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ABSTRACT. Some herbicides are suspected of promoting teratogenic, 
carcinogenic and mutagenic events. Detection of induced mitotic cross-
ing-over has proven to be an indirect way of testing the carcinogenic 
properties of suspicious substances, because mitotic crossing-over is in-
volved in the multistep process of carcinogenesis. We examined mitotic 
crossing-over induced by two commercial herbicides (diuron and triflura-
lin) in diploid strains of Aspergillus nidulans based on the homozygotiza-
tion index. Low doses (2.5 μg/mL) of diuron were sufficient to increase 
the mean homozygotization index in 2.1 and 11.3 times for UT448//
UT196 and Dp II-I//UT196, respectively, whereas the same dose of tri-
fluralin increased this mean only 1.2 (UT448//UT196) and 3.5 (Dp II-I//
UT196) times, respectively. The lower homozygotization index value 
found for trifluralin could be due to its interference with mitotic crossing-
over in eukaryotic cells. We concluded that the diploid Dp II-I//UT196 of 
A. nidulans is more sensitive to organic compounds than UT448//UT196; 
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these compounds cause recombinational events at a greater frequency in 
the latter diploid. This system holds promise as an initial test for carcino-
genicity of organic compounds, including herbicides.
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INTRODUCTION

Currently, due to an increase in the population worldwide, there has been an urge 
for increasing the productivity of crops and agricultural by-products. This yield increment 
has been obtained mainly by a massive use of pesticides to control the impacts of noxious 
insects, phytopathogens and weeds in agriculture. Pesticides are a multimillion dollar 
market corresponding to an estimated value of 25.6 million dollars per year, and herbicides 
constitute 45% of this amount (Dich et al., 1997). However, a series of deleterious effects 
on environment safety and human health have become apparent, where teratogenic, 
carcinogenic, and mutagenic effects have received special attention (Giacomazzi and 
Cochet, 2004; Nguyen-Ngoc et al., 2009). Chemical pollutants present genetic hazards to 
human beings of sufficient importance to warrant intensive cytogenetic study (Sousa et al., 
2009). Because of these undesirable side effects of pesticides, there has been an increase 
in consumer awareness to avoid the use of these compounds (Zucchi et al., 2008) and/or 
public pressure to enhance their regulation for applications in pre- or post-harvest.

Among the pesticides used, herbicides play a crucial role in agricultural fields to avoid 
crop competition by weeds. Diuron [1-(3, 4-dichlorophenyl)-3, 3-dimethylurea] is a pre-emergence 
urea herbicide (Van Boven et al., 1990) commonly used for the control of annual and perennial 
grasses in a number of crops (Hardaway and Yalkowsky, 1991). It is poorly soluble in water, which 
leads to its accumulation in animal tissues, and therefore, diuron toxicity has been well established 
(Singh and Bingley, 1990). The oral LD50 value of diuron for rats is over 3 g/kg (Dikshith, 1990), 
and it has been considered moderately toxic (Hardaway and Yalkowsky, 1991). Also, it has been 
usually classified as highly persistent in environmental conditions, and therefore, diuron can be 
found in soil, sediments and water (Field et al., 2003). Trifluralin [2,6-dinitro-N, N-dipropyl-4-
(trifluoromethyl) benzenamine] is a pre-emergence soil-incorporated herbicide and one of the most 
widely used herbicides in weed control (Deuber, 1992). Even though it has been proven to be 
slightly toxic to mammals (Garriott et al., 1991), several reports have demonstrated that trifluralin 
has genotoxic properties (Könen and Çavas, 2008; Fernandes et al., 2009). Although many reports 
have highlighted the genotoxic properties of both herbicides by several biosafety assays, to the 
best of our knowledge, none of them evaluated the potential of diuron and trifluralin to provoke 
recombinational alterations by homozygotization of Aspergillus nidulans. 

The homozygotization index (HI) (Pires and Zucchi, 1994) is based on two or more A. 
nidulans diploid strains heterozygous for several well-mapped genetic markers. The homozy-
gotization of these heterozygous markers has proven to be sensitive enough to detect recombi-
national alterations induced by noxious agents (Zucchi et al., 2005). Mitotic recombination is 
a natural tool for DNA repair, which plays an intricate association with loss of heterozygosity 
(Young et al., 2006), and therefore, it was demonstrated to be linked to carcinogenesis as a 
prior step in this process (Gupta et al., 1997). Hence, it is a highly desirable focus in efforts to 
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enhance our knowledge of the recombinogenic potential of suspicious compounds. Thus, the 
main aim of this study was to evaluate the recombinogenic effect of diuron and trifluralin on 
the homozygotization of genes of A. nidulans diploid strains.

MATERIAL AND METHODS

Aspergillus nidulans strains

The haploid strains used were from Utrecht stocks (UT448 and UT196) or obtained 
in our laboratory, namely Dp II-I, which is a uvs mutant obtained from N-methyl-N’-nitroN-
nitrosoguanidine treatment of the UT448 strain (Zucchi, 1990; Prado and Zucchi, 1991a,b; 
Castro-Prado and Zucchi, 1992). Their genotypes are given in Table 1.

Strain	 Genotype

UT448	 riboA1 (I), pabaA124 (I), biA1 (I), AcrA1 (II), wA2 (II)
UT196	 yA2 (I), methA17 (II), pyroA4 (IV)
Dp II-I	 wA2 (II), riboA1 (I), pabaA124 (I), Dp II-I (I), biA1 (I), uvsA (I), AcrA1 (II)

Table 1. Genotypes and linkage group of Aspergillus nidulans strains.

riboA1 = riboflavin; pabaA124 = p-aminobenzoic acid; biA1 = biotin; methA17 = methionine; pyroA4 = pyridoxine; 
Conidia color: wA2 = white; yA2 = yellow; AcrA1 = resistance to acriflavine; uvsA = sensitivity to UV; Dp II-I = 
duplication of a segment of chromosome II transposed to chromosome I, inserted into paba-y interval.

The diploid strains UT448//UT196, Dp II-I//UT196 and UT501//UT196 were pre-
pared according to Roper’s method (1952). The mutant alleles were allocated to their linkage 
group by mitotic haploidization (Forbes, 1959) facilitated by treatment with p-fluorophenylal-
anine (pFA) (Lhoas, 1961; Morpurgo, 1961).

Culture media

Complete medium (CM) and minimal medium (MM) were prepared as described by Van 
de Vate and Jansen (1978). Selective medium (SM) was MM supplemented with requirements 
needed by the particular strains. Solid medium contained 1.5% agar. Incubation was at 37°C.

Solutions

The herbicide solutions contained 2 mg/mL of the active ingredient in distilled water. 
Diuron was obtained from Hoechst and trifluralin from Elanco. The haploidizing agent pFA 
was diluted in 0.1 N NaOH (20 mg/mL).

Procedures

The herbicide solutions were individually and directly added to solid MM at 45°C at 
different final concentrations (0, 0.25, 2.5, 25.0, and 250.0 µg/mL). Conidia from each of the dip-
loid strains were added to the center of these plates. After incubation for 5-7 days at 37°C, it was 
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possible to determine green sectors growing in colonies of treated diploids, which were probably 
recombinant diploids. Such diploid sectors were individually isolated on MM and then transferred 
to 4 points of 10 CM plates amended with pFA (0.035 mg/mL) to be haploidized. The plates were 
then incubated for 3-5 days until colored haploid sectors appeared. In order to determine their 
genotypes, conidia from the edge of these haploid sectors were transferred to 25 defined positions 
(5 x 5 pattern) of CM plates and incubated for 48 h, and they were then replicated to SM (MM plus 
1 µg/mL riboflavin, 0.7 µg/mL p-aminobenzoic acid, 0.02 µg/mL biotin, 0.5 µg/mL methionine), 
SM lacking individually riboflavin, p-aminobenzoic acid, biotin and methionine, and SM plus 
acriflavine (62 µg/mL). After a 48-h incubation at 37°C, the genotypes of the haploid segregants 
were determined, and the frequency of mitotic crossing-over was then evaluated.

Homozygotization index evaluation

The frequency of mitotic crossing-over was determined by calculating the HI, which 
was according to Pires and Zucchi (1994) and briefly reviewed by Stoll et al. (2008).

RESULTS

For each herbicide treatment of the original diploid strains (UT448//UT196 and Dp II-
I//UT196) prior to HI evaluation, these diploids were haploidized. Diuron treatment increased 
the HI values for both diploids. The most substantial results were found in treatment with a 
concentration of 2.5 mg/mL. Diploid UT448//UT196 showed an increase in HI values for ribo, 
paba and bi markers (Table 2A, Figure 1A), while in diploid Dp II-I//UT196, the effect of 
herbicide treatment was noticed scattered all over the markers analyzed (Table 2B, Figure 1B). 
The markers AcrR and meth, from the UT448//UT196 diploid, showed similar HI in the control 
group after treatments with concentrations of 0.25, 2.5 and 25 µg/mL and decreased at higher 
concentrations (75.0 and 250.0 µg/mL). In fact, a similar pattern was found for Dp II-I diploid, 
where HI for these markers (AcrR and meth) was smaller at the highest dose (250.0 µg/mL).

A.
Dose (µg/mL)			   HI UT448//UT196 (genetic markers)
	 ribo	 paba	 bi	 AcrR	 meth
Control	   1.50	   2.33	   2.33	   9.00	   9.00
    0.25	   7.00	   7.00	   7.00	   8.00	   8.00
    2.5	 10.00	 10.00	 10.00	 11.00	 11.00
  25.0	   2.00	   2.00	   2.00	 12.00	 12.00
  75.0	   3.00	   3.00	   3.00	   5.00	   5.00
250.0	   3.00	   3.00	   3.00	   2.33	   2.33
B.
Dose (µg/mL)			   HI Dp II-I//UT196 (genetic markers)
	 ribo	 paba	 bi	 AcrR	 meth
Control	  1.00	   1.22	 1.22	   3.00	   5.67
    0.25	  6.00	   9.50	 9.50	   6.00	   6.00
    2.5	 31.00	 31.00	 9.67	 32.00	 32.00
  25.0	   3.40	   3.40	 4.50	   2.67	   3.40
  75.0	   4.38	   4.38	 2.91	   9.75	   5.14
250.0	   6.75	   5.20	 4.17	   1.38	   2.44

Table 2. Homozygotization index (HI) of UT448//UT196 (A) and Dp II-I//UT196 (B) diploid strains under 
diuron treatments.
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In general, HI for all markers increased after trifluralin treatment. In the diploid 
UT448//UT196, trifluralin treatment at a concentration of 2.5 µg/mL was also able to induce 
the highest recombination rates for paba and bi markers. However, the highest HI for ribo 
marker was found at a concentration of 25.0 µg/mL (Table 3A, Figure 1A). Similar to those 
results obtained for diuron treatment of UT448//UT196 diploid, AcrR and meth showed a 
recombination rate smaller than that observed in control. In fact, AcrR and meth markers 
had HI higher than expected for control experiments of this diploid. Unfortunately, a general 
explanation for this observation is presently not possible on account of the limitations of the 
present experiments. The segregation rates found for Dp II-I//UT196 diploid treated with 
trifluralin were, in general, smaller than those found for diuron treatment. Also, a higher 
concentration was necessary to obtain the highest HI for ribo, paba and bi markers (Table 3B, 
Figure 1B). AcrR and meth showed the same pattern found for diuron treatment.

Figure 1. Maximum homozygotization index found after herbicide treatment.
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Therefore, as homozygotes for conidial color marker are not selected in MM ���������(any col-
or conidia survive on MM, which did not lead to a segregation rate distortion), these markers 
were not included in this analysis.

Based on the results presented herein, two gene sets can be distinguished according to their 
patterns. The first one involves the ribo, paba and bi markers, which showed very similar HIs in 
the two diploid strains. This suggests that they segregate together, without mitotic crossing-over 
events between them. The other involves the AcrR and meth markers of chromosome II. Even 
though the herbicide concentration needed to induce the highest segregation rates for both diploids 
was usually the same (2.5 µg/mL), the values found for Dp II-I//UT196 were higher for all mark-
ers analyzed. This finding demonstrates the sensitivity of this diploid for recombinogenic analysis.

DISCUSSION

Indiscriminate use of pesticides has been described as being responsible for causing 
several hazardous problems with regard to the environment and human health (Pingali and 
Gerpacio, 1998). Diuron and trifluralin became two of the most used herbicides worldwide, 
and often have been associated with poisoning and environmental contamination (McMahon 
et al., 2005; Fernandes et al., 2009). Nevertheless, many studies have demonstrated genotoxic 
properties for both herbicides (Ebert et al., 1992; Giacomazi and Cochet, 2004), and therefore, 
some countries banned their use (Konstantinou and Albanis, 2004; Könen and Çavas, 2008). 
Although both herbicides have shown noxious effects after being evaluated by many biosafety 
assays, some of these tests did not demonstrate any genotoxic hazards to human beings (Gar-
riott et al., 1991). These singular discrepancies have been explained by non-applicability be-
tween the tested-compound and bioassay methods used (Uhl et al., 2003), and therefore, this 
suggests the importance of analyzing the suspicious substances in several biological systems.

The use of heterozygous diploids of A. nidulans has proven to be a feasible alterna-
tive to evaluate induced genetic events after treatment with some hazardous agents (Sousa et 

A.
Dose (µg/mL)			   HI UT448//UT196 (genetic markers)
	 ribo	 paba	 bi	 AcrR	 meth
Control	   1.50	 2.33	 2.33	 9.00	 9.00
    0.25	   1.29	 1.00	 1.29	 7.00	 7.00
    2.5	   8.50	 8.50	 8.50	 1.71	 1.71
  25.0	 15.00	 3.00	 3.00	 7.00	 7.00
  75.0	   3.25	 3.25	 3.25	 3.25	 3.25
250.0	   3.67	 3.67	 3.67	 3.67	 3.67
B.
Dose (µg/mL)			   HI Dp II-I//UT196 (genetic markers)
	 ribo	 paba	 bi	 AcrR	 meth
Control	 1.00	 1.20	   1.20	   3.00	   5.67
    0.25	 7.00	 7.00	   4.33	 15.00	   7.00
    2.5	 3.25	 3.25	   3.25	 16.00	 16.00
  25.0	 2.50	 2.50	   3.67	 13.00	 13.00
  75.0	 2.67	 4.50	 10.00	 10.00	 10.00
250.0	 7.50	 7.50	   4.67	   3.25	   2.40

Table 3. Homozygotization index (HI) of UT448//UT196 (A) and Dp II-I//UT196 (B) diploid strains under 
trifluralin treatments.
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al., 2009). By this assay, both herbicides were able to induce mitotic crossing-over in diploid 
strains of A. nidulans and the most substantial results were obtained in Dp II-I//UT196 diploid 
strain after diuron treatment. The HI has already been applied to evaluate the genotoxicity of 
organic compounds, and the findings presented herein corroborate the previously described 
sensitivity to detect such events (Salvador et al., 2008). 

In general, the maximum HI value found for UT448//UT196 and Dp II-I//UT196 dip-
loid strains was obtained at a concentration of 2.5 µg/mL, for both herbicides. Interestingly, 
this concentration has been commonly reported in soil contaminated with diuron and triflura-
lin (Moorman and Koskinen, 1990; Garriott et al., 1991). In treatments with higher herbicide 
concentration there was a decrease in HI values. This pattern is in line with findings by Kunz 
et al. (1985) who demonstrated that higher doses of genotoxic agents did not correspond to 
higher recombination rates. Probably, the highest doses of diuron and trifluralin caused more 
cytotoxic effects (e.g., cell death) than recombinogenic events.

Even though trifluralin treatment was shown to be recombinogenic in A. nidulans cells, 
the HI values found were lower than that of the other herbicide. Hence, this observed pattern 
could have been influenced by trifluralin’s ability to inhibit mitotic cell division (Fernandes 
et al., 2007, 2009). In fact, compounds known to be anti-carcinogenic, such as isoflavanoids 
from soybeans, could interfere in the homozygotization process preventing homozygote for-
mation, which leads to elevated HI values (Zucchi, 2006). Accordingly, due to the well-known 
genotoxic nature of trifluralin and the HI values obtained, the discrepancies between the two 
herbicides were basically due to their recombinogenic property, and their mitotic inhibition 
pattern apparently did not interfere with the results.

As demonstrated herein, a bioassay focusing on mitotic recombination of A. nidulans 
was efficient in detecting the genotoxic effects of diuron and trifluralin. As mitotic crossing-
over has been related to carcinogenesis in higher eukaryotic cells (Gupta et al., 1997), the HI 
test proved to be a powerful tool to evaluate suspicious recombinogenic pesticides and should 
be taken into consideration in further toxicology studies of herbicides.
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