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ABSTRACT. In breeding programs, commercial hybrids are frequently 
used as a source of inbred lines to obtain new hybrids. Considering 
that maize production is dependent on viable gametes, the selection 
of populations to obtain inbred lines with high meiotic stability could 
contribute to the formation of new silage corn hybrids adapted to specific 
region. We evaluated the meiotic stability of five commercial hybrids of 
silage corn used in southern Brazil with conventional squashing methods. 
All of them showed meiotic abnormalities. Some abnormalities, such as 
abnormal chromosome segregation and absence of cytokinesis, occurred 
in all the genotypes, while others, including cytomixis and abnormal 
spindle orientation, were found only in some genotypes. The hybrid 
SG6010 had the lowest mean frequency of abnormal cells (21.27%); the 
highest frequency was found in the hybrid P30K64 (44.43%). However, 
the frequency of abnormal meiotic products was much lower in most 
genotypes, ranging from 7.63% in the hybrid CD304 to 43.86% in Garra. 
Taking into account the percentage of abnormal meiotic products and, 
hence, meiotic stability, only the hybrids CD304, P30K64, SG6010, 
and P30F53 are recommended to be retained in the breeding program to 
obtain inbred lines to create new hybrids.

Key words: Silage corn; Meiosis; Hybrids; Breeding



2097

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 9 (4): 2096-2103 (2010)

Meiotic behavior in silage corn 

INTRODUCTION

Corn is recommended as the more interesting crop for ensiling in Brazil due to its ag-
ronomic characteristics and nutritive values, besides the acceptance by cattle, buffaloes, goats, 
and sheep. It is also used successfully for milk production and satisfactory weaning weight in 
beef cattle. The utilization of maize as silage drastically reduces the costs of cattle production, 
mainly in the periods of scarcity of natural pastures (Zago, 1991). However, the silage maize 
cultivars in use in Brazil do not always show interesting characteristics for silage, a factor that 
creates new opportunities for breeding to exploit genetic variability for this purpose.

The choice of a silage maize cultivar is based on several agronomic characteristics, 
including seed production and dry matter (Gomes et al., 2004). The success of a silage maize 
cultivar is not only dependent on the grain production, as high production of healthy seeds is 
also desirable. Seed production, on the other hand, is dependent on viable gametes, which in 
turn are dependent on meiotic stability. Meiosis is a process controlled by a complex genetic 
system (Gottschalk and Kaul, 1974; Baker et al., 1976; Golubovskaya, 1979, 1989; Golubovs-
kaya et al., 1993). High meiotic stability has been shown to depend on heterozygosis, and 
thus, hybrids always show less meiotic abnormalities than do inbred lines (Pagliarini, 1983; 
Defani-Scoarize et al., 1995a,b, 1996; Pagliarini et al., 2002). Correlation between meiotic ab-
normalities and combining ability in inbred lines of maize was reported by Pagliarini (1989). 
High combining ability, on the other hand, depends on several agronomic traits including the 
frequency of favorable genes and also on viable and genetically balanced gametes.

In the extensive areas of tillage in Brazil, there are no adapted cultivars of silage corn 
for each region. This lack justifies a breeding program to develop cultivars adapted to the eda-
phoclimatic conditions of the South region, where winter is harsh and large amounts of silage 
are required. In a breeding program, it is very common to utilize hybrids to obtain inbred lines 
to create a new hybrid because they were previously selected for several agronomic traits. 
Therefore, the meiotic stability of six commercial hybrids of silage corn was evaluated by 
conventional methods to select the more stable ones to obtain inbred lines.

MATERIAL AND METHODS

Five commercial hybrids of silage corn of different origins were selected to initiate the 
breeding program: 1. Garra (triple hybrid, Syngenta Seeds); 2. CD304 (triple hybrid, Coodetec); 
3. SG6010 (single hybrid, Guerra Seeds); 4. P30K64 (single hybrid, DuPont, Brazil); 5. P30F35 
(single hybrid, DuPont, Brazil). For meiotic analyses, the hybrids were cultivated on the Experi-
mental Farm of the State University of Maringá, in the summer of 2008.

For meiotic studies, inflorescences were collected and fixed in a mixture of 95% ethanol 
and acetic acid (3:1) for 24 h, transferred to 70% alcohol and stored under refrigeration until use. 
Microsporocytes were prepared by squashing and staining with 1% propionic carmine. Meiotic 
abnormalities were observed in each phase of microsporogenesis. Photomicrographs were made 
with a Wild Leitz microscope using Kodak Imagelink - HQ, ISO 25 black and white film.

RESULTS AND DISCUSSION

Microsporogenesis analysis showed that irregular chromosome segregation and absence of cy-
tokinesis occurred in all five silage corn hybrids, but cytomixis and abnormalities in the spindle forma-
tion were recorded only in some hybrids. The number of cells analyzed per meiotic phase and the per-
centage of cells affected by each abnormality are presented in Table 1. The lowest frequency of meiotic 
abnormality was found in the hybrid SG6010 (21.3%), and the highest, in the hybrid P30K64 (44.4%).
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Univalent chromosomes in diakinesis (Figure 1a) were recorded in four hybrids. Such 
chromosomes and those resulting from precocious chiasma terminalization migrated preco-
ciously to the poles in metaphase I (Figure 1b); however, those chromosomes with late chi-
asma terminalization behaved as laggards in anaphase I (Figure 1d). Non-oriented bivalents at 
the metaphase plate (Figure 1c) were also recorded in the hybrids SG6010 and P30K64. The 
chromosomes with irregular segregation in metaphase I and anaphase I, in general, reached 
the poles in time to be included in the nucleus. Only a few micronuclei (Figure 1e) were 
found in telophase I. Irregular chromosome segregation (Figure 1f), leading to micronucleus 
formation, was also recorded in the second division, generating unbalanced gametes, but in 
low frequency. Irregular chromosome segregation is the most common meiotic abnormality 
reported among inbred lines and maize hybrids (Pagliarini, 1983, 1989; Defani-Scoarize et al., 
1995a,b, 1996; Caetano-Pereira et al., 1998; Utsunomiya et al., 2002; Pagliarini et al., 2002; 
Ricci et al., 2007; Silva et al., 2007).

Figure 1. Irregular chromosome segregation (a-f) and cytomixis (g-l). a. Microsporocytes in diakinesis with 
two pairs of univalent chromosomes (arrows). b. Metaphase I with three chromosomes migrating precociously 
to the pole (arrows). c. A non-oriented bivalent in metaphase I (arrow). d. Laggard chromosomes in anaphase 
I (arrows). e. Telophase I with micronucleus (arrow). f. Metaphase II with precocious chromosome migration 
in both cells (arrows). g, h. Diplotene with extra chromosomes (arrows). i, j. Diplotene with chromosome loss 
(arrows). k. Meiocyte with only two chromosomes (arrows). l. Meiocyte without chromosomes.
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Chromosome transfer among meiocytes (cytomixis) (Figure 1g-l) was recorded in 
some plants of the hybrid P30K64, affecting 3.2% of the cells. Meiocytes in prophase I with 
additional chromosomes (Figure 1g,h) and chromosome loss (Figure 1i,j) were observed. In 
some meiocytes, such as those represented in Figure 1j and k, only a few chromosomes re-
mained inside the cell, while in others, chromosomes were completely absent (Figure 1l). 
Cytomixis is a phenomenon widely reported among higher plants, including maize (Caetano-
Pereira and Pagliarini, 1997; Utsunomiya et al., 2002). The formation of hypoploid and hyper-
ploid cells compromises pollen viability.

The absence of the first, the second or both cytokinesis events (Figure 2) was recorded 
at high frequency in all the hybrids analyzed, although it was more frequent after telophase 
I, generating secondary meiocytes with genomes sharing the same cytoplasm (Figure 2a-c). 
When both cytokinesis events failed to occur, a tetranucleated monad was formed (Figure 2d), 
and when only one cytokinesis occurred after telophase II (Figure 2e), a binucleated dyad was 
formed, giving rise to two binucleated microspores (Figure 2f). Triads (Figure 2g) resulting 
from the absence of the second cytokinesis in one secondary meiocyte were also recorded 
among meiotic products. Although the percentage of meiocytes affected by the absence of the 
first cytokinesis was high among the hybrids analyzed, the percentages of monads, dyads, and 
triads were low, or sometimes zero in some hybrids, because in the majority of meiocytes a 
simultaneous cytokinesis occurred after telophase II giving rise to normal tetrads (Figure 2h,i). 

Figure 2. Some aspects of the absence of cytokinesis. a-c. Meiocytes showing the absence of the first cytokinesis in metaphase 
II (a), anaphase II (b), and telophase II (c). d. Tetranucleated monad. e. Binucleated dyad. f. Binucleated microspore with 
a micronucleus (arrow). g. Triad with a binucleated micospore. h, i. Telophase II undergoing simultaneous cytokinesis.
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Several genes have been reported to cause a lack of cytokinesis in maize (Beadle, 1932; Miller, 
1963; Rhoades and Dempsey, 1966). The absence of cytokinesis has also been recorded in 
some inbred lines and maize hybrids (Defani-Scoarize et al., 1995a,b, 1996; Caetano-Pereira et 
al., 1998; Utsunomiya et al., 2002; Pagliarini et al., 2002; Ricci et al., 2007; Silva et al., 2007).

The absence of the first cytokinesis in the hybrid Garra predisposed some meiocytes 
to the formation of a restitutional nucleus in the second division (Figure 2a-e). The segregated 
genomes of the first division were rejoined in a single nucleus in prophase II (Figure 3a), and 
20 segregated chromosomes could easily be counted in metaphase II (Figure 3b) as well as the 
20 segregated chromatids in anaphase II (Figure 3c) and telophase II (Figure 3d). An additional 
cytological evidence of the formation of a restitution nucleus formation in these meiocytes was 
provided by the presence of two nucleoli in telophase II (Figure 3e). As a result of this phenom-
enon, after cytokinesis, a dyad was formed, giving rise to two unreduced microspores (Figure 
3f). The absence of the first cytokinesis also predisposed some meiocytes of the hybrids Garra 
and CD304 to the formation of a tripolar spindle (Figure 3g-i). In some meiocytes, the spin-
dles converged to a single pole (Figure 3g), rejoining the segregated chromatids of anaphase 
II (Figure 3h). A triad with a restitutional nucleus (Figure 3i) was formed after cytokinesis.

Figure 3. Aspects of restitution nucleus formation in hybrids Garra and CD304. a. Prophase II rejoining the 
segregated genomes. b. Metaphase II with 20 chromosomes in the metaphase plate. c. Anaphase II with 20 
segregated chromatids. d. Early telophase II with 20 chromatids in each nucleus. e. Telophase II with two nucleoli 
in each restitution nucleus. f. Unreduced microspore with two nucleoli. g. Metaphase II showing tripolar spindles 
(arrows). h. Telophase II with a restitution nucleus (arrow). i. A triad with an unreduced microspore (arrow).
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Absence of cytokinesis leading to unreduced gamete formation has been widely re-
ported in higher plants (Veillux, 1985; Bretagnolle and Thompson, 1995), and also in maize 
inbred lines and hybrids (Defani-Scoarize et al., 1995a,b, 1996; Caetano-Pereira et al., 1998; 
Utsunomiya et al., 2002; Pagliarini et al., 2002; Ricci et al., 2007; Silva et al., 2007). Unre-
duced gametes have great importance in breeding programs when polyploids are desirable.

The meiotic process is genetically controlled and its harmonious course ensures nor-
mal gamete formation. Several meiotic mutants have been reported in maize (Golubovskaya, 
1979, 1989; Golubovskaya et al., 1993); they result in complete or partial male sterility. Re-
search conducted with different plant species has shown that seed production is closely related 
to meiotic stability (Moraes-Fernandes, 1982; Bodanese-Zanettini et al., 1983; Pagliarini, 
2000). In this context, Love (1951) suggested that a cereal breeding program could be continu-
ously accompanied by cytological analyses in order to eliminate plants with meiotic instability 
that could compromise the stability of the future cultivar.

Allogamous plants or hybrids, due to heterozygosis, generally show normal meiosis. 
However, after selfing, several meiotic abnormalities, mainly those controlled by major genes, 
emerge in endogamous plants. A high frequency of meiotic abnormalities has been reported in 
inbred lines of maize (Pagliarini, 1983, 1989; Defani-Scoarize et al., 1995a,b, 1996; Pagliarini 
et al., 2002). In inbred maize lines with low combining ability, Pagliarini (1983, 1989) showed 
that the chiasma frequency is lower and that several types of meiotic abnormalities are higher. 
In the present hybrids, the high frequency of meiotic abnormalities was remarkable consider-
ing the heterozygosis. It was surprising that some meiotic abnormalities, such as the absence 
of cytokinesis, occurred in all the genotypes, although at different frequencies. This fact sug-
gests that these hybrids probably have a common genitor. Although the absence of the first 
cytokinesis was frequent in all the hybrids, its occurrence at the end of meiosis, accompanied 
by a late second cytokinesis, allowed the formation of a high frequency of normal tetrads. Ir-
regular chromosome segregation and cytomixis can also affect the meiotic product.

The lowest mean frequency of meiotic abnormalities (21.27%) was found in the hy-
brid SG6010, whereas the highest (44.43%), in the hybrid P30K64. However, when compar-
ing the hybrid only in regard to the frequency of abnormal meiotic products considering that 
some meiotic errors are reversible during the process, the lowest frequency (7.63%) was found 
in CD304 and the highest (43.86%) in Garra. Thus, considering the percentage of abnormal 
meiotic products, we suggest that only the hybrids CD304, P30K64, SG6010, and P30F53 
remain in the breeding program as sources of inbred lines to create new silage corn hybrids 
adapted to the South Brazil region.
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