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ABSTRACT. Two analyses, cubic and piecewise random regression, 
were conducted to model growth of crossbred cattle from birth to about 
two years of age, investigating the ability of a piecewise procedure to 
fit growth traits without the complications of the cubic model. During a 
four-year period (1994-1997) of the Australian “Southern Crossbreeding 
Project”, mature Hereford cows (N = 581) were mated to 97 sires of 
Angus, Belgian Blue, Hereford, Jersey, Limousin, South Devon, and 
Wagyu breeds, resulting in 1141 steers and heifers born over four years. 
Data included 13 (for steers) and eight (for heifers) live body weight 
measurements, made approximately every 50 days from birth until 
slaughter. The mixed model included fixed effects of sex, sire breed, 
age (linear, quadratic and cubic), and their interactions between sex and 
sire breed with age. Random effects were sire, dam, management (birth 
location, year, post-weaning groups), and permanent environmental 
effects and for each of these when possible, their interactions with linear, 
quadratic and cubic growth. In both models, body weights of all breeds 
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increased over pre-weaning period, held fairly steady (slightly flattening) 
over the dry season then increased again towards the end of the feedlot 
period. The number of estimated parameters for the cubic model was 
22 while for the piecewise model it was 32. It was concluded that the 
piecewise model was very similar to the cubic model in the fit to the 
data; with the piecewise model being marginally better. The piecewise 
model seems to fit the data better at the end of the growth period. 

Key words: Crossbred cattle; Growth; Cubic; Random regression; 
Piecewise 

INTRODUCTION

In the beef industry, the optimisation of cattle production systems including the evalu-
ation of alternative management and marketing strategies for individual breeder, backgrounder 
and finisher operations to get most favourable end products requires knowledge of the varia-
tion in body weights during the growth path. Individual animals have their own growth path. 
Several difficulties are encountered in fitting non-linear growth models (Schinckel et al., 2005; 
Forni et al., 2009; Speidel et al., 2010). Shortcomings include fixed inflection points, assump-
tion of a monotonic increase in size from origin to asymptote and the inestimable errors in 
various adjustment factors, causing growth to be under or over estimated (Brown et al., 1976; 
Fitzhugh Jr., 1976). Bio-economically, there are obvious distinctions between different stages 
during growth path: pre- and post-weaning growth; consequently, there has been great interest 
in their characteristics. The cubic model for calf change, however, does not readily lend itself 
to exploring issues of this kind. Piecewise models for animal growth provide a means of divid-
ing successive ages into meaningful segments, and capturing key features of change in each 
segment. In other words, piecewise linear growth models are attractive when focusing on the 
comparison of growth curves in two different periods, or investigating whether the predictors 
of growth change over specific periods. Information, using a piecewise linear model in beef 
cattle growth, is very limited. Warren et al. (1980) described the method for segmented line 
regression, and explained it with an example using data from Hereford females. 

The main objective of the study was to provide a view of two analyses, cubic and 
piecewise random regression, investigating the ability of a piecewise linear regression proce-
dure (Hodson, 1966) to fit growth traits without the difficulties mentioned for the cubic model. 
Thus, it was focused on the fundamental statistical and then biological similarities and differ-
ences of the two models to address: Whether the piecewise model fits the data better than the 
cubic model or not? and how?

MATERIAL AND METHODS

Animals and management 

The animals from the “Southern Crossbreeding Project” have been used for this study. 
The Southern Crossbreeding Project was designed to characterise between and within breed 
variations with the aim of improving utilisation of existing breeds for meeting a range of 
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market specifications in southern Australia (Pitchford et al., 2006). Purebred Hereford cows 
(581) were mated to semen of sire breeds Angus (11 sires), Belgian Blue (16 sires), Hereford 
(10 sires), Jersey (12 sires), Limousin (16 sires), South Devon (15 sires), and Wagyu (17 
sires). There were generally 12-15 progeny per sire, with an average of 13 calves per sire and 
14 sires per breed. The project comprised 1141 of the heifers (females) and steers (castrated 
males) born in autumn (average birth date 3rd April) at two locations (“Struan” near Naraco-
orte and “Wandilo” near Mount Gambier in the south east of South Australia), over a 4-year 
period (1994 to 1997). Calves were weaned in summer (mid December-early January) at 250 
to 300 days of age, each year, i.e., in most years the last weight represented a weaning weight. 
At weaning, all calves born at Wandilo were transferred to Struan. Calves stayed with their 
dams on pasture until weaning and calves were grown until 12 to 18 months of age and then 
transported to a commercial feedlot except the 1997 steers which, after a good pasture season 
in 1998, reached marketable weight without requiring grain finishing (Pitchford et al., 2006). 

Live body weights (growth)

Live body weights (unfasted) consisted of 13 measurements for steers and 8 measure-
ments for heifers at approximately every 50 days from birth until slaughter. Table 1 shows 
summary statistics of the weight-age array from birth to slaughter for steers and heifers. The 
means were averaged over all four years. The standard deviation for live weight of both heifers 
and steers increased from the first to the last weighing (Table 1). To overcome this heteroge-
neous variance, the use of the natural logs of the body weights rather than the original body 
weights seemed sensible. Thus,

yt = ln(BW)t ~ N(mt, σ
2
t)

BW = exp(yt)

where y is normally distributed with mean μ and standard deviation σ. 

	                          Heifers				                          Steers

Mean (days)	 SD	 Mean (kg)	 SD	 Mean (days)	 SD	 Mean (kg)	 SD

    0	   0	   36.54 	   6	     0	   0	   39.01	     6
  75	 22	   93.32	 23	   75	 22	   98.10	   24
125	 21	 124.22	 29	 125	 22	 130.93	   30
175	 19	   17.52	 36	 175	 20	 183.02	   38
230	 26	 239.84	 43	 230	 27	 256.00	   44
280	 28	 277.66	 40	 280	 29	 295.61	   40
330	 32	 296.44	 50	 330	 33	 303.38	   42
415	 20	 333.50	 48	 387	 32	 329.40	   37
  -	 -	 -	 -	 438	 36	 349.23	   40
  -	 -	 -	 -	 482	 27	 353.09	   48
  -	 -	 -	 -	 545	 36	 414.13	   70
  -	 -	 -	 -	 593	 44	 481.82	   92
  -	 -	 -	 -	 630	 65	 532.61	 110

Table 1. Phenotypic mean, standard deviation (SD), and coefficient of variation of the body weights of steers 
and heifers.

Number of observations = 1141.

Age was centered (mean subtracted) and scaled (from days to years). This was done 
for both numerical reasons and for prediction. In the former case changes in one predictor 
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could be gauged by setting others at their mean, i.e., at the new origin for centered age and in 
the later, (co)variance components were more easily estimated because they were larger.

Statistical analysis 

Random regression analysis

Growth of animals is characterized by a) tracking: that is individual animals have their 
own growth path, and hence these paths vary between animals, b) increased variation as animals 
grow: this is related to tracking in that some animals have a stronger growth rate than others. The 
variation in path and in spread over time can be captured by random regression model (though not 
always completely). This model accommodates correlation, increasing variances and allows ani-
mal-specific growth paths. This is achieved by allowing regression coefficients for weight on time 
to be random effects across individuals, which are correlated within individuals. Thus, an animal is 
viewed as being sampled via these correlated random regression coefficients.

Cubic model

The growth models considered in this paper are the mixed models. The response vari-
able is log-body weight. This is traditionally the scale on which weight is analyzed, mainly 
because of the “multiplication” nature of growth. The added benefit is that the heterogeneity 
in variation is reduced. Finally, the implicit assumption is that the random variation has a 
log-normal distribution, and various properties can be used to provide results on the original 
weight scale. Let у be the vector of log-body weights for all animals at all measurement times. 

The mixed model is у = Χτ + Zu + e, where τ is the vector of fixed effects; u is the 
vector of random effects; e is the vector of residual errors.

The matrices Χ and Z contain covariate values and indicators (factors) specific to each 
animal and sometimes to each measurement time. They extract the appropriate elements of τ 
and u for each animal and time. General assumptions are that u ~ N(0, G) and e ~ N(0, R) for 
some (co)variance matrices G and R. In addition, u and e are assumed independent. The form 
for G and R depends on the actual model. We turn to the specification of the growth models 
considered in this chapter. Note that under the above general mixed model, 

E(y) = Xτ = μ, say and var (y) = R + ZGZT

The mean μ depends on the fixed effects included in the model. The parameters as-
sociated with the fixed effects are given by τ. The model considered was the sire model. The 
fixed effects involve breed, sex, age (time), and interactions between breed and sex with age. 
As the cubic polynomial forms the basis of time or age growth trends, breeds and sexes are 
allowed to differ in their cubic growth path. Let i denote breed, k sire nested within breed, j 
sex, l dam, m management, and r animal at time t. 

μijklmrt = α0 + b0i + s0j
+ α1 Aget + b1i Aget + s1j Aget
+ α2 Age2

t + b2i Age2
t + s2j Age2

t
+ α3 Age3

t + b3i Age3
t + s3j Age3

t
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when μijklmrt is formed into a vector,

τ = [α0 α1 α2 α3 b01 b12 b21 b31… b0,97 b1,97 b2,97 b3,97 s02 s12 s22 s32]

The initial b01 … b31 and s02 … s32 are zero by constraint. The matrix X is formed ac-
cordingly. The random effects u consist of random cubic regression for sire, dam, management, 

u = [uT
1 , u

T
2 , u

T
3 , u

T
4 ]

T

where uT
1 is a 388X1 vector of 97 sire random polynomial coefficients (4 for each sire). Thus, 

uT
1 ~ N(0, G1 ⊗ I97)

where G1 is a 4 x 4-unstructured variance-covariance matrix. To provide an explicit model for 
the u’s is possible. For example, for sire k the effect is u01k + u11k t + u21k Age2

t + u31k Age3
t. This 

structure is the same for dam, management and PE effects. Thus,

The matrix Z has the constant and t, t2, t3 values for each observation. Lastly, it is as-
sumed that R = σ2I. This may seem an unusual assumption for growth or repeated measures 
data. However, we are using the random regression to allow: a) for time-changing variances 
and b) correlation between successive times.

Growth data often exhibit increasing variance. A log-transformation has been used 
to stabilise the variance, but even on this scale, if variances change, the random regressions 
will attempt to accommodate that change in a quadratic fashion. Estimation of fixed effects 
and variance parameters is via residual per restricted maximum likelihood (Patterson and 
Thompson, 1971). Prediction of random effects is via best linear unbiased prediction (BLUP) 
(Robinson, 1991). The ASReml package is used for analysis. Gilmour et al. (1995) provided 
the details of the algorithms.

Piecewise model

In this study, a two-piece linear growth model was also employed to obtain the es-
timates of (co)variance components for pre- and post-weaning periods and the correlations 
between them. On the log scale, a preliminary analysis showed that quadratic terms were 
important for the piecewise model to fit the growth data. Suppose we wish to fit a piecewise 
quadratic model to mean log-body weights, that is E(ln(Body weight)) =

β01 = β11Age + β21Age2 (Age ≤ AgePre-weaning) (Equation 1)

β02 = β12Age + β22Age2 (Age ≥ AgePre-weaning) (Equation 2)
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These two quadratics meet at pre-weaning age; AgePre-weaning is the pre-weaning age in 
Equations 1 and 2.

Now, when Age = AgePre-weaning,

β
01

 + β
11

 AgePre-weaning + β
21

 (AgePre-weaning)
2 = β

02 + β
12

 AgePre-weaning +β
22

 (AgePre-weaning)
2

We can solve for β
02 and hence, reduce the number of parameters. Clearly,

β
02 = β

01
 + β

11
 (AgePre-weaning) - β12

 AgePre-weaning + β
21

 Age2
Pre-weaning - β22

 Age2
Pre-weaning

Thus, the model becomes E(ln(Body weight)) =

β
01

 + β
11

 Age + β21Age2 (Age ≤ AgePre-weaning)

β
01

 + β
11

 AgePre-weaning + β12 (Age ≥ Age2
Pre-weaning)

β21Age2
Pre-weaning + β22 (Age2 ≤ Age2

Pre-weaning) (Age ≥ AgePre-weaning)

The model requires the definition of new explanatory variables to be used in the piece-
wise model. These variables are presented in Table 2. 

aAssumed weaning age for this example. (Post-weaning age)2 = Age2 - Age2
weaning.

Age (days)	 Pre-weaning (days)	 Post-weaning (days)	 (Pre-weaning age)2	 (Post-weaning age )2

    0	     0	     0	         0	           0
100	 100	     0	 10000	           0
250a	 250	     0	 62500	           0
500	 250	 250	 62500	 187500
700	 250	 450	 62500	 427500

Table 2. Partitioning age into pre- and post-weaning ages for linear and square calculations of age in piecewise model.

The same model building process discussed for the cubic model was used for the 
piecewise model. Therefore, the cubic random regression was replaced by the piecewise ran-
dom regression formulation presented above.

The mixed model is у = Χτ + Zu + e

where у is the vector of log-body weights for all animals at all measurement times, τ is the vec-
tor of fixed effects, u is the vector of random effects, and e is the vector of random errors. The 
matrices Χ and Z contain covariate values and indicators (factors) specific to each animal and 
sometimes to each measurement time. They extract the appropriate parts of τ and u for each 
animal and time. The model fitted using ASREML (Gilmour et al., 2000), included fixed ef-
fects of sex, sire breed, age (linear, quadratic), as well as two-way interactions between the age 
parameters and sex or breed. Fixed effects in the model were tested using a Wald F-statistic 
(ASReml F values) obtained by dividing the Wald statistic by its degree of freedom. 

The piecewise model (sire) in this study assumes that the growth curve of each indi-
vidual animal follows a second-degree polynomial. The quadratic coefficient was estimated 
within the breed and sex effect to take into account differences in growth due to breed and sex. 
This model was specified as a function of five growth parameters; mean linear and quadratic 
effects of pre-weaning and post-weaning growth as a covariate. 
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RESULTS 

Log-likelihood, number of parameters, observations, fixed effects, and error variances 
for the two models are shown in Table 3. The residual variation of the piecewise model was 
lower than that of the cubic model. The random effects significantly reduced the residual 
variation for both models (Table 3).

	 Cubic	 Piecewise

Log-likelihood (fixed + random effects)	 20722.8	 21119.6
Log-likelihood (fixed effects)	 16004.5	 16287.6
Number of model parametersa	 22	 32
Number of observations	 11936	 11936
Number of fixed effects	 12	 15
Error variance	 0.00833	 0.00753

Table 3. Summary descriptions of the cubic and piecewise models.

aNumber of variance components.

Table 4 shows the ASReml F values (Wald F-statistic) to test the significance of fixed 
effects considered in the models. In the cubic model, differences due to breed group were 
significant (P < 0.01). The third order of age and breed by Age3 interactions as well as sex by 
Age3 interactions were significant (P < 0.01), indicating the importance of cubic form of the 
growth model (Table 4). As it has shown, in the piecewise model differences due to breed and 
sex and their interactions with second order of time were significant (Table 4).

	 Piecewise model			   Cubic model

Fixed effects	 d.f.	 F value	 Fixed effects	 d.f.	 F value

Mean	 1	 162682.1	 Mean	 1	 176183.87
Breed	 6	 42.99	 Breed	 6	 42.78
Sex	 7	 158.26	 Sex	 1	 145.89
Age pre	 1	 24393.01	 Age	 1	 17513.72
Age post	 1	 3043.45	 Age2	 1	 1056.80
Age2

pre	 1	 502.3	 Age3	 1	 1555.57
Age2

post	 1	 100.73	 Breed.Age	 6	 11.41
Breed.Agepre	 6	 1.32	 Breed.Age2	 6	 8.31
Breed.Agepost	 6	 9.74	 Breed.Age3	 6	 6.52
Breed.Age2

pre	 6	 1.83	 Sex.Age	 1	 23.85
Breed.Age2

post	 6	 15.89	 Sex.Age2	 1	 4.57
Sex.Agepre	 7	 1.32	 Sex.Age3	 1	 3.57
Sex.Agepost	 7	 5.5
Sex.Age2

pre	 7	 226.38
Sex.Age2

post	 7	 7.58

Table 4. ASReml F value to test the fixed effects in cubic and piecewise models.

Growth paths 

The weight of an average animal at any time for the combination of fixed effects was 
obtained from the solution of model to plot average growth path and average deviation of 
crossbred cattle from purebred Hereford. The growth paths (estimated monthly body weights) 
from birth to slaughter for seven breeds are displayed in Figures 1 and 2. In both models, body 
weights of all breeds increased over pre-weaning period, held fairly steady (slightly flatten-
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ing) over the dry season then went up again toward the end of the feedlot period during June 
to October (wet season). 

 

Figure 2. Growth paths (birth to slaughter) for seven crossbreeds derived from the piecewise growth model.

Figure 1. Growth paths (birth to slaughter) for seven crossbreeds derived from the cubic growth model.

Crossbred comparisons with purebred Hereford 

Figures 3 and 4 illustrate the percentage deviation of estimated average weight of 
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crossbreds from purebred Herefords at various ages obtained from the cubic and piecewise 
models, indicating very similar pattern for both models. Although the magnitude of the per-
centage of deviation among breeds was variable over time, South Devon, Belgian Blue and 
Limousin calves were consistently heavier and Jersey and Wagyu were lighter than Hereford 
calves, as expected. Basically, breed differences were consistent across ages except that Jersey 
and Angus were relatively lighter in the first 200 days than 200-700 days. The magnitude of 
the percentage of deviation during pre-weaning period was approximately -20 to -10%, and 
-12 to -8% for Jersey and Wagyu, respectively. After weaning they remained steady at about 
-10%; however, the magnitude of the percentage of deviation for Jersey became smaller than 
Wagyu (Figures 3 and 4). During pre-weaning, an interesting pattern was shown for Angus, 
where its percent of deviation increased dramatically, clearly lighter than the Hereford calves. 
Obviously, after weaning the direction of the deviation changed, so Angus calves became 
heavier than Hereford calves. Breed ranking at the post-weaning period was the same as the 
pre-weaning period (Figures 3 and 4). 

Figure 3. Deviation of estimated body weight of six crossbreds from purebred Hereford derived from the cubic model.

(Co)variance components

Cubic random coefficient models were postulated for sire, dam, permanent environ-
mental, and management effects. In many cases the data did not support inclusion of all terms 
because the model failed to converge in estimations. Table 5 presents the (co)variance compo-
nents that were able to be fitted. Estimated components that are marked as blank were estimated 
to be on the boundary; that is they converged to zero. A quadratic random effect for sire and 
dam were in the model, but had to be removed because the algorithm failed to converge. The 
covariance between sire constant and linear was not able to be estimated (Table 5). Finally, 22 
(co)variance components were able to be estimated (Table 5). 
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Figure 4. Deviation of estimated body weight of six crossbreds from purebred Hereford derived from the piecewise model.

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12

  1. Sire constant	 ü
  2. Sire linear		  ü
  3. Maternal constant			   ü
  4. Maternal linear			   ü	 ü
  5. Management.constant		  		  	 ü
  6. Management.linear		  		  	 ü	 ü
  7. Management.quadratic		  			   ü	 ü	 ü
  8. Management.cubic		  			   ü	 ü	 ü	 ü
  9. PE.constant		  					     	 	 ü
10. PE.linear		  					     	 	 ü	 ü
11. PE.quadratic		  					     	 	 ü	 ü	 ü
12. Residual		  										          ü

Table 5. Estimated variance components (on diagonal) and covariances (off diagonal) from the cubic sire model. 

PE = permanent environmental. Tick marks indicate the components that were able to be estimated.

Many (32) (co)variances were able to be estimated for the piecewise sire model. Due 
to small variances for the quadratic terms of sire, maternal and permanent environmental ef-
fects, their (co)variances with mean and linear terms were not able to be estimated (Table 6). 

Figure 5 shows the relative contribution of genetic and non-genetic variance compo-
nents to the total phenotypic variance obtained from the two growth models. The variance bars 
range between zero and 98 (Figure 5). Generally, 79-93% of the variability was non-genetic 
for the cubic and piecewise models, respectively. The management variance contributed up 
to 68-71% of the phenotypic variance of body weights for the cubic and piecewise models, 
respectively. The genetic variation ranges from zero (for piecewise) to 1% (for cubic) of total 
variation (Figure 5).
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Plotting residuals versus fitted values of both models produced a distribution of points 
scattered about zero (Figures 6 and 7). For both models the fit around weaning age (~200-250 
days) indicates predominantly positive residuals. 

Figure 5. Proportions of variance components obtained from cubic and piecewise models. PE = permanent 
environment.

Figure 6. Plot of residual vs fitted values for the piecewise model.

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15

  1. Sire.Age	 ü	 													           
  2. Sire.Age

Pre-weaning
	 ü	 ü	 												          

  3. Sire.Age
Post-weaning

	 ü	 ü	 ü	 											         
  4. Maternal.Age				    ü	 										        
  5. Maternal.Age

Pre-weaning
				    ü	 ü	 									       

  6. Maternal.Age
Post-weaning

				    ü	 ü	 ü	 							     
  7. Management.Age	 						      ü	 							     
  8. Manag.Age

Pre-weaning
							       ü	 ü	 						    

  9. Manag.Age
Post-weaning

							       ü	 ü	 ü	 					   
10. Manag.Age2

Pre-weaning
							       ü	 ü	 ü	 ü	 			 

11. Manag.Age2
Post-weaning

	  						      ü	 ü	 ü	 ü	 ü	 		
12. PE.Age	 											           ü	 		
13. PE.Age

Pre-weaning	
											           ü	 ü	 	

14. PE.Age
Post-weaning	

													             ü	
15. Overall residual	 														              ü

Table 6. Estimated variance (on diagonal) and covariance (off diagonal) components from the sire piecewise model. 

Manag = management; PE = permanent environmental. Tick marks indicate the components that were able to be 
estimated.
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DISCUSSION 

As stated earlier, the aims of this paper were to provide a view of the statistical and 
then biological aspects of the cubic and the piecewise random regression analyses; as a means 
for dividing successive ages into meaningful segments, and capturing key features of change 
in each segment. It is known that growth is continuous during an animal’s life and is evaluated 
by growth rate or by weight and size increases during different stages of the growth path, for 
example pre- and post-weaning and feedlot periods. Body weights change with age and there 
is evidence that these changes are influenced by genetic and non-genetic factors (Atchley et 
al., 1997). From an animal modelling point of view, interest lies in genetic and non-genetic pa-
rameters that describe the change of such traits over time (Meyer, 2004; Williams et al., 2009). 

In this study, random regression analysis was employed to provide a method for ana-
lyzing independent components of variation that reveal specific patterns of change over time. 
Recently, random regression models have been advocated to fit growth data (Schenkel et al., 
2002; Hassen et al., 2003). Also, the method was applied by Varona et al. (1997) and Arango 
et al. (2002) on the weights of mature beef cows.

When comparing cubic and piecewise models, both of them were very similar in their 
fit to the data; with the piecewise model being marginally better. In addition, it can be seen that 
the piecewise model estimates more parameters than the cubic model (32 versus 22). The log-
likelihood of piecewise model was greater than the cubic model. Also, the residual variance of 
the piecewise model was lower than that of the cubic model. Moreover, the plots of residual 
versus fitted value show that a piecewise model performs better than a cubic model at the end 
of the trajectory for higher values on these data. For both models the fit around weaning age 
(~200-250 days) was not very good with predominantly positive residuals. After using random 
regression with a polynomial, the cubic model was subject to overestimates at the end of the 
trajectory, in particular beyond 650 days. That occurred because the variances associated with 
ages of most missing records become erratic. Further, most models assume that the residuals 
are distributed normally and independent, with zero mean and equal variance, but in practice a 
systematic pattern was observed in the residuals over the growth trajectory because the mean 
profile was not adequately modelled (Figures 6 and 7). Moreover, it is possible that the fit is 
worst for traits with the smallest variances. This remains an unresolved problem for modelling 
that utilizes polynomials as has been shown by others (Meyer, 2005a). Several strategies may 

Figure 7. Plot of residual vs fitted values for the cubic model.
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be used for obtaining “better” estimates. One could be to use larger, more carefully selected 
data. Another strategy would be to use functions other than polynomials that are less suscepti-
ble to artifacts (Aggrey, 2002; Meyer, 2005b; Bohmanova et al., 2008). Although the choice of 
which type of function to use might not have a large effect on the parameter estimates within 
the interval that data were collected, the function might be more important as soon as data are 
extrapolated (Kirkpatrick et al., 1990; Aggrey, 2009; Vitezica et al., 2010). 

Overall, it is suggested that investigations into alternative models would seem to be 
important and perhaps modelling heifers and steers separately might be advantageous. Steers 
seem to have three phases of growth and a piecewise linear model of three pieces may in fact 
result in a better fit. However, preliminary analysis found that this was poor for heifers because 
the middle piece (weaning, pre-feedlot) had too few (sometimes zero!) weight measurements 
to allow accurate estimates. It may have been useful for steer data.

The results of relative contribution of variance components from both cubic and piece-
wise growth models in this study indicated that non-genetic variation accounted for the larger 
proportion of the total variance. Also, the management variation contributed to the largest pro-
portion of non-genetic and total variation of body weights as nutrition was based on the pas-
ture. The seasonal pattern (growth curves) of green herbage mass and senesced residues (dead 
and litter) at Wandilo and Struan demonstrated that the dry matter of available green herbage 
mass and senesced residues (dead and litter) increased over June to October (GrassGro, 2002). 
It also exhibited declining levels of green herbage mass (but high levels of senesced residues) 
in spring and low levels of green herbage mass in summer through autumn, i.e., the approxi-
mate period between 250 days (December) to 350 days (March), which corresponded with the 
dry season. For the period March-April total pasture availability still decreased (GrassGro, 
2002). Also, based on the seasonal pattern of in vitro digestibility and energy content for the 
green and senesced fractions of herbage mass at Wandilo and Struan, the digestibility of green 
herbage mass progressively declined in summer through autumn from 0.77 to 0.58, remained 
relatively constant over autumn at 0.57-0.60 and was uniformly high in winter and spring at 
0.75 to 0.78. The digestibility of the senesced fraction remained in the range 0.45-0.55 digest-
ibilities (GrassGro, 2002). Therefore, the pattern of growth curve illustrates occurrence of a 
summer-autumn feed gap due to the sub-optimal nutritive value of green herbage mass from 
late spring through summer-early autumn. Thus, the seasonal pattern of quantity and quality 
of pastures at Struan and Wandillo indicated that the limitations of the feed year include a 
feed gap in summer-early autumn due to low herbage mass associated with dry season, and a 
feed gap in summer-autumn associated with only moderate pasture quality (digestibility) of 
secondary re-growth pasture (GrassGro, 2002). The higher gains of calves on pasture can be 
due to the higher availability of nutrients for their dams, particularly at the start of the grazing 
season and if they had been undernourished during backgrounding as part of the post-weaning 
period. The decrease in the rate of growth after weaning during the dry period was primarily 
due to decreasing quality of pasture as the season progressed. Thus, the significance of these 
feed gaps for the post-weaning growth of steers and heifers was highlighted through the back-
grounding period. Similar growth patterns were observed for both cubic and piecewise models 
throughout pre-weaning and post-weaning periods (Figures 1 and 2). However, during the 
post-weaning period, two groups of sires, heavy and small, showed different growth patterns. 

Breed differences in performance characteristics are an important genetic resource for 
improving efficiency of beef production. Diverse breeds are required to exploit heterosis and 
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complementarity through crossbreeding to match genetic potential with diverse markets, feed 
resources and climates. The percent deviation of estimated average weight of crossbreds from 
purebred Herefords from birth to slaughter obtained from both models indicated that, as might 
be expected, the South Devon, Belgian Blue and Limousin calves were consistently heavier 
and Angus Jersey and Wagyu were lighter than Hereford calves. Jersey and Angus demon-
strated the best combination of minimum birth weight and maximum growth rate over time. 
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