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ABSTRACT. Palicourea coriacea, popularly known as “douradinha”, is a 
medicinal plant from the Brazilian Cerrado region used in folk medicine 
to treat kidney and urethral stones and kidney inflammation. We 
evaluated the cytotoxic, genotoxic, and possible antigenotoxic activities 
of an aqueous extract of P. coriacea on somatic cells of Drosophila 
melanogaster, using the somatic mutation and recombination test. We 
used third-stage larvae of D. melanogaster from a standard cross and 
a high bioactivation cross and tested 10 different doses of P. coriacea 
aqueous extract (5, 15, 25, 35, 50, 65, 80, 95, 110, and 125 mg/mL). 
Doxorubicin (0.125 mg/mL) was used as a positive control and distilled 
water as a negative control. None of the doses was lethal to the larvae. 
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There was no genotoxic effect at 5, 10, or 15 mg extract/mL. However, 
a significant decrease in the frequency of spots induced by doxorubicin 
was observed when administered with P. coriacea aqueous extract at 
these same doses. We conclude that P. coriacea aqueous extract is not 
cytotoxic or genotoxic at these doses, but it does protect against the 
genotoxic action of doxorubicin.

Key words: Palicourea coriacea; Cytotoxicity; Genotoxicity; 
Antigenotoxicity; SMART/wing

INTRODUCTION

Studies on the genotoxicity and antigenotoxicity of natural plant extracts can help 
evaluate the safety and effectiveness of herbal products (Romero-Jiménez et al., 2005). Al-
though herbal preparations have been traditionally used in cancer treatment, they could con-
tain bioactivated components that can promote cancer development (Siddique et al., 2008).

In Brazil, many people use traditional natural preparations derived from plant materi-
als for the treatment of various diseases (Lima et al., 2006); however, in many cases there is 
still limited scientific evidence of their therapeutic efficacy (Pereira et al., 2008). Therefore, 
it is very necessary to assess the mutagenic potential or modulating activity of plant extracts 
when combined with other substances (Siddique et al., 2008).

Palicourea coriacea (Cham.) K. Schum., popularly known as “douradinha” in Bra-
zil, is a small tree with yellow inflorescences and flowers (da Silva et al., 2008) that is 
widely used in Brazilian Cerrado folk medicine as a leaf infusion, due to its potent diuretic 
effect (do Nascimento et al., 2008), to treat kidney and urethral calculus and kidney inflam-
mation (Nunes et al., 2003). The main constituents of its leaves are alkaloids, triterpenes, 
phenolic acids, coumarins, tannins, a cyclic peptide, and allantoin (da Silva et al., 2008), 
as well as calycanthine and ursolic acid, which show antibacterial activity (do Nascimento 
et al., 2006). Furthermore, ursolic acid possesses antimutagenic, antitumor, aneugenic, and 
apoptotic properties (Dorai and Aggarwal, 2004; Liu, 2005; Ovesná et al., 2006; Aparecida 
Resende et al., 2006), and allantoin has excellent healing properties since it favors cell 
proliferation and accelerates skin regeneration (Ferreira et al., 2000). By contrast, calycan-
thine is considered to be a very powerful convulsant poison, causing effects similar to those 
of some neuropoisons such as strychnine (Adjibade et al., 1991).

Although widely used as an antitumor agent to treat cancer, doxorubicin (DXR), a 
broad-spectrum anthracycline antibiotic, is genotoxic and carcinogenic (Minotti et al., 2004), 
with proven clastogenic effects on somatic and germ cells (Baumgartner et al., 2004), has mu-
tagenic and recombinogenic properties (Lehmann et al., 2003), and is cytotoxic (Robert and 
Gianni, 1993), and cardiotoxic due to the production of oxygen radicals (Naidu et al., 2002).

The somatic mutation and recombination test (SMART) in wings of Drosophila mela-
nogaster is a well-known eukaryotic assay based on the loss of heterozygosity for two genetic 
markers affecting the phenotype of wing hairs (Graf et al., 1984). It is a versatile and reliable 
system to test complex mixtures in genotoxicity and anti-genotoxicity assays, due to the capa-
bilities of treated larvae to bio-activate metabolites either as single compounds or as complex 
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mixtures (Graf et al., 1998), through which a wide variety of compounds and complex mix-
tures have been assayed (Romero-Jiménez et al., 2005).

Deeper knowledge about particular plant extracts is likely to contribute to the fun-
damentals of herbal medicine (Roncada et al., 2004). Thus, the purpose of this study was to 
assess P. coriacea genotoxic activity and its potential antigenotoxic effect in combination with 
DXR using the SMART assay in D. melanogaster.

MATERIAL AND METHODS

Plant material

Samples of the aerial part of P. coriacea were collected in Goiânia, in the State of 
Goiás, Brazil, and identified by Prof. Heleno Dias Ferreira, Department of Botany at the Uni-
versidade Federal de Goiás (UFG), and a voucher specimen (UFG 27.169) was deposited in 
the Central Herbarium of UFG.

Dried leaves were ground in a mortar with a little water added, and the aqueous extract 
of P. coriacea (AEP) was lyophilized and stored in screw-cap vials in a common refrigerator 
at approximately -2°C.

We employed AEP concentrations of 5, 15, 25, 35, 50, 65, 80, 95, 110, and 125 mg/mL 
to generate the cell survival curves, and of 5, 10, and 15 mg/mL to carry out the experiments, 
by dissolving the lyophilized extract in distilled water at the time of use.

Positive and negative controls

DXR (Doxolen lyophilized, Eurofarma Laboratórios Ltda., São Paulo, Brazil) dissolved in 
distilled water in the dark was used as the positive control and distilled water as the negative control.

Survival curves

In order to determine the cytotoxic potential of AEP, we employed it at 10 different con-
centrations (5, 15, 25, 35, 50, 65, 80, 95, 110, and 125 mg/mL) to generate the cell survival curves. 
The standard solution was prepared at the time of treating D. melanogaster third-stage larvae us-
ing distilled water to dissolve AEP and concurrent negative controls treated with distilled water.

Somatic mutation and recombination test

Drosophila strains, crosses, and collection of larvae

Three strains of D. melanogaster (ORR), carrying either the genetic markers multiple 
wing hairs (mwh, 3-0.3) or flare-3 (flr3, 3-38.8), were used.

To produce the standard (ST) cross, stocks of flr3/In (3LR)TM3, ri pp sep I(3)89Aa 
bx34e, and BdS virgin females were crossed with stocks of mwh/mwh males (Graf et al., 
1989). The high bioactivation (HB) cross, which gives high levels of cytochrome P450, was 
obtained by crossing ORR/ORR; flr3/In(3LR)TM3, ri pp sep I(3)89Aa bx34e, and BdS virgin 
females with mwh/mwh males (Graf and van Schaik, 1992).
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Eggs from both crosses were collected over an 8-h period in culture bottles con-
taining a solid base of 3% agar covered with a layer of live baker’s yeast (Saccharomyces 
cerevisiae) supplemented with sucrose. For the treatments, 72-h-old larvae were removed 
from the culture bottles and washed in tap water with the help of a fine mesh stainless steel 
strainer.

The larvae from both crosses were transferred to 2.5-8.0-cm high glass tubes 
containing 0.9 g synthetic culture medium (form 4-24, Carolina Biological Supply Co., 
Burlington, USA) dissolved in 3.0 mL 5, 10, and 15 mg/mL AEP, with or without 0.125 
mg/mL DXR, which is a concentration known to be genotoxic to somatic cells of D. me-
lanogaster. The three concentrations of AEP were chosen based on the survival curves. 
A positive control was treated with 0.125 mg/mL DXR alone and a negative control only 
with distilled water.

Since some compounds are photosensitive, all tubes were wrapped in aluminum foil.

Preparation and microscopic analysis of the wings

After hatching, individual adults were transferred to a beaker containing 70% etha-
nol. Using a standard stereoscopic microscope and entomological tweezers, the wings were 
removed and mounted in Faure’s solution (30 g gum arabic, 20 mL glycerol, 50 g chloral 
hydrate, 50 mL water). Both dorsal and ventral surfaces of the wings were analyzed under a 
compound microscope at 400X magnification. During the analysis, the positions of spots were 
recorded according to the wing sections (Graf et al., 1984).

Statistical analysis

The frequency of each type of spot for each treatment group was compared pairwise 
with the appropriate control (i.e., negative control vs each AEP treatment group; DXR alone 
vs each AEP DXR group), using the nonparametric Mann-Whitney U-test and the Wilcoxon 
rank sum test (Frei and Würgler, 1995). We calculated the percent inhibition of AEP using the 
mutant clone frequency/105 cells corrected using the control group, as follows: [(DXR alone - 
DXR plus EAP / DXR alone) x 100] (Abraham, 1994).

RESULTS AND DISCUSSION

According to the survival curves generated in the present study, the AEP concentra-
tions used had no significant effects on the number of survivors, and consequently, the doses 
chosen were not cytotoxic to D. melanogaster larvae.

Table 1 shows the frequency of mutant spots observed in the trans-heterozygous de-
scendants from ST and HB crosses treated with AEP alone. The three doses of AEP employed 
did not show significant effects on the frequency of any category of spots or on total spots, 
leading to the conclusion that AEP at these doses is not genotoxic.

The use of DXR alone produced a positive response in both trans-heterozygous and 
balancer-heterozygous descendants of ST and HB crosses, indicating that this compound was 
genotoxic in this assay (Tables 2 and 3). Additionally, the co-treatments using AEP and DXR 
significantly reduced the mutation rate that was induced by DXR alone.
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Tables 2 and 3 show the results of the AEP-DXR co-treatments using ST and HB cross 
flies. In both crosses, AEP reduced the genotoxicity induced by DXR in each mutant spot cat-
egory. The inhibition in the marker-trans-heterozygous descendants from the HB cross (mwh/
flr3) ranged from 93.8% (for 5 mg/mL AEP) to 97% (for 15 mg/mL AEP). Comparing these 
results with the positive control, we see that the addition of 5 and 15 mg/mL AEP in the co-
treatment reduced the total number of spots induced by AEP by 98.3 and 96.6%, respectively. 

Using wing heterozygosity for multiple inversions on the TM3 balancer chromosome, 
it was possible to separate mutational events from recombinational events since the latter are 
eliminated in flies with this genotype. Comparing the clone induction frequency in both geno-
types obtained with DXR alone, we observed that 9.97% of the mutant clones produced in ST 
flies were a result of mutation and 90.03% of recombination, and that 17.89% of the spots in-
duced in HB flies occurred due to mutation and 82.11% to recombination. The strong recombi-
nogenic activity of DXR in somatic cells of D. melanogaster has been previously reported by 
Lehmann et al. (2003), Costa and Nepomuceno (2006) and Fragiorge et al. (2007). In ST cross 
descendants, recombination was responsible for reducing the frequency of spots produced by 
DXR in combination with 5, 10, and 15 mg/mL AEP by 68.14, 81.82, and 77.72%, respective-
ly. Also, in HB cross descendants, the frequency of spots produced by DXR in combination 
with 5, 10, and 15 mg/mL AEP was reduced by 87.62, 84.62, and 87.81%, respectively. These 
findings indicate that this phytotherapeutic compound primarily reduced the recombinogenic 
effects induced by DXR.

Some plants may possess substances that can modulate the genotoxicity of other com-
pounds (Siddique et al., 2008). The mechanisms through which AEP inhibited the genotoxic-
ity of DXR were not directly analyzed. However, due to the way DXR generates free radicals 
and produces DNA damage (Keizer et al., 1990), it is possible to suggest mechanisms by 
which AEP may protect cells against DXR genotoxicity, and the data obtained in the present 
study suggest that the compounds present in AEP are not mutagenic.

When present during exposure, AEP may have a desmutagenic effect. Desmutagens 
deactivate genotoxic agents either chemically or enzymatically (Kada et al., 1982). In this 
case, AEP may deactivate DXR or the free radicals that are produced during its transforma-
tion. This deactivation could be related to the antioxidant activity of phenolic compounds, 
such as tannin and ursolic acid in AEP, as observed by several authors who have attributed this 
fact to the antigenotoxic action of these phenolics (Tanaka et al., 1998; Dhawan et al., 2002; 
Maurich et al., 2004; Pellegrina et al., 2005).

CONCLUSION

AEP was not cytotoxic or genotoxic at the doses tested and under the assay conditions 
used in the present study. Furthermore, it protected cells against the genotoxic effects of the 
free radical producing chemotherapeutic agent DXR in the D. melanogaster wing spot assay.
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