes in UL2 situated in or ad-
jacent to aa positions 1-18, 45-66, 72-89, 96-102, 106-115, 120-139, 144-152, 156-166, 172-
183, 208-213, 221-232, 242-252, 262-275, 280-297, and 304-315 (Figure 4C).

Conserved domain analysis indicated that UL2 contained an apparent conserved
domain of UDG_F1 (Figure 5A), which is a UDG-like superfamily. Secondary structure
analysis (Figure 5B) suggested that UL2 consisted primarily of random coil (51.11%) and
a-helix (40.64%), whereas a B-strand accounted for the least prevalent component (8.25%).
3-D structure prediction for UL2 revealed a known 3-D structure model with a relatively high
homology with UDG, which was predominantly composed of 15 a-helices and 9 B-strands
(Figure 5C).
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hydrophilicity (B) profile was determined using values of Kyte and Doolittle (1982) or Hopp and Woods (1981),
respectively, with a 13-amino acid window. Peaks pointing up represent the most hydrophobic (A) and hydrophilic
(B) regions, respectively. C. Antigenic analysis of PRV UL2 was carried out through determination of its primary
structure using the PROTEAN software of DNAStar based on flexibility, surface probability, and antigenic index.
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Figure 5. Conserved domain analysis, secondary structure, and three-dimensional (3-D) structure prediction of
PRV UL2. A. Conserved domain analysis of PRV UL2 using the National Center for Biotechnology Information
Conserved Domains search tool. The conserved active site, ligand binding site, uracil-DNA glycosylase inhibitor
interface, and catalytic site are also shown. B. Secondary structure of PRV UL2 predicted using the PSIpred
program. The letters h, e, and ¢ indicate alpha helix, extended (beta strand), and coil, respectively. C. 3-D structure
of PRV UL2 predicted using the protein modeling server database CPHmodels 3.2. The number of H-bond, helices,
strands, and turns included in this model were 167, 15, 9, and 18, respectively.
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DISCUSSION

PCR amplification, cloning, and sequencing confirmed evidence of UL2 in the
PRV Becker strain, and the molecular properties of UL2 were analyzed using several
bioinformatic tools. During evolution, viruses are generally conserved, and only a few
genes undergo mutation (Antunes et al., 2010). Thus, viral evolution can be evaluated
at the molecular level. Our analysis (see Table 2) revealed that the nucleotide sequence
similarity of UL2 of PRV Becker to that of the Bartha, Kaplan, and Indiana-Funkhauser
strains was up to 98.9, 99.1, and 99.4%, respectively, and the aa sequence similarity was
up to 98.4, 98.4, and 99.0%, respectively. These results revealed a close relationship among
the studied PRV strains.

Mutation in viruses is well known to occur in response to environmental stress.
Therefore, the small mutation of a different strain may have endowed the variance of PRV
virulence. Multiple nucleotide sequences and aa alignments in PRV UL2 and the UL2-
like proteins (see Table 2) showed that PRV UL2 has greater homology with the members
of subfamily Alphaherpesvirinae, especially BoHV-1 (65.5 and 65.2%, respectively). Ac-
cordingly, PRV UL2 has relatively high homology with Alphaherpesvirinae but not with
Betaherpesvirinae, Gammaherpesvirinae, Alloherpesviridae, Neisseriaceae, Enterobacteri-
aceae, or Pasteurellaceae. Furthermore, phylogenetic analysis (see Figure 2) unequivocally
demonstrated that PRV belongs to the subfamily Alphaherpesvirinae, consistent with the
conclusions of a previous report (McGeoch et al., 2000). Moreover, the results showed that
UL2 is conserved among families of Herpesviridae, Neisseriaceae, Enterobacteriaceae, and
Pasteurellaceae, possibly because it is a UDG protein.

Conserved domain analysis (see Figure 5) also indicated that UL2 obviously con-
tains the conserved active site, ligand-binding site, UDG inhibitor interface, and catalytic
site of the UDG enzyme within the UDG_F1 domain (Dean and Cheung, 1993; Pearl,
2000; Geoui et al., 2007). Consequently, UL2 might have a close relationship with the
UDG family and high similarity with its counterparts encoded by UDG F1 genes. Thus,
UL2 may belong to the UDG_F1 family, consistent with homologs that have been shown
to display UDG activity (Mullaney et al., 1989; Winters and Williams, 1993; Reddy et
al., 1998; Lu et al., 2007). However, the PRV UL2 homolog of HCMV UL114 has been
shown to play an important role in the replication rather than the repair of the viral genome
(Ranneberg-Nilsen et al., 2008). Therefore, determining whether PRV UL2 can remove
uracil from both U—G mispairs and U— A base pairs in double-stranded DNA or uracil in
single-stranded DNA requires further study.

Protein phosphorylation is among the most normal and essential protein modifica-
tions, and certain aspects of cell process modulation are regulated through this mechanism.
Signal transduction, proliferation, differentiation, and metabolism are controlled by a bal-
ance of the activities of protein kinases and protein phosphatases on pivotal target proteins.
Phosphorylation site prediction (see Figure 3) revealed 12 potential phosphorylation sites in
PRV UL2, including 3 serine, 8 threonine, and 1 tyrosine residues. Tyrosine phosphorylation
is well known to be involved in the modification of protein translocation from the cytoplasm
to the nucleus during productive viral infection (Pomeranz and Blaho, 1999) and the rep-
lication of several herpesviruses (Geiss et al., 2001; Ren et al., 2001). Phosphorylation of
UDG at threonine is reported to be important for base excision repair (Lu et al., 2004), and
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various phosphoforms of threonine and serine sites of the non-catalytic domain confer dis-
tinct functional properties to UDG, such as protein turnover, different activities, association
with replication protein A, and nuclear and mitochondrial genomic integrity (Caradonna and
Muller-Weeks, 2001; Hagen et al., 2008). Therefore, the phosphorylation of UL2 may also
play an important role during PRV infection, perhaps modulating its subcellular localization
or carrying out other uncharacterized functions such as improving base excision repair.

Sequence analysis revealed no potential transmembrane domain or signal peptide in
UL2, indicating that it might be neither a transmembrane protein nor a secretory protein (Davis
et al., 2006). However, a potential N-linked glycosylation site (Asn-Thr-Thr-Leu) located at aa
218 was present in UL2 (see Figure 3). N-linked glycosylation is an important post-translation
modification that profoundly affects protein folding, oligomerization, and stability (Mitra et
al., 2006). In addition, it is involved in trafficking modifications, ligand interactions (Meng et
al., 2008), and enzyme activity (Hausmann et al., 1997; Sugahara et al., 2001). Because the
potential N-linked glycosylation of UL2 occurs near the predicted beta-strand and within a
potential strongly hydrophobic region, it might be associated with UDG activity. However, the
possibility that this site was buried in the protein to avoid glycosylation cannot be excluded
because a few UDG proteins were glycosylated.

Hydrophobicity analysis indicated that the hydrophobic regions were slightly larger
than the hydrophilic regions, which might represent the internal and surface regions of the
protein, respectively (see Figure 4). Furthermore, some predicted strong hydrophobic regions
were located within the UDG_F1 domain, indicating that they may contribute to the a-helix
or hydrophobic side chain that enables enzyme activity (Slupphaug et al., 1996; Xiao et al.,
1999; Sartori et al., 2002). Secondary structure and 3-D structure predictions (see Figure 5)
revealed that the overall structure of UL2 is almost the same as that of UDG; however, differ-
ences between UL2 and UDG have also been found, which may be attributed to different viral
gene sequences or the diversity of uracil recognition mechanisms used by viral and bacterial
enzymes (Savva et al., 1995; Slupphaug et al., 1996; Parikh et al., 1998; Xiao et al., 1999;
Kaushal et al., 2010).

As more information becomes available on protein antigens, predictions of the loca-
tions of antigenic determinants may be possible before any immunological testing has been
performed (Hopp and Woods, 1981). However, the elucidation of protein antigenic structures
is presently a difficult, uncertain, and time-consuming task. Earlier methods relied on the
assumption that the antigenic region is primarily the hydrophilic region at the surface of the
protein molecule (Hopp and Woods, 1981; Welling et al., 1985). However, these methods have
inaccuracies and limitations. To improve accuracy, the B-cell epitopes of UL2 were predicted
through determinations of their primary structure using DNAStar PROTEAN programs based
on flexibility, antigenic index, and surface probability (see Figure 4D). The results suggested
that the enhanced knowledge of the antigenic and structural properties of UL2 resulting from
this study might yield methods for developing new antibodies and immunoassays for applica-
tion in the clinical diagnosis of PRV.

In conclusion, in this study we carried out the cloning and molecular characterization
of PRV UL2. Elucidating the relationship between the molecular characterization and genetic
evolution of PRV UL2 will contribute to an understanding of this virus at the molecular level
and enrich the herpesvirus database. The results herein will also provide insights for further
research on the function and mechanism of UL2 during PRV infection.
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