

Low polymorphism revealed in new microsatellite markers for *Bemisia tabaci* (Hemiptera: Aleyrodidae)

G.E. Valle¹, A.L. Lourenção¹, M.I. Zucchi³ and J.B. Pinheiro²

¹Seção de Entomologia, Centro de Fitossanidade,
Instituto Agronômico de Campinas, Campinas, SP, Brasil
²Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz",
Universidade de São Paulo, Piracicaba, SP, Brasil
³Agência Paulista de Tecnologia dos Agronegócios,
Pólo Centro Sul, Piracicaba, SP, Brasil

Corresponding author: A.L. Lourenção E-mail: andre@iac.sp.gov.br

Genet. Mol. Res. 11 (4): 3899-3903 (2012) Received May 10, 2012 Accepted July 19, 2012 Published November 12, 2012 DOI http://dx.doi.org/10.4238/2012.November.12.7

ABSTRACT. The silverleaf whitefly (*Bemisia tabaci*) is actually a complex of morphologically indistinct species that vary in their capacity to transmit plant viruses and to induce physiological disorders in plants of economic importance. The worldwide impact of this whitefly has increased greatly, as it is a vector of various types of phytovirus, especially geminiviruses, in plants of economic importance. The adaptability of *B. tabaci* to many regions of the world has fostered the appearance of various biotypes that attack a broad spectrum of host plants. We developed microsatellite markers to study genetic variability and population structure of this whitefly in Brazil. Thirteen polymorphic microsatellite markers were isolated and characterized in 20 individuals from a natural population that were collected in soybean in Campinas (SP). The number of alleles per locus ranged from one to two, and the expected heterozygosity ranged from 0.000 to 0.505. These microsatellite

Genetics and Molecular Research 11 (4): 3899-3903 (2012)

G.E. Valle et al.

markers will be useful for studies and management of *B. tabaci*. The low polymorphism found in these molecular markers is probably associated with homology of genes expressed in these markers.

Key words: Silverleaf whitefly; Homology; Molecular markers; Monomorphic microsatellite; Whitefly

INTRODUCTION

More than 1500 whitefly species (Hemiptera: Aleyrodidae) are known in the whole world (Martin and Mound, 2007); however, very few of these insects have been studied more specifically (Byrne et al., 1990). *Bemisia tabaci* (Genn.) is one of the most important species, considered as a complex (Brown et al., 1995; Perring, 2001) and has a wide spectrum of hosts. *B. tabaci* develops in more than 900 host plants (Perring, 2001; Berry et al., 2004), where it is responsible for more than 110 different viruses and transmitting geminivirus (Jones, 2003). Therefore, the objective of the present research was to develop microsatellite molecular markers through genomic-enriched library protocols for future studies of genetic variability, population structure and gene flow of *B. tabaci*.

MATERIAL AND METHODS

Genomic DNA was extracted from a whitefly female using an extraction protocol described by Lima et al. (2000). Only one whitefly female was macerated in 60 μ L extraction buffer (1 mM Tris-HCl, pH 8.0, 5 mM NaCl, 1 mM EDTA, pH 8.0, 3% Triton X-100, 60 µg/mL proteinase K). The macerate was incubated for 15 min at 65°C, followed by heating for 10 min at 95°C. A microsatellite-enriched library was obtained using adapted protocols from Billotte et al. (1999). Genomic DNA from one genotype of B. tabaci was digested with AfaI (Invitrogen) and enriched in microsatellite fragments using (CT), and (GT), motifs. The enriched fragments were cloned into pGEM77 T (Promega) and ligation products were used to transform Epicurian Coli XL1-Blue Escherichia coli competent cells. The positive clones were selected using the β -galactosidase gene and then grown overnight in the presence of ampicillin. A total of 117 clones were sequenced in an ABI 3770 automated 79 sequencer (PE Applied Biosystems) using a Big-Dye terminator cycle sequencing kit (Applied Biosystems). About 10 primer pairs were designed for SSR flanking regions using Primer 3 (Rozen and Skaletsky, 2000) and tested in 20 specimens of B. tabaci collected from different regions in Brazil. PCRs were performed in a 20-µL reaction volume containing 1X reaction buffer (100 mM Tris-HCl, pH 8.5, 50 mM KCl) containing 20 ng genomic DNA, 0.2 µM of each primer, 0.25 mM dNTPs, 0.5 U Tag DNA polymerase, and 4 mM MgCl₂. The PCR program consisted of an initial denaturing step at 95°C for 2 min followed by 45 cycles of amplification [95°C (1 min), 1 min at the specific annealing temperature of each primer pair (Table 1), and 72°C (1 min)], and a final elongation step at 72°C for 5 min. Amplification products were resolved by electrophoresis on 7% denaturing polyacrylamide gels and visualized by silver staining (Creste et al., 2001). The allele scoring was done using the 10-bp DNA Ladder (Invitrogen) for size standards. The population's parameters of the 13 loci obtained were estimated by using the Genetix 4.05.2 program (Belkhir et al., 2004) and by genotyping 20 individuals of *B. tabaci* from a natural population collected in Campinas, SP, Brazil.

Genetics and Molecular Research 11 (4): 3899-3903 (2012)

Microsatellites for Bemisia tabaci

Table 1. Characteristics of 13 microsatellite loci from Bemisia tabaci.												
Locus	Repeat motif	Primer sequence (5'-3')	Ta (°C)	Size range (bp)	N	H_0	$H_{\rm E}$	PIC	GenBank accession No.			
Bta1	(CTT) ₄	F: TGAAGGAGACTTGGCAACG R: ATCTCTCTCACCGCCATCAT	62.8	224	2	0.000	0.337	0.269	GF111984			
Bta2	(TACC) ₃	F: AAAAGTCGTCCGCTGTTACC R: CGGGGAAATAAAAGCAACTG	63.8	177	1	0.000	0.000	0.000	GF111977			
Bta3	(GAAA) ₃	F: TATACTTGGGCATCGTCAG R: GCGTAGGAGAGTTGGAATG	57.7	228	1	0.000	0.000	0.000	GF111978			
Bta4	(TTTA) ₃	F: CGCTCCTCAAGTTTTCTGT R: CGGCAGTCAGGGTTATTA	58.9	175	2	0.000	0.442	0.332	GF111985			
Bta5	(AAAG) ₃	F: TATACTTGGGCATCGTCAGC R: GCGTAGGAGAGTTGGAATGC	62.7	228	1	0.000	0.000	0.000	GF111979			
Bta6	(AATA) ₃	F: TTGTTGGTTCACCTGTAATTGG R: GCGTGGACTAGCTGAAAAAGA	64.7	150	2	0.000	0.505	0.365	GF111980			
Bta7	(TTCT) ₄	F: CTGTAACGGACACACACACA R: GGTCATTTTGGTGTGGAA	58.1	244	1	0.000	0.000	0.000	GF111986			
Bta11	(TCAT) ₃	F: TTTTTCGGTTGGTTGGTG R: GCTAATTGCTTCTTTCCTTG	60.8	155	1	0.000	0.000	0.000	GF111987			
Bta12	(AAAT) ₆	F: TCCCATCTCCGCCTTATCTA R: GACCTCCGCAAGTTTTTCC	64.1	166	2	0.000	0.505	0.365	GF111981			
Bta13	(CT) ₁₂ (CT) ₈ (CACT) ₇ (CT) ₇	F: AAACGTGGTCCCTTGGAATA R: AACGCCCTTTCACAATTCA	63.8	248	1	0.000	0.000	0.000	GF111982			
Bta16	(TCAT) ₃	F: GGCTAATTGCTTCTTTCCTTG R: GTTTTTCGGTTGGTTGGTG	63.8	155	1	0.000	0.000	0.000	GF111988			
Bta17	(TACG) ₃	F: CACCCTCACCTACACACACAC R: TCACAACAAATGCGACCTT	61.6	206	1	0.000	0.000	0.000	GF111983			
Bta18	(TCAT) ₃	F: GGTGGTTTGTTTAGAAGAGTGG R: GGCTAATTGCTTCTTTCCTTG	63.0	193	1	0.000	0.000	0.000	GF111989			

 \overline{F} = forward primer sequence; R = reverse primer sequence; Ta = annealing temperature; N = number of alleles; H₀ = observed heterozygosity; H_e = expected heterozygosity; PIC = polymorphic information content.

RESULTS AND DISCUSSION

From the library, 344 clones were sequenced and 103 SSRs were found: 17.5% mononucleotides, 33.0% dinucleotides, 0.9% trinucleotides, 15.5% tetranucleotides, 8.8% pentanucleotides, and 24.3% compounds. Of these sequences, 13 had a flanking region of adequate size for the design of forward and reverse primers. The number of alleles observed for each locus ranged from one to two. We found a low level of polymorphism among 20 individuals analyzed with the new locus developed. Thirteen loci were developed but only four were polymorphic with two alleles per locus. We showed a low level of polymorphism in the genotypes evaluated. The expected heterozygosity ranged from 0.000 to 0.505. For all loci, the observed heterozygosity was lower than or equal to the expected heterozygosity. The low polymorphism found in these molecular markers is probably associated with homology to the genes expressed in all these markers (Table 2). The studies of genetic variability of insect pests, in the context of insect resistance management, can provide useful information about distribution patterns of genetic variability and gene flow that allow the determination of focus areas for monitoring and the development of strategies to mitigate the development of resistance. Obtaining specific primers that access microsatellite loci in B. tabaci enables the study of this genetic variability and generates information that could be used in future management programs of this pest. A previous study with other molecular markers (SSRs) for B. tabaci also showed a low level of polymorphism (Valle et al., 2011). A recent tool for genetic analysis was developed by Nazereno and Reis (2011), which consisted in evaluating monomorphic

Genetics and Molecular Research 11 (4): 3899-3903 (2012)

G.E. Valle et al.

microsatellites; therefore, in new and future studies, these analyses will be used to determine the reason for the low polymorphism found in this study.

Primer	Homology	GenBank accession No.	E value	Max ident (%)
ta1	Rat alpha-amylase (Amy-1) gene, 5'-end, and parotid-specific promoter region	M14151.1	0.002	90
	Mus musculus mRNA for mKIAA0164 protein	AK129071.1	0.020	90
ta2	Fragaria x ananassa gene encoding methionine sulfoxide reductase	AJ297967.1	5e-10	83
	Gallus gallus mRNA for hypothetical protein, clone 22014	AJ720655.1	5e-10	83
a3	Uncultured archeon partial 16S rRNA gene, isolate AEXO15n.4	FM242736.1	2e-18	84
	Uncultured bacterium partial 16S rRNA gene, isolate EXO15432	FM242723.1	2e-18	84
	Bacterium AK-MB19 partial yfkC gene for putative reverse	AM997282.1	3e-15	81
La 4	Examples contraction and the methic of the second second	A 1207067 1	5 - 10	02
a4	Callus and manassa gene encoding methodine suffixing reductase	AJ29/90/.1	50-10	83
	Arabidonsis lyrata clone MITE7 transposon-insertion display	FU558532-1	5e-10 6e-09	82
	band genomic sequence	10550552.1	00 09	02
a5	Macrococcus caseolyticus JCSC5402 DNA, complete genome	AP009484.1	0.056	83
	Paramecium tetraurelia hypothetical protein (GSPATT00012894001) partial mRNA	XM001444769.1	0.20	83
	Oryzias marmoratus PSMB10, PSMB8 genes for proteasome subunit,	AB551024.1	0.68	93
	beta type 10, proteasome subunit, beta type 8, partial and complete cds,			
	isolate: Oryzias marmoratus 15			
	Oryzias matanensis PSMB10, PSMB8 genes for proteasome subunit,	AB551021.1	0.68	93
	beta type 10, proteasome subunit, beta type 8, partial and complete cds,			
- (Isolate: <i>Oryzias matanensis</i> 6, haplotype: N	INIC00250 1	7-04	100
40	<i>Bemisia tabaci</i> Isolate Mogi Guaçu napiotype 4 cytochrome oxidase subunit	JN089339.1	7-04	100
	<i>Bemisia tabaci</i> isolate Uha Soltaira baplotype 3 cytochrome oxidase	JIN089338.1 INI680357-1	70-94	100
	subunit L (COI) gene, partial eds: mitochondrial	JIN089557.1	/6-94	100
a7	Sorghum bicolor hypothetical protein mRNA	XM002441933 1	$4e_{-}07$	85
. /	Solanum beotor hypothetical protein, interve	HM210879.1	3e=08	85
	Picea glauca clone GO03118, G07 mRNA sequence	BT108209 1	1e-08	86
	Petunia hybrida NAM gene	X92204 1	4e-07	82
	<i>Zea mays</i> clone 345601 CUC2 mRNA complete cds	EU970442 1	1e-06	84
	Amborella trichonoda mRNA for the NAM protein	FR6680801	5e-06	83
11	Solanum tuberosum no apical meristem (NAM) mRNA, complete cds	FJ435166.1	3e-09	89
	Picea glauca clone GQ03118 G07 mRNA sequence	BT108209.1	1e-08	86
	Sorghum bicolor hypothetical protein, mRNA	XM002462559.1	3e-08	86
	Zea mays partial mRNA for hypothetical protein (nam1 gene)	AJ833966.1	4e-07	86
	Amborella trichopoda mRNA for the NAM protein	FR668080.1	5e-06	86
	Brassica oleracea cup-shaped cotyledon 2 (CUC2) gene, partial cds	HQ703968.1	2e-04	87
	Ginkgo biloba partial mRNA for the NACa protein	FR668082.1	2e-04	87
112	Mus musculus chromosome 5, clone RP24-465G18, complete sequence	AC133456.11	7e-16	87
	Mus musculus chromosome 5, clone RP23-37G13, complete sequence	AC161225.14	7e-16	87
	Homo sapiens X BAC RP11-126O22 (Roswell Park Cancer Institute	AC073488.23	1e-11	93
	Human BAC Library) complete sequence			
	Human T-cell receptor alpha delta locus, complete sequence	AE000521.1	1e-05	88
a13	Bacteriovorax marinus SJ genome	FQ312005.1	4.3	89
	Gossypium hirsutum TM-1 D-subgenome 14-3-3-like protein (14-3-3L	HQ142993.1	4.3	88
	Karlodinium micrum clone 17645 cytochrome oxidase subunit III	EF443024.1	0.35	81
a16	(COA3) mKNA, partial cds, milochondrial Zebrefish DNA sequence from clone DKEV 246M18 in linkage group 15	BV571704 22	1a 05	73
	PREDICTED: Acyrthosinhon nisum tyrosine-protein phosphatase	XM001951853 2	2e-20	84
	non-recentor type 21-like (LOC100161359) mRNA	AW1001951855.2	20-20	04
a17	Homo saniens N-acetylglucosamine-1-nhosphate transferase alpha and	NG021243 1	0.38	85
	beta subunits (GNPTAB). RefSeaGene on chromosome 12	11002121011	0.50	00
	Karlodinium micrum clone 1939 cytochrome oxidase subunit III	EF443026 1	0.38	81
	(COX3) mRNA, partial cds; mitochondrial			
	Homo sapiens KIAA0438 mRNA, partial cds	AB007898.1	1.3	96
	Pinellia cordata voucher T.S. Yi 08015 rps16 gene, intron; chloroplast	JQ237171.1	4.6	90
	Arcobacter sp L DNA, complete genome	AP012048.1	4.6	81
	Puccinia graminis f. sp tritici CRL 75-36-700-3 hypothetical protein, mRNA	XM003319919.1	4.6	84
	Gossypium hirsutum TM-1 D-subgenome 14-3-3-like protein	HQ142993.1	4.6	88
	(14-3-3L) gene, complete CDs	-		
i18	Flavobacterium columnare ATCC 49512, complete genome	CP003222.2	0.11	79
	Solanum lycopersicum strain Heinz 1706 chromosome 1 clone	AC246100.4	0.38	85
	slm-15p5 map 1, complete sequence			
	Gossypium hirsutum TM-1 D-subgenome 14-3-3-like protein	HQ142993.1	4.6	88
	(14-3-3L) gene, complete cds			

Genetics and Molecular Research 11 (4): 3899-3903 (2012)

©FUNPEC-RP www.funpecrp.com.br

REFERENCES

- Belkhir K, Borsa P, Chikhi L, Raufaste N, et al (2004). GENETIX 4.05, Logiciel Sous Windows TM Pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier. Available at [http://www.genetix.univ-montp2.fr/genetix/genetix.htm/] Accessed September 9, 2010.
- Berry SD, Fondong VN, Rey C, Rogan D, et al. (2004). Molecular evidence for five distinct *Bemisia tabaci* (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in Sub Saharan Africa. Ann. Entomol. Soc. Am. 97: 852-859.
- Billotte N, Lagoda PJR, Risterucci AM and Baurens FC (1999). Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical. *Crops Fruits* 54: 277-288.
- Brown JK, Frohlich DR and Rosell RC (1995). The sweetpotato or silverleaf whiteflies: biotypes of *Bemisia tabaci* or a species complex? *Ann. Rev. Entomol.* 40: 511-534.
- Byrne DN, Bellows TS Jr and Parella MP (1990). Whiteflies in Agricultural Systems. In: Whiteflies: Their Bionomics, Pest Status, and Management (Gerling D, ed.). Intercept Ltd., Andover, 227-261.
- Creste S, Tulmann Neto A and Figueira A (2001). Detection of single repeat polymorphism in denaturing polyacrylamide sequencing gels by silver staining. *Plant Mol. Biol. Rep.* 19: 299-306.
- Jones DR (2003). Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109: 195-219.
- Lima LHC, Návia D, Inglis PW and Oliveira MRV (2000). Survey of *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) biotypes in Brazil using RAPD markers. *Genet. Mol. Biol.* 23: 781-785.
- Martin JH and Mound LA (2007). An annotated check list of the world's whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492: 1-84.
- Nazareno AG and Reis MS (2011). The same but different: monomorphic microsatellite markers as a new tool for genetic analysis. Am. J. Bot. 98: e265-e267.
- Perring TM (2001). The Bemisia tabaci species complex. Crop Prot. 20: 725-737.
- Rozen S and Skaletsky HJ (2000). Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawetz and Misener S, eds.). Humana Press, Totowa, 365-386.
- Valle GE, Zucchi MI, Stabellini NS, Lourenção AL, et al. (2011). Estrutura genética populacional de *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) utilizando marcadores microssatélites. *Neotrop. Entomol.* 40: 204-211.

Genetics and Molecular Research 11 (4): 3899-3903 (2012)