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ABSTRACT. Microsatellites are useful tools for ecological studies 
because they can be used to discern population structure, dispersal 
patterns and genetic relationships among individuals. However, they 
can also yield inaccurate genotypes that, in turn, bias results, promote 
biological misinterpretations, and create repercussions for population 
management and conservation programs. We used empirical data from 
a large-scale microsatellite DNA study of white-tailed deer (Odocoileus 
virginianus) to identify sources of genotyping error, evaluate corrective 
measures, and provide recommendations to prevent bias in population 
studies. We detected unreported mutations that led to erroneous 
genotypes in five of 13 previously evaluated microsatellites. Of the 
five problematic markers, two contained mutations that resulted in 
null alleles, and three contained mutations that resulted in imperfect 
repeats. These five microsatellites had error rates that were four 
times greater on average than those observed in the remaining eight. 
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Methodological corrections, such as primer redesign, reduced errors 
up to 5-fold in two problematic loci, although analytical corrections 
(computational adjustment for errors) were unable to fully prevent bias 
and, consequently, measures of genetic differentiation and kinship were 
negatively impacted. Our results demonstrate the importance of error 
evaluation during all stages of population studies, and emphasize the 
need to standardize procedures for microsatellite analyses. This study 
facilitates the application of microsatellite technology in population 
studies by examining common sources of genotyping error, identifying 
unreported problems with microsatellites, and offering solutions to 
prevent error and bias in population studies.

Key words: Microsatellite; Null alleles; Parentage; White-tailed deer; 
Genotyping; Heterozygote deficiency

INTRODUCTION

Microsatellites have become increasingly popular as genetic tools for the study of 
ecology, kinship and evolution (Chapuis and Estoup, 2007). These short tandem repeat DNA 
markers are extremely polymorphic and versatile, and when applied appropriately, provide 
a precise and statistically powerful means of quantifying animal movements, kinship, and 
genetic structure (Dewoody et al., 2006). Moreover, recent innovations have greatly reduced 
labor and costs for microsatellite analysis, thus promoting it as a cost-effective source of data 
for studies of dispersal and population structure.

Numerous ecological studies have used microsatellites to examine parentage, effec-
tive population size (McLean et al., 2008), gene flow (Epps et al., 2005), and relatedness (Lunn 
et al., 2000), and these data clearly elucidate population processes important for population 
management and conservation. In bighorn sheep (Ovis canadensis), microsatellite genotypes 
revealed a decrease in genetic diversity among California populations separated by interstate 
highways and canals, and supported over- and underpass construction to re-establish con-
nectivity (Epps et al., 2005). Similarly, Coulon et al. (2006) were able to define “ecologically 
meaningful management units” for roe deer (Capreolus capreolus) in France based on genetic 
populations constrained by landscape barriers.

While microsatellites are clearly beneficial and their applicability widespread, few 
studies fully recognize the technical shortcomings that can arise when they are employed 
as a measure of genetic exchange (Dakin and Avise, 2004). Errors occur when the observed 
genotype is not equivalent to the true genotype, a result most often attributable to null alleles 
that fail to amplify in PCR assays because of mutations within microsatellite primer annealing 
sites. These mutations can reduce PCR efficiency and result in non-amplifying microsatellite 
alleles that appear to defy Mendelian inheritance patterns (Callen et al., 1993). Errors can 
also be caused by imperfect repeats, or by mutations within the microsatellite sequence that 
yield inconsistencies in the repeat motif (Figure 1). Imperfect repeats can be identical in size 
to perfect (non-mutated) repeats, which can result in incorrect scoring of two alleles as one. 
Furthermore, technical problems associated with PCR can create errors in microsatellite geno-
types when smaller alleles are preferentially detected over larger alleles because of the greater 
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efficiency of amplifying shorter PCR fragments. These inconsistencies, often referred to as 
‘allelic dropout’, tend to be associated with low DNA template quality, which is commonly 
reported in studies employing non-invasive tissue sampling (Taberlet et al., 1999).

Unrecognized errors, regardless of origin, can have adverse consequences in ecologi-
cal studies. For example, Gagneux et al. (2001) were forced to retract a high-profile journal 
article (Gagneux et al., 1997) because the actual source of father-offspring mismatches in their 
data (previously interpreted as extra-group copulations based on paternal exclusion of males) 
was instead the result of undetected null alleles. This example demonstrates the broad and per-
vasive potential for biological misinterpretations that can result from genotyping errors, and 
underscores the importance of obtaining accurate baseline molecular information.

A substantial frequency of genotyping error is most often manifested in a population 
as homozygote excess (heterozygote deficiency). This occurs when heterozygous genotypes 
fail to amplify because of mutations or allelic dropout, and thus appear monomorphic. Usual-
ly, homozygote excess can be detected through deviations from Hardy-Weinburg equilibrium 
(HWE), but in some instances it only becomes apparent when confirmed parent-offspring dy-
ads seemingly demonstrate different genotypes resulting from shared non-amplifying alleles 
(Dakin and Avise, 2004). Several software programs are designed to aid in the detection of 
genotyping errors by testing specifically for the presence of null alleles and allelic drop-out or 
by identifying heterozygote deficiencies via HWE tests (i.e., MicroChecker: Van Oosterhout 
et al., 2004; and GenAlEx: Peakall and Smouse, 2006).

Heterozygote deficiencies, once identified, can sometimes be corrected to prevent 
bias during genetic analyses. Correction techniques fall into two broad classes: analytical 
or methodological. The former rely upon computational algorithms that quantify and sub-
sequently rectify heterozygote deficiency by adjusting genetic data accordingly. GenePop 
(Rousset, 2008), for example, can estimate the overall frequency of null alleles based on 
heterozygote deficiencies, while MicroChecker (Van Oosterhout et al., 2004) can correct raw 
genotypes and account for the presence of non-amplifying alleles. Other corrective measures 
have been recommended by Wagner et al. (2006), who proposed adjusting standard relat-
edness statistics to account for the possibility of null alleles. Programs like Cervus adjust 
for errors by incorporating a user-specified error rate in parentage simulations (Kalinowski 
et al., 2007). However, many of these analytical corrections have limited utility for down-
stream analysis of genetic patterns. MicroChecker, for example, provides a list of corrected 
genotypes based on the estimated frequency of missing alleles (Van Oosterhout et al., 2004). 
Adjusted genotypes are not assigned to specific individuals; hence they cannot be used to 
analyze individual multi-locus genotypes. Also, most software packages fail to accept allele 
frequency data, thus preventing analyses based on frequency estimates of missing alleles 
(Dewoody et al., 2006).

Methodological approaches, on the other hand, often involve alternative primers or 
adjusted PCR conditions to boost the amplification of undetected alleles. This can require 
extensive laboratory effort and may not correct all sources of genotyping error, thus limiting 
information gain for the effort invested. An alternative is the amplification of additional poly-
morphic loci, followed by subsequent rejection of those that amplify inconsistently or deviate 
from HWE. This approach can be costly and time-consuming, particularly if multiple markers 
have non-amplifying alleles. Moreover, this approach is relatively inefficient in the long run 
because it does not engage the underlying molecular issues per se.
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Despite shortcomings, both analytical and methodological approaches can be em-
ployed to correct for the effects of genotyping errors. Yet, remarkably, 90% of studies report-
ing null alleles failed to compensate for this error source and researchers instead elected to 
employ the affected loci ‘as is’ (Dakin and Avise, 2004). This is problematic, in that genotyp-
ing errors negatively impact analyses of genetic variability (Wagner et al., 2006), with the 
severity of bias depending on the type of analysis performed. For example, F-statistics are 
particularly sensitive because non-amplifying alleles can deflate within-population variance 
and exaggerate genetic differentiation (Chapuis and Estoup, 2007). Simulations have shown 
that in parentage studies, average exclusion probabilities are reasonably immune to the effects 
of null alleles, although their presence can significantly elevate the false exclusion rate for 
certain individuals (Dakin and Avise, 2004).

Sources of genotyping error and methods to estimate error rate (Bonin et al., 2004) 
have been thoroughly addressed, mostly with simulation studies and theoretical approaches 
(Paetkau, 2003). Several studies have focused on noninvasive sampling because it is especial-
ly prone to genotyping error, so much so that several noninvasive genotyping protocols have 
been designed specifically for error reduction (Woods et al., 1999; Paetkau, 2003). However, 
genotyping errors in large-scale studies with robust tissue samples and large DNA yields are 
less commonly addressed. Further, empirical reports of errors and their resulting effects on 
biological interpretations are relatively rare. Yet, evaluating microsatellite errors is critical, 
because consequences for biological misinterpretation could be severe, particularly when mi-
crosatellite data are used to guide conservation, management, or disease detection.

We utilized microsatellite markers previously optimized for use in white-tailed deer 
(Odocoileus virginianus) (Anderson et al., 2002) to demonstrate the effects of genotyping er-
rors on population genetic studies and the benefits that can be gained from their correction. 
These microsatellites are of particular interest because many have been used in prior genetic 
studies of hunter-harvested species, with the intent to guide wildlife and infectious disease 
management (DeYoung et al., 2003a; Blanchong et al., 2008; Grear et al., 2010). We applied 
empirical data to 1) describe genotyping errors found during large-scale genetic analysis and 
dissect their molecular basis, 2) compare methodological and analytical techniques most fre-
quently used to rectify genotyping errors, 3) determine how null alleles, imperfect repeats and 
allelic dropout can impact biological interpretations, and 4) provide recommendations on how 
genotyping errors can be minimized in population studies.

MATERIAL AND METHODS

Laboratory procedures

For genetic analyses, we used white-tailed deer (N = 877 total multi-locus genotypes, 
including 90 replicate and 65 fetus genotypes) sampled through Illinois Department of Natu-
ral Resources (IDNR) Chronic Wasting Disease (CWD) surveillance in north-central Illinois 
for genetic analyses. Previous genetic analyses conducted in this area revealed extensive deer 
movement and extremely low genetic structure, suggesting a single large population (Kelly 
et al., 2010).

We stored skeletal muscle or lymph node tissues of sampled animals in 100% ethanol 
or in a -80°C freezer. Genomic DNA was extracted using the Wizard Genomic DNA Purifica-
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tion Kit (Promega, Madison, WI, USA), in accordance with manufacturer instructions. We 
genotyped individuals using 13 microsatellite primers that were optimized for use in white-
tailed deer (Anderson et al., 2002), but were originally developed for cattle (Bos taurus), 
sheep (Ovis aries), goats (Capra hircus), and caribou (Rangifer tarandus). This panel in-
cluded markers BM848, BM1225, BM4107, BM6506, CSN3 (Bishop et al., 1994), BM4208 
(Talbot et al., 1996), IGF-1 (Kirkpatrick, 1992), OBCAM (Fries et al., 1993), OarFcb304 
(Buchanan et al., 1993), RT20, RT23, RT27 (Wilson et al., 1997), and Srcrsp-10 (Bhebhe et 
al., 1994). We labeled forward primers with fluorescent dyes (NED, HEX, FAM) and sepa-
rated microsatellite fragments on an ABI 3730XL capillary sequencer (Applied Biosystems, 
Foster City, CA, USA). We visualized microsatellite genotypes with GeneMapper, v. 4.0 
(Applied Biosystems).

Detection of genotyping errors

We used MicroChecker, v. 2.2.3 (Van Oosterhout et al., 2004) to test for genotyping 
errors, and applied GenePop, v. 4.0 (Rousset, 2008) to examine deviations from HWE. We 
calculated observed (HO) and expected (HE) heterozygosities using 10,000 dememorization 
steps and 10,000 iterations in each of 100 batch runs, with significance (P < 0.01) based on the 
Markov chain algorithm (Rousset, 2008). To evaluate the stability of genotypes across inde-
pendent PCRs, we genotyped 86 individuals in replicates of two or three, using all markers. 
Further, to verify Mendelian inheritance patterns, we genotyped 35 mother-offspring pairs 
(female deer with twins or triplets in utero; fetuses, N = 65). This allowed us to discover al-
leles that consistently failed to amplify, resulting in mismatched genotypes between mother 
and offspring. We counted mismatches among replicates and mother-offspring pairs as the 
number of genotypes with at least one erroneous allele. To calculate error rates, we divided 
the number of mismatches by the total number of genotypes for each locus.

We classified error sources into five exclusive categories: null alleles, imperfect re-
peats, miscalls, transcription errors, and allelic dropout. We sequenced microsatellites (meth-
ods described below) to confirm null alleles and imperfect repeats and compared microsatellite 
chromatograms with scored genotypes to identify errors in the other three categories. We clas-
sified mismatches between mother-offspring pairs and replicate samples as null alleles when 
microsatellites carried mutations in primer binding sites. We classified mismatches between 
mother-offspring pairs and replicate samples as imperfect repeats when microsatellites carried 
mutations in the repeat sequence. We identified miscalls as genotypes scored incorrectly upon 
first visual inspection (usually when aberrant stutter patterns or spurious peaks were present). 
Typing errors resulted from transcription errors during manual data editing, and allelic drop-
out (i.e., genotypes that scored heterozygous and homozygous in replicate reactions) resulted 
from inconsistent PCR amplifications.

Sample size effects

To determine if sample size affected our ability to detect HWE deviations, we ran-
domly selected subsets of 25, 50, 100, 200, and 400 individuals for analysis and comparison 
with the full data-set of 722 genotyped deer (i.e., 877 total multi-locus genotypes with 65 
fetuses and 90 replicates removed). For each subset, we calculated the inbreeding coefficient, 
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FIS, and evaluated significance (P < 0.01) with GenePop, v. 4.0, for all loci, using 10,000 de-
memorization steps and 10,000 iterations in each of 100 batch runs.

Methodological corrections

We sequenced entire microsatellite loci, including primer binding sites and repeat 
sequences of markers CSN3, BM848, BM4208, BM6506, and RT20. We chose to sequence 
these five markers because they severely deviated from HWE, demonstrated inconsistent am-
plification, or showed mismatches between mother-offspring pairs (we will subsequently refer 
to these problems as major sources of error). Ten individuals were chosen for sequencing: five 
demonstrating mismatches or inconsistent amplifications and five that appeared to amplify 
normally. To evaluate sequences and ensure that they were of high quality, we used the Codon-
Code Aligner v. 3.5.1 software (CodonCode Corporation, Dedham, MA, USA). Upon detec-
tion of mutations in microsatellite flanking regions of CSN3 and RT20, we relocated primer 
binding sites to areas with no genetic variability among sequenced samples: CSN3 (origi-
nal reverse primer CSN3-R: GCACTTTATAAGCACCACAGC; redesigned reverse primer 
CSN3-RR: TAGCTCATAATGTAAACCACTTT) and locus RT20 (original forward primer 
RT20-F: GCAGAAGAGTGAGTGTGAGT; redesigned RT20-FR forward primer: TGG 
AAGATTTCAGAAATGAT).

All individuals (N = 877) were then genotyped with redesigned primers RT20R and 
CSN3R. We compared genotypes from redesigned primers with raw genotypes to determine 
n0, the number of heterozygous genotypes incorrectly scored as homozygous. To calculate 
empirical estimates of null allele frequencies (r), we divided n0 by the total number of alleles 
at each locus.

Analytical corrections

MicroChecker and GenePop refer to estimates of all non-amplifying alleles (regard-
less of their origin) as ‘null allele frequency estimates’. For our purposes, this term will sub-
sequently refer to calculated estimates of non-amplifying alleles resulting from null alleles, 
allelic dropout, or imperfect repeats. We compared four algorithms for estimating r across 
the five loci that deviated from HWE. First, we used MicroChecker to calculate r with ana-
lytical corrections described by Van Oosterhout et al., 2004 (AC-O), Chakraborty et al., 1992 
(AC-C), Brookfield, 1996 (Equation 1; AC-B). We also employed GenePop to calculate null 
allele frequencies according to analytical methods described by Dempster et al., 1977 (AC-
D). Based on deviations from HWE, we then applied MicroChecker to correct raw genotype 
frequencies by identifying the number of homozygous genotypes likely to be heterozygous 
for a non-amplifying allele. For locus BM848, we compared corrected genotypes (obtained 
from MicroChecker) to original genotypes to determine n0 that was incorrectly scored as ho-
mozygous. Because MicroChecker does not perform genotype corrections for markers with 
null allele frequencies <5%, we could not use it to calculate n0 for loci BM4208 and BM6506.

Evaluation of corrective measures

To determine if analytical and methodological corrections affected the outcome of 
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population analyses, we compared results from five different data sets: DS-O (the original 13 
locus panel with null alleles or imperfect repeats), DS-C (the original panel with corrected 
frequency estimates for null alleles), DS-R (original panel with redesigned primers substituted 
for null alleles), DS-I (original panel with imperfect repeats removed), and DS-RI (origi-
nal panel with imperfect repeats removed and redesigned primers substituted for null alleles) 
(Table 1). These five data sets allowed us to compare results based on equal numbers of loci 
and varying frequencies of error.

	Microsatellite, description			   Data seta

		 DS-O	 DS-C	 DS-R	 DS-I	 DS-RI

BM1225, no major errors detected	 √	 √	 √	 √	 √
BM4107, no major errors detected	 √	 √	 √	 √	 √
BM4208, imperfect repeat	 √	 √b	 √	 	
BM6506, imperfect repeat	 √	 √b	 √	 	
BM848, imperfect repeat	 √	 √b	 √	 	
CSN3, null allele	 √	 √b		  √	
CSN3R, redesigned primer			   √	 	 √
IGF-1, no major errors detected	 √	 √	 √	 √	 √
OarFcb304, no major errors detected	 √	 √	 √	 √	 √
OBCAM, no major errors detected	 √	 √	 √	 √	 √
RT20, null allele	 √	 √b		  √	
RT20R, redesigned primer			   √	 	 √
RT23, no major errors detected	 √	 √	 √	 √	 √
RT27, no major errors detected	 √	 √	 √	 √	 √
Srcrsp-10, no major errors detected	 √	 √	 √	 √	 √
Total	 13	 13	 13	 10	 10
r	     25%	      0%	     15%	    10%	      0%
aMicrosatellite panels used to generate data sets were: DS-O = original panel; DS-C = panel with corrections based 
on null frequency estimates; DS-R = panel with redesigned primers; DS-I = original panel with imperfect repeats 
removed; DS-RI = panel with redesigned primers added and imperfect repeats removed. bIndicates use of corrected 
frequency as calculated per Brookfield et al., 1996; Equation 1. A √ indicates inclusion in panel. Total = number of 
markers in panel. r = panel-specific estimate of null allele frequencies (empirical r used for RT20, CSN3, rAC-B used 
for BM848, BM6506, and BM4208).

Table 1. Microsatellite data sets (from white-tailed deer, Odocoileus virginianus) used for genetic analysis of 
genotyping errors.

When population analyses required corrected frequencies, we employed the methods 
of Brookfield, 1996 (Equation 1) for null allele frequency estimation (as recommended by Van 
Oosterhout et al., 2004). To determine r for each panel, we summed empirical estimates of 
null alleles for RT20 and CSN3 and calculated estimates for BM848, BM4208, and BM6506.

Corrective measures and population analyses

To determine the response of each marker to corrective measures, we individually 
evaluated problematic markers BM4208, BM6506, BM848, RT20, and CSN3. We subdivided 
the study area into 13 study sites (≥20 deer/site) and then calculated pairwise FST values for 
all study site combinations using allele frequencies from original genotypes, corrected fre-
quencies, and frequencies generated with redesigned primers. To determine if these markers 
affected levels of genetic differentiation, we performed Fisher exact tests in Arlequin, v. 3.1 
(Excoffier et al., 2005) using 100,000 Markov chain steps with 10,000 dememorization steps 
at P < 0.05. We summed the total number of significant tests for each data set and the num-
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ber of pairwise tests that gained or lost significance. This allowed us to compare changes in 
genetic differentiation that resulted from methodological and analytical correction methods.

To ensure that differences in genetic differentiation were not solely attributable to 
variable explanatory power between data sets, we evaluated each locus using POWSIM 
(Ryman and Palm, 2006) to estimate the power to detect differentiation. For power analy-
ses, we performed Fisher exact tests on allele frequencies using 1000 dememorization steps 
followed by 1000 iterations in each of 100 batches. We calculated power as the number of 
significant tests per 1000 replicates.

We examined the effects of genotyping errors on population-based distance measures 
and spatial autocorrelation with the Spatial Genetic v. 1.0 Software (Degen et al., 2001). This 
program derives calculations from allele frequencies rather than individual genotypes, thus 
permitting an evaluation of analytical correction methods using multi-locus data. For this 
analysis, we further subdivided the study area into 26 study sites (with approximately equal 
numbers of deer in each), so that we could evaluate effects of genotyping error on popula-
tion analyses conducted at greater spatial resolution (~2 km2). We calculated pairwise FST’s 
and Nei’s genetic distances among populations for all five data sets, and computed pairwise 
geographic distances from the centroid of each study sited based on x- and y-coordinates. To 
test for spatial autocorrelation, we calculated average genetic distances within nine distance 
classes and compared these to average genetic distances estimated across all classes. We chose 
equidistant intervals, ensured that each distance class had at least 30 data points, and evaluated 
significance using 500 random permutations of the observed data (Degen et al., 2001).

Corrective measure and parentage analyses

To determine the effects of genotyping errors on parentage studies, we assigned par-
entage to 65 deer fetuses with Cervus, v. 3.0 (Kalinowski et al., 2007). Using 35 confirmed 
mothers and 35 randomly selected females as candidate mothers, we assigned parentage to 
fetuses and examined changes in parentage non-exclusion probabilities (i.e., the probability of 
excluding a non-parent) in the presence of genotyping errors. We based parentage assignments 
on data from four (DS-O, DS-R, DS-I, and DS-RI) of the five marker panels because Cervus 
cannot infer parentage from allele frequency data (i.e., DS-C). To determine the maximum 
false exclusion rate, we ran initial simulations with an assumed genotyping error rate of 0. 
However, in subsequent simulations, we adjusted the proportion of loci mistyped to account 
for panel-specific error rates (as recommended by Kalinowski et al., 2007). For each panel, we 
determined the false exclusion rate by dividing the number of unassigned fetuses by the total 
number of mother-fetus pairs. We calculated average non-exclusion probabilities within each 
simulation and for all loci combined (Kalinowski et al., 2007).

RESULTS

Genotyping errors

Of the original 13 microsatellites that we evaluated, six deviated from HWE (BM4208, 
BM6506, BM848, RT20, RT27, and RT23) and one amplified inconsistently (CSN3) when the 
original panel was evaluated. Of the six markers deviating from HWE, RT23 and RT27 did not 



2542

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (4): 2534-2553 (2011)

A.C. Kelly et al.

appear to be affected by null alleles, imperfect repeats, or allelic dropout, whereas sequencing 
confirmed a null allele in RT20 that resulted from a point mutation and a duplication in the 5' 
primer binding site. Microsatellites BM848, BM4208 and BM6506 were imperfect repeats, 
and we observed zero (perfect repeat), one (heterozygous) and two (homozygous) copies of 
point mutations within repeat regions of sequenced individuals. In addition CSN3, which did 
not deviate from HWE but amplified inconsistently, contained two point mutations in the 3' 
primer binding site that resulted in a null allele (Figure 1). Although loci RT23, and RT27 
deviated from HWE in the full data set, we did not observe mismatches in mother-offspring 
pairs, and transcription error accounted for the single mismatch detected in these two markers 
(Table 2). Further, FIS values were extremely low (Table 3), and HWE deviations in RT23 and 
RT27 were not apparent in data subsets or in larger data sets (data not shown), most likely 
suggesting subtle subpopulation structure rather than non-amplifying alleles. Null alleles and 
imperfect repeats were detected in primers originally designed for cattle (BM848, BM4208, 
BM6506, and CSN3) and caribou (RT20).

Figure 1. Molecular basis for null alleles and imperfect repeats detected in white-tailed deer microsatellites. a. RT20 
with original forward primer underlined in black (RT20 original forward primer: GCAGAAGAGTGAGTGTGAGT) 
and a point mutation and duplication in primer binding site underlined in orange. b. CSN3 with original reverse 
primer binding site underlined in black (original reverse primer: GCACTTTATAAGCACCACAGC; reverse 
complement shown in chromatogram GCTGTGGTGCTTATAAAGTGC) with two base pair substitutions 
underlined in orange. c. BM848 imperfect repeat with multiple heterozygous base pair substitutions (concurrent 
red and blue peaks) indicated by arrows. d. BM6506 imperfect repeat with ‘GT’ insertion indicated by arrows. 
e. BM4208 imperfect repeat with a ‘C’ insertion indicated by arrow.
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Marker	 Mismatch mother-fetusa	 Mismatch replicateb	 Error rate

Srcrsp-10	 0	 0	 0
CSN3R	 0	 0	 0
CSN3	 0	 4	 1.6
IGF-1	 0	 1	 0.4
RT27	 0	 1	 0.4
RT23	 0	 1	 0.4
BM1225	 0	 1	 0.4
OarFcb304	 0	 2	 0.7
BM4107	 0	 2	 0.7
OBCAM	 0	 3	 1.1
BM848	 3	 0	 1.2
BM6506	 3	 2	 1.9
BM4208	 3	 5	 3.1
RT20	 7	 4	 4.5
RT20R	 0	 2	 0.8

aMismatched genotypes between mother-fetus pairs for 65 fetuses and 35 mothers. bMismatched genotypes for 
replicate samples from 86 individuals. Error rates were calculated by taking the total number of mismatched 
genotypes (mother-fetus and replicate) divided by the total number of genotypes * 100.

Table 2. Mismatch errors caused by null alleles in known pedigree and mother-fetus and replicate genotypes of 
white-tailed deer.

Marker	 N = 25		    N = 50		     N = 100		     N = 200		  N = 400		   N = Full (722)

	 FIS	 P	 FIS	 P	 FIS	 P	 FIS	 P	 FIS	 P	 FIS	 P

BM848	   0.07	 ns	   0.05	 ns	   0.01	 ns	   0.07	 **	   0.10	 ***	   0.11	 ***
BM1225	  -0.02	 ns	   0.02	 ns	   0.02	 ns	  -0.02	 ns	   0.00	 ns	   0.01	 ns
BM4107	   0.24	 *	   0.12	 ns	   0.04	 ns	   0.05	 ns	   0.04	 ns	   0.03	 ns
BM4208	   0.20	 **	   0.13	 **	   0.06	 *	   0.07	 ***	   0.07	 ***	   0.07	 ***
BM6506	   0.00	 ns	  -0.04	 ns	  -0.01	 ns	   0.03	 ns	   0.03	 *	   0.02	 *
CSN3	   0.07	 ns	  -0.08	 ns	  -0.10	 ns	  -0.13	 ns	   0.01	 ns	   0.04	 ns
CSN3R	  -0.03	 ns	  -0.16	 ns	  -0.19	 ns	  -0.15	 ns	  -0.03	 ns	   0.03	 ns
IGF-1	   0.22	 *	   0.13	 ns	   0.08	 ns	   0.04	 ns	   0.03	 ns	   0.01	 ns
OarFcb304	  -0.12	 ns	  -0.09	 ns	   0.04	 ns	   0.01	 ns	  -0.01	 ns	   0.03	 ns
OBCAM	  -0.05	 ns	   0.01	 ns	  -0.01	 ns	  -0.05	 ns	  -0.04	 ns	  -0.01	 ns
RT20	   0.27	 **	   0.27	 ***	   0.28	 ***	   0.26	 ***	   0.28	 ***	   0.29	 ***
RT20R	   0.00	 ns	  -0.02	 ns	   0.01	 ns	  -0.02	 ns	  -0.02	 ns	  -0.02	 ns
RT27	   0.04	 ns	   0.01	 ns	   0.04	 ns	  -0.01	 ns	   0.00	 ns	   0.01	 *
RT23	  -0.10	 ns	   0.00	 ns	   0.00	 ns	  -0.02	 ns	   0.00	 ns	   0.01	 ***
Srcrsp-10	   0.05	 ns	   0.06	 ns	   0.02	 ns	  -0.04	 ns	   0.00	 ns	   0.01	 ns

Subsets of 25, 50, 100, 200, and 400 individuals were randomly selected for analysis and compared with the 
full data-set (722 deer). ns = P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. Tests for heterozygote deficiency 
were performed and FIS values were evaluated for significance using 10,000 dememorization steps followed by 
10,000 iterations in each of 100 batches. Markers highlighted in gray demonstrated changes in significance for 
heterozygote deficiency at different values of N.

Table 3. Effects of sample size on null allele detection.

Among the five data sets derived from different marker panels, overall frequency 
of non-amplifying alleles (r: calculated empirically for RT20 and CSN3 and estimated by 
Brookfield, 1996; Equation 1 for BM848, BM4208, and BM6506) ranged from 25% with the 
original panel (DS-O) to 0% in the original panel with redesigned primers added and imperfect 
repeats removed (DS-RI) (Table 1). Nearly two-thirds of all genotyping errors resulted from 
null alleles and imperfect repeats, although transcription errors also contributed substantially 



2544

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (4): 2534-2553 (2011)

A.C. Kelly et al.

to mismatched genotypes (Figure 2). Overall error rates for individual markers ranged from 0 
(Srcrsp-10 and CSN3R) to 4.5% (RT20), with an average error rate of 1.1% (Table 2).

Sample size effects

The ability to detect HWE deviations was profoundly influenced by the sample size 
of the data set (Table 3). Eight of 15 markers (13 original + two redesigned) experienced 
changes in significance level changes (two lost and six gained significance) when varying 
numbers of individuals were included in the analysis. For markers BM848, BM6506 and 
RT20, FIS and its associated significance increased as individuals were added to the data set. 
For marker BM6506, 400 individuals had to be analyzed before a significant departure from 
HWE was observed. In contrast, FIS and its significance decreased for BM4107 and IGF-1 
as sample size increased. Although significance also changed for markers RT27 and RT23, 
FIS values were generally low; unstable and significant departures from HWE were detected 
only in the full data set.

Figure 2. Types of genotyping errors detected in genetic characterization of mother-offspring pairs (65 fetuses and 
35 mothers) and 86 individuals genotyped in replicate. The % of total errors was calculated as ((number of errors 
for each category / number of errors observed for all categories) * 100).
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Methodological corrections

After identifying null alleles in RT20 and CSN3, we redesigned primers to bind to 
segments of DNA that did not vary among sequenced individuals. These redesigned primers 
consistently amplified alleles, with resulting genotypes in HWE. Mutations within the repeat 
sequence cannot be corrected using methodological techniques, and they were thus not applied 
to imperfect repeats of BM848, BM4208, and BM6506. Although we were unable to correct 
for errors associated with imperfect repeats in BM4208, we were able to eliminate spurious 
bands in this marker by decreasing the number of PCR cycles from 25 to 20. This reduction 
prevented self-annealing of PCR products, thereby increasing the detectability of microsatel-
lite alleles (Bovo et al., 1999).

Analytical corrections

The four analytical methods to estimate null allele frequency produced identical re-
sults for BM4208 (r = 0.04) and BM6506 (r = 0.01) (Table 4). Estimates based on AC-O, 
AC-B, and AC-D were identical (r = 0.05) for BM848, while values estimated by AC-C were 
slightly higher (r = 0.06). Empirical null allele estimates (determined from genotypes that 
went from homozygous to heterozygous with redesign primers) were 0.02 for CSN3 and 0.13 
for RT20. In comparison, methods AC-O and AC-C correctly estimated the frequency of null 
alleles for CSN3, while methods AC-B and AC-D produced slight underestimates (r = 0.01). 
For RT20, only AC-B accurately estimated the null allele frequency, while the other three 
methods produced overestimates. Based on these results, the method AC-B (Brookfield, 1996) 
produced the most accurate estimates of null alleles in our study.

Marker			     Original primers				   Redesigned primers			  Null allele estimates

	 N	 n0	 HO	 HE	 P	 HO	 HE	 P	 Empirical	 rAC-C	 rAC-B	 rAC-D	 rAC-O

RT20	 716	 192	 0.62	 0.87	 *	 0.87	 0.86	 ns	 0.13	 0.17	 0.13	 0.14	 0.14
CSN3	 710	   31	 0.48	 0.50	 ns	 0.49	 0.50	 ns	 0.02	 0.02	 0.01	 0.01	 0.02
BM848	 716	   65	 0.76	 0.85	 ***	 na	 na	 na	 na	 0.06	 0.05	 0.05	 0.05
BM4208	 716	 nc	 0.83	 0.90	 ***	 na	 na	 na	 na	 0.04	 0.04	 0.04	 0.04
BM6506	 716	 nc	 0.86	 0.88	 ns	 na	 na	 na	 na	 0.01	 0.01	 0.01	 0.01

N = number of genotypes; n0 = number of genotypes that contained null or non-amplifying alleles; HO = observed 
heterozygosity; HE = expected heterozygosity calculated by GenePop and evaluated for significance using the 
Markov chain algorithm; nc = not calculable; na = not applicable; ns = P > 0.05; *P < 0.05; ***P < 0.001. Empirical 
null allele estimates (r) were calculated by taking the number of null alleles (determined from genotypes that went 
from homozygous to heterozygous with redesign) divided by the total number of alleles analyzed. rAC-C = null 
allele estimate according to Chakraborty et al. (1992); rAC-B = null allele estimate according to Brookfield (1996); 
rAC-D = null allele frequency according to Dempster et al. (1977), and rAC-O = null allele frequency according to Van 
Oosterhout et al. (2004).

Table 4. Descriptive statistics for white-tailed deer microsatellites with null alleles before and after primer 
redesign.

Corrective measures and population analyses

For all five markers tested, average pairwise FST values were higher when calculated 
with null alleles. This overestimation was so severe for RT20 that the distribution of FST values 
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calculated with null alleles was substantially higher (one-tailed F value = 2.9; P = 0.057) than 
the distribution calculated with corrected and redesigned frequencies. The use of corrected null 
allele frequencies appeared to rectify this problem, as average FST values for corrected and 
redesigned data sets were nearly identical. Variable results were observed for all loci examined 
when the number of different study sites was used as a metric for genetic differentiation (Figure 
3). Genetic differentiation was higher for BM4208 and RT20 when errors were included as 
compared to corrected and redesigned frequencies (Figure 3). In contrast, markers BM6506, 
CSN3 and BM848 showed higher levels of genetic differentiation with corrected frequencies 
when compared to original frequencies including null alleles and imperfect repeats (Figure 3). 
The differences in genetic differentiation are attributable to errors rather than variations in ge-
netic resolution, as changes in power averaged less than 2% among data sets for the same locus.

Figure 3. Effects of genotyping error on estimation of genetic differentiation. Fisher exact tests for genetic 
differentiation were performed using original, corrected and redesigned allele frequencies of individual 
microsatellites with 100,000 Markov chain steps and 10,000 dememorization steps in Arlequin. The number of 
significant tests at P < 0.05 was summed and used as a metric for overall genetic differentiation. The number of 
pairwise comparisons that changed in significance (gain or loss compared to original primer) are shown above the 
bars. NA = not applicable; primers were not redesigned for microsatellites with imperfect repeats.

Although population differentiation was sensitive to genotyping errors, population-
based measures and spatial autocorrelation were only slightly affected. Overall patterns of 
spatial autocorrelation were not affected by genotyping error as none of the data sets showed 
consistent patterns of spatial structure to begin with. However, average FST values and Nei’s 
genetic distances were variable for data sets with equal numbers of loci. When 13 loci were 
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employed, data set DS-C yielded the highest distance values, followed by DS-O and DS-R, 
although differences were not significant. For data sets based on 10 loci, genetic distances 
were higher, (although not significantly so) for DS-I than for DS-RI.

 
Corrective measures and parentage analyses

Parentage assignments for known mother (35) and fetus (65) pairs revealed that false 
exclusion rates increased dramatically as the frequency of null alleles increased (Figure 4). 
The original data set (r = 25%) had the highest false exclusion rate (20%), with 13 of 65 con-
firmed mothers being excluded because of mismatches with their fetuses. On the other hand, 
the original data set with redesigned primers added and imperfect repeats removed (r = 0%) 
did not falsely exclude any confirmed mothers. There was also an inverse relationship between 
the estimated frequency of null alleles within a data set and the probability of non-exclusion. 
The original data set with redesigned primers added and imperfect repeats removed had the 
highest probability of non-exclusion (P = 0.004), while the original data set had a much lower 
probability of non-exclusion (P = 0.0003). However, these changes were mostly attributable to 
higher resolving power and not solely to errors, as data sets with equal numbers of loci (original 
vs original with redesigned, original minus imperfect repeats vs original with redesigned minus 
imperfect repeats) had similar estimates of probabilities of non-exclusion (<1% change in P).

Figure 4. Effects of genotyping errors on parentage analysis. False exclusion rates and probabilities of non-
exclusion for original (DS-O), original with redesigned primers (DS-R), original with imperfect repeats removed 
(DS-I), and original with redesigned primers added and imperfect repeats removed (DS-RI). Panel specific estimates 
of null allele frequency (r) are shown below each panel name. Parentage was assigned to 65 deer fetuses using 70 
candidate mothers (35 known mothers and 35 random females). The proportion of individuals falsely excluded due 
to mismatches from null or non-amplifying alleles is shown above each bar. Probabilities of non-exclusion were 
averaged across all loci and reported for each panel tested.



2548

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 10 (4): 2534-2553 (2011)

A.C. Kelly et al.

Panel-specific error rates (calculated from mismatches in replicate samples and from 
mother-fetus pairs) were specified for parentage analyses in Cervus, although they failed to 
rectify problems with false exclusion for genotypes based on the original data set. The propor-
tion of mistyped loci was 1.3% for DS-O, yet 13 of 65 confirmed mothers (20%) were still 
excluded. On the other hand, when panel specific error rates were used (0.5% for DS-RI, 1% 
for DS-I and 1.1% for DS-R), genotypes based on the other three data sets did not falsely ex-
clude any confirmed mothers.

DISCUSSION

Microsatellite markers have truly impacted population studies by providing a wealth 
of genetic information for conservation biology, molecular ecology and population genetics. 
These disciplines, among many others, have benefited greatly because microsatellite analysis 
provides an efficient way of estimating complex population parameters like dispersal, kinship, 
inbreeding, and population size. However, the ability of microsatellites to elucidate such intri-
cate genetic patterns depends greatly on the accuracy of genotypes.

Genotyping errors

Using empirical data, we were able to demonstrate that null alleles and imperfect re-
peats accounted for the vast majority of genotyping errors in our study. The loci that we em-
ployed are generally considered to be valid markers (Anderson et al., 2002) and have been used 
extensively in population studies (DeYoung et al., 2003b; Blanchong et al., 2008; Grear et al., 
2010). The fact that >30% of our original panel contained confirmed null alleles or imperfect 
repeats suggests that more stringent criteria for marker evaluation should be considered. The 
validation study of Anderson et al. (2002) included markers BM848, BM6506, and BM4208, 
and while HO was <HE for all three, the authors conclude that “little evidence exists of null alleles 
at these loci”, with a recommendation for use in studies of gene flow and parentage (Anderson 
et al., 2002). Moreover, markers BM4208 and BM6505 continue to be employed in studies of 
kinship and relatedness (Grear et al., 2010), despite demonstrated HWE deviations (Anderson 
et al., 2002; Comer et al., 2005) and inconsistent genotypes (DeYoung et al., 2003a) in deer 
populations across the US. To prevent data bias and biological misinterpretations, markers need 
to be assessed thoroughly with each novel application. Furthermore, to increase awareness of 
problematic markers in the scientific community, genotyping errors should be reported, espe-
cially when deviations from HWE are detected (Dewoody et al., 2006).

Sample size effects

Elevated sample sizes greatly enhanced our ability to detect low frequency null al-
leles, imperfect repeats, and effects of sample size on HWE deviations. Sample size issues are 
a consistent problem for ecological studies (Rao, 2001), especially those involving rare or en-
dangered species (Storfer, 1996). Our results suggest that elevated sample sizes are necessary 
to detect markers with null allele frequencies ≤5%. BM848 required N = 200 and BM6506 
required N = 400 before HWE deviations became significant. The differences in FIS that we 
observed at varying sample sizes were not likely attributable to population substructuring 
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because the sampled population is not genetically structured at this spatial scale (Kelly et al., 
2010). Rather, our results reflect an inability of small sample sizes to capture the range of ge-
netic variation in our population. This is contrary to suggestions of Takezaki and Nei (1996) 
and DeYoung et al. (2003b) that 50 individuals are sufficient for estimating population allele 
frequencies. While 50 may suffice for genetically homogeneous populations, our deer popula-
tion was highly mobile and genetically admixed (Kelly et al., 2010). Simulation studies have 
supported these results by demonstrating that sample sizes <100 are unlikely to produce reli-
able estimates of population allele frequencies (Rao, 2001). Moreover, HWE inconsistencies 
observed during subsampling show that dividing a large population into smaller groups for 
analysis of HWE (as suggested in MicroChecker for N >750; Van Oosterhout et al., 2004) can 
lead to erroneous conclusions about population-level deviations.

Methodological corrections

We found that sequencing the primer-binding sites of suspect microsatellites was an 
effective way to resolve the molecular basis for HWE deviations and amplification inconsisten-
cies. Further, information about the molecular origins of errors can be useful for determining 
which type of corrective measures can best rectify the problem. For example, duplications in 
the RT20 primer binding site produced multiple fragments corresponding to the same allele, 
and corrected genotypes based on estimated null frequencies were unable to compensate for 
the complexity of this issue. Redesigning the primer, on the other hand, resulted in HWE and a 
drastic decrease in genetic differentiation as compared to full and corrected frequencies. Addi-
tionally, confirmation that a microsatellite contains an imperfect repeat would prevent time and 
effort wasted in a redesign of primers, for this will not resolve the issue. By understanding the 
molecular basis of genotyping errors and the methods used to estimate their frequencies, one 
can a priori predict the utility of correction methods. In general, the cost of sequencing a few 
individuals is much lower than the cost of testing additional markers, and this is an excellent 
method for exploring errors, and gaining the necessary information for targeted re-genotyping.

Corrective measures and population analyses

Null alleles, imperfect repeats, and allelic dropout can contribute to an overestimation 
of observable alleles, a decrease in observed heterozygosity, and an increase in the apparent 
level of inbreeding (Dewoody et al., 2006). These impacts bias allele frequencies and promote 
an overestimation of genetic differentiation (Chapuis and Estoup, 2007), as observed in this 
study for markers RT20 and BM4208. For CSN3, however, genetic differentiation was dimin-
ished for those genotypes with null alleles, as compared to genotypes derived from redesigned 
primers (Figure 3). Relocating primer binding sites promoted amplification of novel alleles at 
this locus, which, in turn, resulted in greater differentiation. Because CSN3 is not very poly-
morphic (HE = 0.5) and null allele frequencies were low (2%), an increase in discriminatory 
power from additional alleles was greater than the diversity lost because of null alleles. Still, 
variance in genetic differentiation observed among all of our markers would have led to alter-
nate conclusions about the intensity of gene flow among study sites. Collectively these find-
ings suggest that the influences of genotyping errors on population differentiation are variable, 
depending upon genetic diversity of the marker and the frequency of the null allele.
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Despite their impacts on parentage and population differentiation, null alleles and 
imperfect repeats did not affect overall patterns of spatial autocorrelation. Nevertheless, we 
observed differences in Nei’s genetic distances and FST values for panels with and without 
these errors. As noted in other studies, analyses of population structure tend to be less sensi-
tive to errors than individual-based analyses (Taberlet et al., 1999), and in our study this was 
most likely because bias inflicted by erroneous microsatellites was diminished by the rest of 
the markers in the panel. Multi-locus analysis is more realistic than our single-locus analysis 
of genetic differentiation, because most population studies apply panels that are likely to con-
tain combinations of markers with and without null alleles or imperfect repeats. The fact that 
spatial autocorrelation results were qualitatively similar suggests that null allele frequencies 
≤25% will have minimal effects on coarse patterns of population structure, although differ-
ences in distance measures will undoubtedly be affected even at frequencies as low as 10%.

Corrective measures and parentage analyses

Consistent with simulation studies (Dakin and Avise, 2004), false exclusion rates in 
parentage analyses increased dramatically as the estimated frequency of null (or non-amplify-
ing) alleles increased. This problem can be circumvented by only excluding candidate parents 
if mismatches occur at more than one locus. Our results suggest this post hoc approach may 
be too conservative for preventing false exclusions, as we detected null alleles and imperfect 
repeats in almost 40% of the markers employed, and most importantly, we detected mismatches 
between mother-fetus pairs across multiple loci. An alternative correction would be to specify 
a user-defined error rate to account for genotyping errors during parentage assignment, thus 
reducing the number of false exclusions (Kalinowski et al., 2007). This improved false exclu-
sions in data sets with null allele estimates of ≤15%, but it failed when estimates were 25%. 
This is most likely because null alleles violate Kalinowski et al. (2007) assumptions of random 
erroneous genotypes and equal error rates across all loci, but could also be due to the underes-
timation of error rates in this study. When null alleles frequencies are low (<20%), their effects 
on parentage are often minimal (Dakin and Avise, 2004). While this conclusion was confirmed 
in our study (at least with regards to exclusion probabilities), we still noted that low frequency 
null alleles (<15%) yielded appreciable false exclusion probabilities. In general, null alleles can 
hinder parentage analyses and corrective measures do not always remedy their negative effects.

Collectively, our findings emphasize the need for consistent evaluation of genotyping 
error throughout all stages of population studies. Researchers cannot rely solely on validation 
and simulation studies to provide recommendations for certain microsatellite markers. The 
utility of a marker panel is dependent on the research objectives at hand, and the effects of 
genotyping errors are far too stochastic to allow for generalized statements about their perva-
siveness or the appropriateness of corrective measures.

There are several ways that researchers can prevent genotyping errors and subsequent 
bias in biological interpretations of genetic data. Some have suggested choosing a panel of 
candidate microsatellites that was developed specifically for the target species or a phyloge-
netically close relative, as decreasing phylogenetic distance generally decreases the probabil-
ity of null alleles (Chapuis and Estoup, 2007) and imperfect repeats. However, our data war-
rant caution as markers designed for cattle (B. taurus; suborder Ruminantia, family Bovidae; 
BM848, BM4208, BM6506) had lower frequencies of null alleles in white-tailed deer than 
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did markers designed for caribou (R. tarandus; suborder Ruminantia, family Cervidae; RT20), 
even though the latter belong to the same taxonomic family.

Despite these cautions, one can still employ a marker with a null allele if primers are 
relocated to a binding region that is invariant across the target population. This approach is 
especially useful because microsatellites are not widely available for all organisms and some 
studies must rely on primers designed for non-target species. Regardless, researchers should 
prepare for potential non-amplification, monomorphism, or imperfect repeats by testing a sur-
plus of candidate markers. By doing so, poor-performing markers can be eliminated early on 
and resources allocated towards optimizing others that exhibit a higher probability of success.

When optimizing microsatellites, markers should be tested on individuals from dif-
ferent populations or genetic cohorts, as this will enhance the potential for determining poly-
morphism and detecting null alleles or imperfect repeats. Species mobility and population 
admixture will undoubtedly influence the distribution of alleles, and these must be considered 
when estimating the number of individuals required to establish baseline allele frequencies. 
Contrary to what the literature suggests, a reliable estimate of genetic parameters for highly 
admixed populations may require more than 50 individuals.

Many studies report an increase in genotyping errors as DNA quantity and quality 
decrease (Taberlet et al., 1999). DNA extracted from feces, hair (Taberlet et al., 1996), and 
museum specimens (Horváth et al., 2005) can be extremely difficult to genotype and can often 
produce unreliable and error-prone genotypes. Our own experience suggests that formalin 
fixed or improperly preserved tissues had extremely high failures and error rates, and DNA 
from these types of samples consistently yield inferior template quality. In addition, protocols 
should be in place to ensure reliable and repeatable amplification for all individuals. The as-
sumption that human errors are the primary cause of non-amplification could lead to the inclu-
sion of null alleles in the data set.

Our findings reiterate the need to evaluate errors for the entire duration of the geno-
typing process. Software packages like MicroChecker (Van Oosterhout et al., 2004) should 
be continually employed to check for HWE and non-amplifying alleles, even as additional 
samples are genotyped. We recommend independent replication of at least 5-10% of samples 
for assessment of marker-specific error rates, and when possible the inclusion of samples with 
known pedigrees can greatly facilitate the identification of invisible null alleles. If null alleles 
are suspected, an estimate of their frequency can help determine the utility of the marker for 
various genetic analyses, but it should not be used exclusively to predict the level of bias that 
the null alleles will impart.

Our study provides empirical insight into the unpredictable nature of genotyping er-
rors and their effects on measures of population structure and parentage. We detected several 
null alleles and imperfect repeats in microsatellites that were developed and oft-employed in 
managed species, which introduced substantial bias in our results. The inclusion of these er-
rors would suggest that populations were genetically more distinct than they were in reality. 
Further, we would have been unable to determine paternity for a large proportion of samples, 
despite the fact that true parents were included. Biased conclusions such as these could lead to 
the false identification of management units, or inaccurate inferences about breeding systems.

Additionally, analytical approaches to correct for genotyping errors were unable to 
fully compensate for this bias. Caution should be exercised when these techniques are em-
ployed. Our results demonstrate that genotyping errors are study-specific, and additional re-
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search is needed to develop standardized error detection protocols and further evaluate correc-
tive measures. We also encourage researchers to publish error rates and deviations from HWE 
for each microsatellite so that problematic markers can be avoided in the future. Established 
standards for genotyping and increased error reporting would result in a higher level of accu-
racy in population studies, which would improve the overall quality of information available 
to the scientific community. Although the focus of this study was on microsatellites designed 
for white-tailed deer, our recommendations are generally applicable to all studies that employ 
these markers.
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