

Short Communication

Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci in *Cariniana estrellensis* (Raddi) Kuntze (Lecythidaceae)

T.Y.K. Kubota¹, A.M. Silva¹, J. Cambuim¹, A.A. Silva¹, S. Pupin¹, M.S. Silva¹, M.A. Moraes¹, M.L.T. Moraes¹ and A.M. Sebbenn²

¹Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brasil ²Instituto Florestal de São Paulo, São Paulo, SP, Brasil

Corresponding author: T.Y.K. Kubota E-mail: thaisayuriko@yahoo.com.br

Genet. Mol. Res. 16 (2): gmr16029653 Received February 23, 2017 Accepted March 24, 2017 Published May 4, 2017 DOI http://dx.doi.org/10.4238/gmr16029653

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. *Cariniana estrellensis* is one of the largest trees found in Brazilian tropical forests. The species is typical of advanced stages of succession, characteristic of climax forests, and essential in genetic conservation and environmental restoration plans. In this study, we assessed Mendelian inheritance, genetic linkage, and genotypic disequilibrium in nine microsatellite loci for a *C. estrellensis* population. We sampled and genotyped 285 adult trees and collected seeds from 20 trees in a fragmented forest landscape in Brazil. Based on maternal genotypes and their seeds, we found no deviation from the expected 1:1 Mendelian segregation and no genetic linkage between pairwise

Genetics and Molecular Research 16 (2): gmr16029653

loci. However, for adults, genotypic disequilibrium was detected for four pairs of loci, suggesting that this result was not caused by genetic linkage. Based on these results, we analyzed microsatellite loci that are suitable for use in population genetic studies assessing genetic diversity, mating system, and gene flow in *C. estrellensis* populations.

Key words: Forest fragment; Genetic conservation; Jequitibá-branco; Population genetics; Tropical trees

INTRODUCTION

Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae), or jequitibá-branco, has a wide geographic range distributed across Brazil, Bolivia, Paraguay, and Peru. The species is a priority for genetic conservation due to its ecological (reforestation) and commercial (wood and pulp) importance. It is currently threatened with extinction due to intense exploitation of the species as a timber resource (FAO, 2002). The species is hermaphroditic and pollinated mainly by bees of the genus *Melipona* and *Trigona*. Its winged seeds are dispersed by wind and periods of flowering and fruiting vary greatly across its range (Prance and Mori, 1979; Carvalho, 2003; Leite, 2007).

Microsatellite markers (simple sequence repeats, SSR) are a useful tool to analyze the genetics of forest species due to their high degree of polymorphism in terms of numbers of alleles. However, in order to use molecular markers as genetic markers, it is important to determine whether their inheritance follows the rules of Mendelian segregation, and whether the loci are genetically linked (Tambarussi et al., 2013; Manoel et al., 2015; Moraes et al., 2016). Studies assessing linkage among loci are also necessary because the detected loci are used to calculate averages among loci in population genetic studies; therefore, linked loci can create bias in the estimates (Guidugli et al., 2010). To enable the analysis of genetic diversity and structure, mating system, and gene flow for *C. estrellensis* herein we assess the Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci developed for the species.

MATERIAL AND METHODS

The study was based on samples collected from a highly fragmented forest landscape situated in a transition zone between the Savanna and Atlantic Forest biomes. The study area covers 448.2 ha and is located in the city of Bataguassu (Mato Grosso do Sul State, Brazil), alongside the Pardo River (21°38'00"S, 52°14'02"W). All 285 adult trees found in the area were sampled and 32 seeds were collected from each of 20 selected seed trees. For the molecular analyses, we used foliar or cambial tissue from adult trees and foliar samples from seeds germinated in a nursery.

Multilocus genotyping of the *C. estrellensis* samples was performed at the HERÉDITAS/GENOMAX laboratory. We used nine microsatellite loci chosen from the 15 loci previously developed for the species (Guidugli et al., 2009). The loci were analyzed in an ABI 3100XL automatic sequencer. Based on these genotypes, a multilocus profile was defined that allows for the identification of each sample individually and enables the analyses of population genetic parameters.

Genetics and Molecular Research 16 (2): gmr16029653

The study of microsatellite locus inheritance was based on the method described by Gillet and Hattemer (1989), which compares the genotype of a heterozygous maternal tree with the segregation of its open-pollinated progenies. This method assumes that all loci have regular segregation and their alleles follow Mendelian inheritance patterns based on the following conditions: i) regular meiotic segregation during ovule production; ii) random ovule fertilization by a type of pollen; and iii) no selection between the moment of fertilization and the genotyping of seeds. The model also assumes a co-dominant relationship between all alleles. The method further requires that all progeny of a tree must possess a maternal allele, and in cases of a heterozygous mother tree (e.g., $A_i A_i$, $i \neq j$, the following are required: a) each individual within progeny must have one allele of the maternal tree, A_i or A_j ; b) the number of heterozygous progeny $A_i A_i(n_i)$ must be equal to the sum of the number of homozygous progeny $A_i A_i (n_{ii})$ and $A_i A_i (n_{ij})$: $n_{ij} = n_{ii} + n_{ij}$; and c) the number of heterozygous progeny $A_i A_k$ (n_{ik}) must be equal to the number of heterozygous progeny $A_i A_k(n_{ik})$, or $n_{ik} = n_{ik}$, in other words $k \neq i, j$. The observed segregation of each progeny of the heterozygous maternal tree for a given locus was statistically compared to that expected for the segregation hypothesis of 1:1, using the G-test (Sokal and Rohlf, 1981):

$$G = 2\left[n_{ij}\ln\left(\frac{n_{ij}}{E(n1)}\right) + (n_{ii} + n_{ij})\ln\left(\frac{(n_{ii} + n_{jj})}{E(n1)}\right)\right]$$
(Equation 1)

where ln is the natural logarithm, E(n1) is the expected number of offspring genotypes $A_i A_j$ (n_{ij}) and $A_i A_i + A_j A_j (n_{ii} + n_{jj})$: $E(n1) = 0.5(n_{ij} + n_i + n_j)$, or:

$$G = 2\left[n_{ik}\ln\left(\frac{n_{ik}}{E(n2)}\right) + n_{jk}\ln\left(\frac{n_{jk}}{E(n2)}\right)\right]$$
(Equation 2)

where E(n2) is the expected number of genotypes for alleles $A_i A_k(n_{ik})$ and $A_i A_k(n_{jk})$: $E(n2) = 0.5(n_{ik} + n_{jk})$. To avoid false positives, the *G*-test was determined only when n1 and n2 was ≥ 10 , and deviation from the *G*-test between the observed and expected segregation was determined as statistically significant using the Bonferroni correction for multiple comparisons (95%, $\alpha = 0.05$).

To determine if the loci were genetically linked, a test was carried out between pairs of loci using genetic information from mother trees that were doubly heterozygous for two loci (A_iA_j, B_jB_m) . The segregation was recorded in their progeny. In this case, the null hypothesis (H_0) was regular Mendelian segregation of 1:1:1:1. The regular segregation hypothesis between pairs of loci was accepted or rejected based on a maximum likelihood *G*-test (Sokal and Rohlf, 1981), performed for each progeny:

$$G = 2\left[n_{il}\ln\left(\frac{n_{il}}{E(n)}\right) + n_{im}\ln\left(\frac{n_{im}}{E(n)}\right) + n_{jl}\ln\left(\frac{n_{jl}}{E(n)}\right) + n_{jm}\ln\left(\frac{n_{jm}}{E(n)}\right)\right] \quad (\text{Equation 3})$$

Genetics and Molecular Research 16 (2): gmr16029653

T.Y.K. Kubota et al.

where n_{ii} , n_{im} , n_{ji} , and n_{jm} are the observed numbers of the phenotypes $A_i B_i$, $A_i B_m$, $A_j B_i$, and $A_j B_m$, respectively, and E(n) is the expected number of each genotype $A_i B_i$, $A_i B_m$, $A_j B_i$, and $A_j B_m$, calculated by E(n) = 0.25 ($n_{il} + n_{im} + n_{jl} + n_{jm}$). We again applied the Bonferroni correction for multiple comparisons (95%, $\alpha = 0.05$) to avoid false positives.

The genotypic disequilibrium test between pairwise loci was only performed with adult samples. Estimates of gene frequencies based on open-pollinated progeny arrays are biased because each progeny has at least one maternal allele, resulting in a genotypic disequilibrium. This analysis was carried out using the FSTAT software (Goudet, 1995). The probabilities of the significance test were obtained by permutation of alleles among individuals, associated with the Bonferroni correction for multiple comparisons (95%, $\alpha = 0.05$).

RESULTS

After Bonferroni correction, we found no deviation from 1:1 Mendelian segregation for the nine loci analyzed for *C. estrellensis* heterozygous trees (Table 1). Furthermore, after Bonferroni correction, we detected no deviation from 1:1:1:1 Mendelian segregation between pairwise loci, indicating that the nine loci analyzed in this study are not linked (Table 2). However, significant genotypic disequilibrium was detected between four pairs of loci among adult trees after Bonferroni correction: Ces01 x Ces02, Ces01 x Ces04, Ces01 x Ces11, and Ces04 x Ces11 (Table 3).

The P values represent the probability of genotypic disequilibrium after 1440 permutations of alleles among individuals. Value at which results are deemed significant after Bonferroni correction: P = 0.00069 ($\alpha = 0.05$).

DISCUSSION

Confirmation of Mendelian segregation for individual loci was confirmed based on the expected 1:1 Mendelian segregation test. Independent segregation of alleles between different loci was performed through the linkage test based on 1:1:1:1 segregation, using genetic information of doubly heterozygous mother trees and observed segregation in progenies. We found that the nine loci assessed herein present Mendelian segregation and are not linked. Thus, these molecular markers developed by Guidugli et al. (2010) can be considered as genetic markers and our results support the hypothesis that they are not located in the same chromosome linkage group. However, genotypic disequilibrium was detected between four pairs of loci for adults. Genotypic disequilibrium is largely caused by genetic linkage, natural and artificial selection, genetic bottleneck, founder effect, and genetic drift (Hartl and Clark, 2010). Among these, genetic bottleneck and genetic drift can be the result of forest fragmentation due to decreases in effective population size, resulting in a limited number of pollen donors participating in reproduction. In studying a different population of the same species, Guidugli et al. (2010) found no significant genotypic disequilibrium between the same pairwise loci assessed herein. Thus, the genotypic disequilibrium that we detected may be attributed to genetic drift caused by forest fragmentation in the study region. Studies on other tree species have also found an absence of genetic linkage with a presence of genotypic disequilibrium, including Araucaria angustifolia (Medina-Macedo et al., 2014), Copaifera langsdorffii (Tarazi et al., 2010), Cariniana legalis (Tambarussi et al., 2013), and Genipa americana (Manoel et al., 2015). The nine microsatellite loci evaluated in this study exhibit Mendelian inheritance, are

Genetics and Molecular Research 16 (2): gmr16029653

Cariniana microsatellite inheritance

Locus/mother	Mother genotype	n ₁	n _{ij} : n _{ii} + n _{jj}	G1	n ₂	n _{ik} :n _{jk}	G_2
Ces01							
	158/162	6	0:6	NE 0.04	26	11:15	0.62
5	148/152	23	9.14	1.09	9	8.2 1.8	5.85 NF
2	152/156	23	4:19	10.63	9	9:0	NE
1	152/156	27	8:19	4.61	5	1:4	NE
6	148/152	31	16:15	0.03	1	0:1	NE
1	152/156	23	5:18	7.80	9	9:0	NE
01	146/156	22	12:10	0.18	10	1:9	7.36
23	146/152	29	17:12	0.86	3	0:3	NE
25	146/150	30	11:19	2.15	2	1:1	NE
36	148/152	23	15:8	2.16	9	0:9	NE
es02	170/186	24	12:12	0.00	8	4.4	NE
9	182/186	24	17:5	0.00	10	8.2	3.85
1	170/182	28	9:19	3.65	4	4:0	NE
2	170/182	22	14:8	1.65	10	6:4	0.40
1	170/182	17	10:7	0.53	15	9:6	0.60
5	170/186	25	14:11	0.36	7	6:1	NE
5	170/182	25	15:10	1.00	7	4:3	NE
5	170/186	32	10:22	4.61	0	0:0	NE
)	170/186	22	11:11	0.00	10	7:3	1.64
J1 10	182/186	12	6:6	0.00	20	13:7	1.82
17	1/0/186	20	12:14	0.15	0	3:3	NE
25	170/186	32	11:15	3.17	0	0.0	NE
36	170/186	32	16:16	0.00	0	0:0	NE
25	182/186	21	9.12	0.00	11	6:5	0.09
es04						0.0	
	184/204	17	8:9	0.05	15	7:8	0.06
	204/212	13	7:6	0.07	19	10:9	0.05
5	182/216	10	8:2	3.85	22	11:11	0.00
9	182/204	19	12:7	1.33	13	2:11	6.85
1	206/216	5	1:4	NE	27	16:11	0.93
2	186/212	1	0:1	NE 5.70	31	17:14	0.29
[c	186/214	15	3:12	5.78	1/	12:5	2.97
5	182/214	11	6:5	0.09	21	9.12 14·7	2 37
4	204/216	5	5:0	NE	27	13:14	0.03
6	204/212	4	1.3	NE	28	16:12	0.57
8	178/216	15	8:7	0.06	17	12:5	2.97
1	182/186	5	3:2	NE	27	15:12	0.33
6	188/214	4	2:2	NE	28	13:15	0.14
01	214/216	15	8:7	0.06	17	7:10	0.53
19	182/216	17	8:9	0.05	15	8:7	0.06
23	204/216	3	3:0	NE	29	13:16	0.31
25	182/216	0	0:0	NE	32	14:18	0.50
25	208/214	0	0:0	NE	20	20:12	2.02
2.5 /es09	200/214	0	0.0	NL.	52	20.12	2.02
6307	179/183	32	16.16	0.00	0	0.0	NE
5	177/179	26	11:15	0.61	6	1:5	NE
9	177/179	21	8:13	1.20	0	0:0	NE
2	179/183	25	17:8	3.31	7	4:3	NE
5	179/183	32	14:18	0.50	0	0:0	NE
5	179/183	23	13:10	0.39	9	8:1	NE
4	177/179	26	11:15	0.61	6	5:1	NE
)	179/183	27	11:16	0.93	5	3:2	NE 0.42
<u>s</u>	1///183	- 11	4:/	0.82	21	9:12	0.43
)1	1///183	3 26	3.2	1 20	<u> </u>	4.2	0.03 NE
3	179/183	28	14.14	0.00	4	2.2	NE
25	179/183	32	16:16	0.00	0	0:0	NE
es10				0.00			
1	197/199	29	14:15	0.03	3	0:3	NE
5	197/199	32	9:23	6.33	0	0:0	NE
1	197/199	32	14:18	0.50	0	0:0	NE
6	197/199	29	9:20	4.27	3	0:3	NE
01	197/199	32	14:18	0.50	0	0:0	NE
19	197/199	32	20:12	2.02	0	0:0	NE
23	197/199	27	14:13	0.03	5	4:1	NE
10	199/203	11	5:6	0.09	21	11:10	0.04
30	19//199	24	12:12	0.00	1 8	5:3	NE

Continued on next page

Genetics and Molecular Research 16 (2): gmr16029653

T.Y.K. Kubota et al.

Table 1. Conti	inued.						
Locus/mother	Mother genotype	n ₁	$n_{ii}: n_{ii} + n_{ii}$	G ₁	n ₂	n _{ik} :n _{ik}	G ₂
Ces11	0 11					ju	
1	206/212	15	3:12	5.78	17	9:8	0.05
5	206/210	20	13:7	1.82	12	9:3	3.13
19	208/232	14	6:8	0.28	18	12:6	2.03
21	206/232	14	6:8	0.28	18	12:6	2.03
22	230/232	15	3:12	5.78	17	8:9	0.05
31	206/230	12	6:6	0.00	20	8:12	0.80
35	210/234	6	3:3	NE	26	8:18	3.94
45	206/208	16	8:8	0.00	16	7:9	0.25
64	206/232	8	4:4	NE	24	9:15	1.51
66	206/208	18	10:8	0.22	14	7:7	0.00
88	206/218	8	2:6	NE	24	10:14	0.66
91	208/212	9	4:5	NE	23	11:12	0.04
123	206/208	25	11:14	0.36	7	4:3	NE
125	206/208	21	8:13	1.20	11	10:1	8.54
136	206/208	32	18:14	0.50	0	0:0	NE
1	120/142	22	14.0	1.65	10	2.7	1.74
1 5	130/142	12	14:8	1.65	10	5:/	1.64
J 15	140/148	15	5:10	3.9/	19	12:/	1.33
10	130/142	19	15:0	2.04	15	4:9	1.9/
19	130/142	22	11:11	0.00	10	/:3	1.64 NE
21	138/142	24	14:10	0.00	8	0:8	NE 0.(1
22	142/148	6	3:3	NE	26	15:11	0.61
31	130/148	4	5:1	NE 1.92	28	14:14	0.00
43	140/142	20	/:13	1.82	12	3:7	0.33
64	130/142	12	4.8	1.55 NE	20	14:14	0.80
00	130/148	4	2.2	112 2 12	28	14.14	0.00
00	142/146	12	3.9	5.00	20	5:0	0.20
101	130/142	10	2.4	5.00 NE	25	12:12	0.04
110	140/148	18	11.7	0.80	14	11.13	4.85
123	138/142	15	6.9	0.60	17	6:11	1.00
125	138/148	21	13:8	1 20	11	5:6	0.09
136	138/140	23	8.15	2.16	9	5:4	NE
225	140/142	23	5:16	6.05	11	10:1	8 54
Ces14	110/112	21	0.10	0.00		10.1	0.0 .
15	182/184	19	8.11	0.47	13	4.9	1 97
31	184/188	24	5.19	8 70	8	2.6	NE
45	182/184	24	8.16	2.71	8	2.6	NE
88	182/184	25	12.13	0.04	7	3:4	NE
91	184/188	32	14:18	0.50	0	0:0	NE
96	182/184	30	13:17	0.53	2	1:1	NE
125	182/184	22	9:13	0.73	10	4:6	0.40
136	184/188	26	13:13	0.00	6	4:2	NE
225	182/184	32	11:21	3.17	0	0:0	NE
Ces18							
1	168/180	11	6:5	0.09	21	4:17	8.66
15	174/180	13	2:11	6.85	19	14:5	4.43
19	168/170	25	9:16	1.98	7	0:7	NE
35	168/170	28	12:16	0.57	4	2:2	NE
45	168/180	11	6:5	0.09	21	9:12	0.43
64	168/180	9	2:7	NE	23	9:14	1.09
66	170/180	15	3:12	5.78	17	5:12	2.97
88	170/180	30	14:16	0.13	2	1:1	NE
91	168/170	27	11:16	0.93	5	1:4	NE
96	166/174	9	4:5	NE	23	10:13	0.39
119	174/178	8	3:5	NE	24	21:3	15.18*
123	166/168	17	5:12	2.97	14	9:5	1.15
125	166/170	22	13:9	0.73	10	5:5	0.00
136	168/180	13	5:8	0.70	19	14:5	4.43
225	170/176	16	13:3	6.73	16	7:9	0.25

 n_1 and n_2 are the sample size; G_1 and G_2 are the maximum likelihood *G* statistics for the hypothesis of n_{ij} : $n_{ii} + n_{jj}$ and n_{ik} : n_{ik} , respectively, for one degree of freedom. *Significance after Bonferroni correction for $\alpha = 0.05$ ($\chi^2 = 12.18$). NE is not estimated due to a sample size of less than ten progeny.

Genetics and Molecular Research 16 (2): gmr16029653

Cariniana microsatellite inheritance

loc	ci (1:1:1:1) of	Cariniana est	trellensis.					
	Ces1 x Ces2	Ces1 x Ces4	Ces1 x Ces9	Ces1 x Ces10	Ces1 x Ces11	Ces1 x Ces13	Ces1 x Ces14	Ces1 x Ces18
1	0.35 (15)	5.12(1)	6.45 (1)	0.35 (91)	8.32 (1)	1.14(1)	4.76 (15)	6.64 (1)
2	6.92 (22)	1.32 (5)	10.08 (15)	3.16 (101)	5.22 (5)	1.68 (5)	1.59 (31)	5.38 (15)
3	1.60 (31)	0.40 (15)	10.20 (22)	0.26 (123)	10.30 (22)	2.37 (15)	1.60 (91)	1.74 (66)
4	5.74 (66)	5.42 (22)	1.84 (66)	3.23 (125)	5.38 (31)	7.91 (22)	8.02 (125)	2.16 (91)
5	3.50 (101)	2.08 (31)	5.83 (101)	8.37 (136)	2.46 (66)	0.45 (31)	11.51 (136)	2.16 (101)
6	4.28 (123)	0.23 (66)	6.36 (123)		2.46 (91)	1.27 (66)		2.35 (123)
7	1.74 (125)	0.40 (91)			7.32 (123)	3.87 (91)		8.02 (125)
8	3.31 (136)	1.60 (101)			6.64 (125)	0.84 (101)		11.34 (136)
9		0.35 (123)			8.03 (136)	0.90 (123)		
10		1.73 (125)				3.00 (125)		
11		6.49 (136)				10.12 (136)		
	Ces2 x Ces4	Ces2 x Ces9	Ces2 x Ces10	Ces2 x Ces11	Ces2 x Ces13	Ces2 x Ces14	C2 x C18	Ces4 x Ces09
1	0.29 (15)	10.08 (15)	0.33 (21)	1.12 (19)	1.92 (5)	6.51 (15)	3.06 (15)	5.17(1)
2	3.38 (19)	12.51 (19)	7.63 (35)	8.22 (21)	1.12 (19)	2.17 (31)	4.04 (19)	9.70 (15)
3	2.81 (21)	0.92 (22)	4.00(6)	7.10 (22)	8.76(21)	13.12 (45)	6.68 (35)	14.04 (19)
4	1.40 (22)	3.26 (35)	7.61 (101)	1.19 (31)	1.19 (22)	5.15 (96)	5.67 (45)	1.27 (35)
5	3.89 (31)	3.92 (45)	1./1 (119)	7.14 (35)	1.79(31)	11.51 (125)	3.69 (66)	/.1/(45)
7	3.30 (33)	3.23 (00)	3.73 (123)	5.08 (45)	5.94 (45) 2 10 (45)	2.49 (130)	2.02 (96)	2.30 (64)
/	4.10 (45)	0.25 (90)	2.21 (123)	5.06 (00)	2.19 (00)	2.07 (223)	7 22 (122)	0.44 (66)
9	0.94 (96)	1.71(101)	0.55 (150)	0.14 (125)	4 14 (110)		0.97 (125)	1 11 (06)
10	6.17 (101)	1.54 (125)		0.55 (125)	2 49 (123)		15.97 (125)	13.09 (101)
11	2.67 (119)	1.04 (125)		0.70 (150)	0.67 (125)		0.05 (225)	6.03 (123)
12	3.98 (123)				1 34 (136)		0.05 (225)	7.51 (225)
13	0.80 (125)				0.52 (225)			7.51 (225)
14	1.51 (136)				0.52 (225)			
15	0.44 (225)				0.52 (225)			
	Ces4 x Ces10	Ces4 x Ces11	Ces4 x Ces13	Ces4 x Ces14	Ces4 x Ces18	Ces9 x Ces10	Ces9 x Ces11	Ces9 x Ces13
1	3.69 (21)	6.34(1)	3.00(1)	7.06 (15)	3.71(1)	7,79 (35)	6.85(1)	4.21 (1)
2	9.54 (35)	1.94 (5)	2.43 (5)	1.01 (31)	1.63 (15)	3.89 (96)	16.80 (19)	9.80 (15)
3	0.98 (91)	5.05 (15)	1.50 (19)	2.89 (45)	5.61 (19)	2.74 (101)	4.19 (22)	7.67 (19)
4	3.82 (96)	5.42 (21)	10.13 (21)	0.72 (88)	3.23 (35)	6.22 (123)	2.17 (35)	2.04 (22)
5	2.96 (101)	5.20 (22)	2.13 (22)	0.58 (91)	2.69 (45)		8.28 (45)	0.17 (35)
6	0.30 (119)	1.53 (131)	4.59 (31)	1.97 (6)	2.70 (64)		2.64 (64)	3.54 (45)
7	1.35 (123)	1.90 (35)	0.76 (45)	6.27 (119)	2.81 (66)		0.44 (66)	4.36 (64)
8	1.94 (125)	0.33 (45)	0.65 (64)	5.67 (125)	1.52 (88)		0.11 (88)	1.74 (66)
9	0.17 (136)	1.25 (64)	0.98 (66)	2.32 (136)	1.38 (91)		0.06 (96)	1.56 (88)
10		0.18 (66)	0.18 (88)	5.27 (225)	1.78 (96)		8.51 (123)	9.34 (101)
11		0.00 (88)	0.40 (91)		6.84 (119)			4.47 (123)
12		0.50 (91)	6.20 (101)		6.54 (123)			4.15 (225)
13		0.24 (96)	1.84 (119)		1.12 (125)			
14		5.23 (123)	4.75 (123)		9.26 (136)			
15		0.58 (125)	0.48 (125)		4.99 (225)			
16		1.65 (136)	4.07 (136)					
1/	Carl a Carl 4	C 0 C 9	3.54 (225)	C10 C12	C10 C14	C10 C10	C11 - C12	Coold a Coold
1	14 20 (15)	6 21 (1)	2.52 (21)	0.10 (21)	0.00 (01)	12 5 (25)	2 52 (1)	1 76 (21)
2	14.29 (13)	8.02 (15)	2.33 (21)	9.19(21)	7 38 (06)	2 47 (01)	3.33(1)	2.54 (45)
	0.38 (88)	0.02 (13)	0.06(91)	1.00 (91)	2 49 (125)	4 30 (96)	2.56 (19)	2.34 (43)
4	3 70 (96)	2.85 (35)	7 20 (123)	5.43 (119)	4.82 (125)	4.50 (50)	8 73 (21)	1.83 (91)
5	10 42 (225)	5 99 (45)	3.04 (125)	1 47 (123)	1.02 (150)	3 88 (123)	8 57 (22)	7 89 (125)
6	10.12 (220)	1.79 (64)	1.00 (136)	2.15 (125)		3.93 (125)	0.90 (31)	3.78 (136)
7		3.81 (66)	(1.50)	4.15 (136)		7.02 (136)	1.90 (45)	2
8		1.46 (88)		(100)		= (130)	2.79 (64)	
9		2.36 (96)					1.30 (66)	
10		5.84 (123)					0.30 (88)	
11		7.48 (225)					5.42 (91)	
12		, í					4.75 (123)	
13							2.00 (125)	
14							1.73 (136)	
	Ces11 x Ces18	Ces13 x Ces14	Ces13 x Ces18	Ces14 x Ces18		_		
1	4.99(1)	7.69 (15)	3.40(1)	7.52 (15)				
2	2.82 (19)	1.71 (31)	0.06 (5)	3.74 (45)				
3	2.84 (35)	7.29 (45)	3.08 (15)	0.63 (88)				
4	2.72 (45)	1.48 (88)	4.14 (19)	5.94 (91)				

Table 2. Values of maximum likelihood *G*-test for the hypothesis of independent segregation between pairwise loci (1:1:1:1) of *Cariniana estrellensis*.

Continued on next page

Genetics and Molecular Research 16 (2): gmr16029653

T.Y.K. Kubota et al.

Ta	ble 2. Continu	ued.						
	Ces1 x Ces2	Ces1 x Ces4	Ces1 x Ces9	Ces1 x Ces10	Ces1 x Ces11	Ces1 x Ces13	Ces1 x Ces14	Ces1 x Ces18
5	2.14 (64)	0.79 (91)	143 (22)	3.23 (96)				
6	1.91 (66)	8.56 (125)	3.21 (45)	11.50 (125)				
7	1.68 (88)	4.49 (136)	0.50 (64)	11.96 (136)				
8	2.25 (91)	2.17 (225)	2.12 (66)					
9	4.49 (123)		1.82 (88)					
10	0.59 (125)		1.85 (91)					
11	5.79 (136)		7.13 (119)					
12			5.60 (123)					
13			1.63 (125)					
14			5.70 (136)					
15			1.52 (225)					

*Significance after Bonferroni correction for $\alpha = 0.05$ ($\chi^2 = 20.73$). G = G-test for three degrees of freedom.

Pairwise loci	P value	Pairwise loci	P value
Ces01 x Ces02	0.00069	Ces04 x Ces13	0.00278
Ces01 x Ces04	0.00069	Ces04 x Ces14	0.10833
Ces01 x Ces09	0.20833	Ces04 x Ces18	0.12847
Ces01 x Ces10	0.00139	Ces09 x Ces10	0.60556
Ces01 x Ces11	0.00069	Ces09 x Ces11	0.84514
Ces01 x Ces13	0.03611	Ces09 x Ces13	0.09653
Ces01 x Ces14	0.26458	Ces09 x Ces14	0.32431
Ces01 x Ces18	0.06042	Ces09 x Ces18	0.00556
Ces02 x Ces04	0.08681	Ces10 x Ces11	0.43750
Ces02 x Ces09	0.61111	Ces10 x Ces13	0.01111
Ces02 x Ces10	0.19931	Ces10 x Ces14	0.08264
Ces02 x Ces11	0.00139	Ces10 x Ces18	0.85000
Ces02 x Ces13	0.09028	Ces11 x Ces13	0.01181
Ces02 x Ces14	0.03403	Ces11 x Ces14	0.17361
Ces02 x Ces18	0.06597	Ces11 x Ces18	0.41667
Ces04 x Ces09	0.16319	Ces13 x Ces14	0.02222
Ces04 x Ces10	0.20486	Ces13 x Ces18	0.00417
Ces04 x Ces11	0.00069	Ces14 x Ces18	0.52431

not linked, and segregate independently. These loci are therefore suitable for population genetic analyses, which can generate precise estimates of genetic diversity, spatial genetic structure, mating system, and contemporary gene flow for *C. estrellensis*.

ACKNOWLEDGMENTS

Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Project #2014/02675-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would like to thank FAPESP for financial support provided to T.Y.K. Kubota (Scholarship #2014/02675-8) and CNPq for research funding to A.M. Sebbenn. We also extend a special thank to Universidade Estadual Paulista/UNESP and to Dr. Evelyn Nimmo for her correction of the English in the manuscript.

REFERENCES

Carvalho PER (2003). Espécies Florestais Brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF, Colombo.

FAO (2002). Panel of Experts on Forest Gene Resources. Ninth Session. Food and Agricultural Organization of the United Nation, Rome.

Genetics and Molecular Research 16 (2): gmr16029653

- Gillet E and Hattemer HH (1989). Genetic analysis of isoenzyme phenotypes using single tree progenies. *Heredity* 63: 135-141. <u>http://dx.doi.org/10.1038/hdy.1989.84</u>
- Goudet J (1995). FSTAT (Version 2.9.3.2.): a computer program to calculate F-statistics. J. Hered. 86: 485-486. http:// dx.doi.org/10.1093/oxfordjournals.jhered.a111627
- Guidugli MC, Campos T, Souza ACB, Feres JM, et al. (2009). Development and characterization of 15 microsatellite loci for *Cariniana estrellensis* and transferability to *Cariniana legalis*, two endangered tropical tree species. *Conserv. Genet.* 10: 1001-1004. http://dx.doi.org/10.1007/s10592-008-9672-4
- Guidugli MC, Accoroni KAG, Mestriner MA, Contel EPB, et al. (2010). Genetic characterization of 12 heterologous microsatellite markers for the giant tropical tree *Cariniana legalis* (Lecythidaceae). *Genet. Mol. Biol.* 33: 131-134. http://dx.doi.org/10.1590/S1415-47572010000100022

Hartl DL and Clark AG (2010). Princípios de genética de populações. 4th edn. Editora Artmed, Porto Alegre.

- Leite EJ (2007). State-of-knowledge on Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae) for Genetic Conservation in Brazil. Res. J. Bot. 2: 138-160. <u>http://dx.doi.org/10.3923/rjb.2007.138.160</u>
- Medina-Macedo L, Lacerda AEB, Ribeiro JZ, Bittencourt JVM, et al. (2014). Investigating the Mendelian inheritance, genetic linkage, and genotypic disequilibrium for ten microsatellite loci of *Araucaria angustifolia*. Silvae Genet. 65: 234-239.
- Manoel RO, Freitas MLM, Tambarussi EV, Cambuim J, et al. (2015). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at microsatellite loci in *Genipa americana* L. (Rubiaceae). *Genet. Mol. Res.* 14: 8161-8169. <u>http://dx.doi.org/10.4238/2015.July.27.4</u>
- Moraes MA, Kubota TYK, Silva ECB, Silva AM, et al. (2016). Mendelian inheritance, linkage, and genotypic disequilibrium in microsatellite loci of *Hymenaea stigonocarpa* Mart. ex Hayne (Fabaceae-Caesalpinioideae) *Genet. Mol. Res.* 15: gmr15038629.
- Prance GT and Mori SA (1979). Lecythidaceae Part 1: The actinomorphic-flowered New World Lecythidaceae. Fl. Neotrop. Monogr 21: 1-270.
- Sokal RR and Rohlf FJ (1981). Biometry: the principles and practice of statistics in biological research. Copyright Ltd., New York.
- Tambarussi EV, Vencovsky R, Freitas MLM and Sebbenn AM (2013). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at nine microsatellite loci of *Cariniana legalis* (Mart.) O. Kuntze. *Genet. Mol. Res.* 12: 5442-5457. <u>http://dx.doi.org/10.4238/2013.November.11.6</u>
- Tarazi R, Sebbenn AM, Mollinari M and Vencovsky R (2010). Mendelian inheritance, linkage and linkage disequilibrium in microsatellite loci of *Copaifera langsdorffii* Desf. Conserv. Genet. Resour. 2: 201-204. <u>http://dx.doi.org/10.1007/ s12686-010-9230-5</u>

Genetics and Molecular Research 16 (2): gmr16029653