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ABSTRACT. Cancer subtype recognition and feature selection are 
important problems in the diagnosis and treatment of tumors. Here, we 
propose a novel gene selection approach applied to gene expression data 
classification. First, two classical feature reduction methods including 
locally linear embedding (LLE) and rough set (RS) are summarized. 
The advantages and disadvantages of these algorithms were analyzed 
and an optimized model for tumor gene selection was developed based 
on LLE and neighborhood RS (NRS). Bhattacharyya distance was 
introduced to delete irrelevant genes, pair-wise redundant analysis was 
performed to remove strongly correlated genes, and the wavelet soft 
threshold was determined to eliminate noise in the gene datasets. Next, 
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prior optimized search processing was carried out. A new approach 
combining dimension reduction of LLE and feature reduction of NRS 
(LLE-NRS) was developed for selecting gene subsets, and then an open 
source software Weka was applied to distinguish different tumor types 
and verify the cross-validation classification accuracy of our proposed 
method. The experimental results demonstrated that the classification 
performance of the proposed LLE-NRS for selecting gene subset 
outperforms those of other related models in terms of accuracy, and 
our proposed approach is feasible and effective in the field of high-
dimensional tumor classification.

Key words: Gene selection; Locally linear embedding; Classification;
Neighborhood rough set

INTRODUCTION

Microarray techniques for tumor prognosis and various classification methods have 
been applied to analyze or interpret gene expression data (Liu et al., 2015). However, because 
of the limited availability of effective samples compared to the large number of genes in 
microarray data, many computational methods have failed to identify a small subset of 
important genes (Kar et al., 2015). In recent years, gene expression profiles for the molecular 
diagnosis of tumor have attracted attention for their potential in precise and early tumor 
diagnosis; however, dimensionality curse caused by high dimensionality and small sample 
size of tumor datasets challenges tumor classification (Wang et al., 2010; Sun et al., 2015). 
In general, the classification of cancer by microarray data involves data acquisition and pre-
processing, gene selection, and classification (Elyasigomari et al., 2015). The aim of gene 
selection is to reduce the dimensionality of microarray data to enhance the accuracy of 
classification (Tabakhi et al., 2015).

The methods applied for gene selection are broadly divided into four categories 
including filter, wrapper, embedded, and hybrid approaches (Li et al., 2015). Filter methods 
are easily trapped into a local optimum. Wrapper approaches suffer from high computational 
cost, particularly given the high-dimensionality of microarray datasets. The main advantage of 
embedded approaches is the interaction with the learning model, but training a given classifier 
with a full gene set is time-consuming. The major disadvantage of hybrid approaches is that 
the filter and wrapper approaches are not truly integrated with each other, which may lead 
to lower classification performance (Tabakhi et al., 2015). Liu et al. (2010) introduced a 
conditional mutual information-based ensemble gene selection method for cancer microarray. 
Li et al. (2011) developed an embedded feature selection algorithm. However, this method 
requires the adjustment of a large number of parameters and its performance largely depends 
on those parameters. Cai et al. (2009) constructed a gene selection algorithm based on mutual 
information, but its computational cost increases as the number of selected genes is increased. 
Gan et al. (2008) proposed a gene selection method involving a Bayesian discriminant cost 
function. However, the proposed strategy is only applicable to one representative gene 
selection model-Bayesian discriminant-based genetic algorithms search. Sun and Xu (2014) 
improved the computational efficiency of a heuristic algorithm for gene selection.
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Currently, the numerous available methods of gene selection require improvements 
for the pre-processing of data. The limitations are as follows: 1) Since some gene expression 
levels are very similar in all samples of tumor gene expression profiles, the corresponding 
genes are unrelated to classification. In order to select useful information regarding 
discrimination and decrease the computational complexity of searching gene subsets, these 
unrelated genes should be deleted. 2) Because strong correlation exists among genes, many 
genes are associated with subtype recognition for particular tumors. However, few genes are 
directly related to the tumor. Thus, strongly correlated genes should be removed. 3) Since 
noise is introduced at each processing stage, it is inevitably present in gene expression profiles. 
When the intensity of the noise is high, data points may be completely obscured. Extracting 
genes with noise from gene expression profiles can produce deviation. Thus, noise should be 
eliminated. Based on these limitations, the pre-processing of tumor genes should be used for 
forward optimization. It is known that familiar pre-processing methods of dimension reduction 
include principal component analysis (PCA), linear discriminant analysis, and locally linear 
embedding (LLE), among others. Sahu et al. (2014) proposed a feature selection procedure 
that augmented kernel PCA to obtain importance estimates of the features using noisy training 
data. However, PCA can only identify linear relationships among features in the data. Sharma 
et al. (2014) proposed a feature selection method using an improved regularized linear 
discriminant analysis technique. Lang et al. (2011) developed a LLE-based gene selection 
method for cancer classification. LLE and its extensions are a promising technique that can 
be used to solve the dimension reduction problem of high-dimensional data (Roweis and 
Saul, 2000). To evaluate gene selection methods, in addition to the predictive ability of gene 
subsets, two other important aspects that must be considered include stability of the selected 
genes and computational costs (Nguyen et al., 2015). Gene subsets with low dimensionality 
and high classification ability can be selected from gene expression profiles. Although it is 
clear that classical rough set (RS) algorithms are acceptable tools for selecting tumor genes, 
RS only can handle the character data subtype. Numeric and continuous data can only be 
handled after discretization. To avoid information loss and improve the classification accuracy 
of gene subsets, neighborhood RS (NRS) models are introduced into feature reduction and do 
not require discretization processing for continuous features. For example, Hu et al. (2008) 
proposed a heterogeneous gene selection method based on NRS. Liu et al. (2014) calculated 
the positive region of NRS and presented a quick NRS reduct algorithm.

In this study, classical reduction methods and gene expression profile analysis were 
combined to overcome the limitations of dimension reduction. We first removed noise and 
irrelevant and redundant genes from the original gene space by effective gene selection 
methods. Bhattacharyya distance (Sun et al., 1996) was introduced to delete irrelevant genes, 
pair-wise redundant analysis (Li and Ruan, 2005) was performed to remove strongly correlated 
redundant genes, and a wavelet method (Liu et al., 2007) was applied to eliminate the noise 
of genes by a given soft threshold. Next, prior optimized pre-processing was carried out, 
generating a reduction gene subset with more classification information. In the process of 
gene selection, relevance and redundancy analysis was performed to identify irrelevant and 
redundant genes. Next, LLE and NRS were combined to build an effective tumor gene selection 
and classification model, which improved the classification ability of selected gene subsets. 
For acute leukemia and colon cancer datasets, useful genes were selected by transforming 
neighborhood and several parameters. We validated the proposed LLE-NRS approach, which 
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improved the performance of gene selection and showed precise classification ability in the 
analysis of public microarray datasets.

MATERIAL AND METHODS

LLE-based dimension reduction

LLE is a dimension reduction technique for nonlinear data (Lang et al., 2011). The 
basic idea involves converting global nonlinear data into local linear, and obtaining global 
structure information by overlapping local areas. After linear dimension reduction for each 
local area, the low-dimensional global coordinates were obtained by combining the results 
according to certain rules. The specific steps of LLE-based dimension reduction algorithm are 
as follows:

Step 1: Input N original data xij with D-dimension, and identify k neighbor points 
for every sample point. When k neighbor points of the ith point are obtained, the Euclidean 
distance between the ith point and any other point is calculated. All of the calculated distances 
are sorted, and the first k2 points close to the ith point are selected. Two conditions of the 
distance space are as follows: zero conditions dij = 0 if i = j, and triangle side ranging principle 
dij + djk ≥ dik, where 1| |pp

ij ik jkkd x xγ
== −∑ , i, j∈[1, N], k∈[1, D], dij is the Euclidean 

distance if p = 2, dij is the City-Block distance if p = 1, and dij is the dominance distance if p 
= t. Each point xi in the samples has corresponding similarity with the remaining N – 1 points, 
which can be directly measured by determining the distance between two points. k is artificially 
set according to experience parameters, which should be greater than the output dimension of 
the samples. Here, if k is too large, the output results cause the different categories of data to 
become superimposed. If k is too small, the topological structure of the sample points cannot 
be maintained in low-dimensional space. From the processing results of Swiss-Roll data, 
when k is 3 or 4, the 3-dimensional data cannot be mapped into 2-dimensional space using 
LLE. When k gradually increases, the distribution of 2-dimensional data improves. When k is 
between 20 and 30, the distribution is optimal. When k continues to increase, the distribution 
effect gradually deteriorates. When k is up to 50, the data appears to be superimposed.

Step 2: Design a local reconstructed weight matrix of the sample points, after which 
the optimal linear reconstructed weight can be calculated from:

(Equation 1)2 2
1, , ,

( ) min || || = min || ( ) ||k
i i ij j ij i j j k jkj j i j j i j k

w x w x w x x w w Gε
= ≠ ≠

= − − =∑ ∑ ∑

where ei is an error function of linear reconstruction between xi and k neighbor points x1, x2, …, 
xk. A smaller ei(w) value results in a better local reconstructed weight matrix. This means that 
xi is closer to the linear combination point of its neighboring points. Gjk = (xi – xj)

T(xi – xk) is a 
local Gramian matrix. wij is a linear reconstructed weight and satisfies two following constraint 
conditions: wij = 1 if xj is a neighbor point of xi, otherwise wij = 0, where the sum of all wij is 1. 
These values can be also referred to as sparse constraint conditions. The sample points must 

be refactored from their neighbor points. Additionally, an optimal weight 
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calculated by the Lagrange multiplier approach, where an inverse matrix Gjk
–1 exists when Gjk 
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is positive definite. Next, the weight of the minimum reconstructed error functions can satisfy 
the above constraint conditions.

Step 3: Map all of the sample points into a low-dimension space and calculate a low-
dimension embedding matrix Y of the input samples using the weight matrix determined in 
Step 2 as follows:

2

1 ,
( ) min || || min ( )k

i ij ij ij i ijj j k
Y Y w Y M Y Yε

=
= − = •∑ ∑ (Equation 2)

where i, j = 1, 2, …, k, (Yi•Yij) represents the relationship of inner product between Yi and Yij, 

Mij is a sparse symmetric positive semi-definite matrix, and Yi1, Yi2, …, Yik are k neighbor points 

of Yi which satisfies the following conditions: 1
0N

ii
Y

=
=∑  and 1

N T
i ii

YY
I

N
= =∑ . Here, I is a d × d unit 

matrix. When Yi is moved to any location, the reconstructed error function ε is not affected, the 
translational freedom degree is eliminated, and the core of output results after mapping should 
be on the origin of the coordinates. When ε is not affected by Yi, the rotation and proportion 
freedom degrees should be eliminated.

Subsequently, the Lagrange multiplier approach is employed to calculate eigenvectors, 
which correspond to the relatively smaller d + 1 eigenvectors of cost matrix Mij. Here, 
eigenvectors with the smallest eigenvalue are all 1 vector. This represents a free translation 
mode corresponding to the eigenvalue 0. These vectors should be deleted, and then the output 
results of LLE are composed of the reserved d eigenvectors. To more intuitively demonstrate 
the characteristics of the LLE method, the acute leukemia dataset was downloaded from 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi, and the number of selected genes in the 
training samples was 38. There are 8 types of acute lymphoblastic leukemia (T-cell), 19 acute 
lymphoblastic leukemia (B-cell), and 11 acute myeloid leukemia (Sun et al., 2015). Each 
sample point has 7129 features. When k was 25, the output was a 38 x 2 eigenvector matrix; the 
mapping results are shown in Figure 1A. Next, 2-dimension mapping data was easily observed 
after dimension reduction using the LLE algorithm. Furthermore, because the data volume 
was too small and the results mapped on the same straight line, the visualization results of the 
sample points are shown more clearly in Figure 1B. Translation and zooming clearly improved 
the classification ability of the sample points through the processing of classifiers using the 
LLE algorithm. Through computing, the cross-validation recognition classification accuracy 
was up to 86.84%, which is a 17% increase compared to the original dataset.

Figure 1. A. Mapping results of acute leukemia dataset, using the LLE algorithm. B. Visualization results of acute 
leukemia dataset, using the LLE algorithm.
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To further illustrate the performance of the LLE method, the public colon tumor 
dataset was downloaded from http://www.molbio.princeton.edu/colondata. Sixty-two types 
of information genes were selected from the training samples, for which there are 40 types 
of tumor samples and 22 types of normal samples. Each sample point has 2000 features. 
For k = 25, the visualization results of the sample points are shown in Figure 2, where the 
sample points are divided into class1 and class2. All output results of class2 were –1, and the 
classification results of a small number of class1 were not ideal. However, the cross-validation 
accuracy was 80.65%, which is 11.3% higher than the 69.35% accuracy of the original colon 
tumor dataset.

Improved RS-based feature selection

RS has been successfully applied for feature selection, as it can eliminate redundant 
features using individual feature information and mutual information (Meng et al., 2014). It is 
a useful tool for dealing with vague, uncertain, and incomplete information. Based on classical 
RS models, the selection criteria are constructed using feature dependence and significance 
measure for feature selection (Maji and Paul, 2011). However, some RS models can only 
deal with data with nominal features, and thus the datasets must be discretized before feature 
selection. In combination with PCA, the specific steps of the improved RS-based feature 
selection algorithm are as follows:

Step 1: Input an original gene dataset, calculate an average value 1
j

n

ijix
x

n
== ∑  and 

a standard deviation of feature values 
2

2 1
( )

1

n

ij ji
j

x x
s

n
=

−
=

−
∑ , and obtain a standardized formula 

ij j
ij

j

x
s

x x
=

−
∗ , where x is a feature value of original variable, i = 1, 2, …, n, and j = 1, 2, …, p.

Step 2: Apply the denoising method of soft thresholding-based wavelet transform to 
process noise in the gene dataset, where jkd = djk – λ if djk ≥ λ, jkd = 0 if |djk| < λ, jkd = djk + λ if 
djk < –λ, λ is a threshold, djk is a wavelet coefficient, and jkd is a processed wavelet coefficient.

Step 3: Employ a PCA method to reduce dimensionality of the data after denoising, 
and discretize the features of the obtained gene dataset.

Step 4: Use RS-based feature reduction for the discretized gene dataset to reduce 
feature columns.

Step 5: Eliminate the reduced feature columns and delete the duplicated rows if the 

Figure 2. Visualization results of colon tumor dataset by LLE algorithm.
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same tuples appear after the eliminating operation.
Step 6: Repeat Step 4 until no redundant features are present.
Step 7: Use Weka software to classify the features of the reduced dataset, output the 

corresponding classification results, and achieve cross-validation classification accuracy.
An acute leukemia dataset was used. Three features {feature2288, feature2795, 

feature4117} were selected using the improved RS-based feature selection method. The 
dimensionality of the dataset was greatly reduced. Through computation, the classification 
accuracy was 89.83% with Weka, which was approximately 20% higher than the value for 
the original dataset and 3% higher than that for the LLE algorithm. Thus, the improved RS-
based feature selection method is effective. Figure 3A shows a 2-dimensional scatter plot of 
the above three selected features. The boundary between the two tumor subtypes for ALL 
and AML sample points was clearer. Similarly, two features {feature1668, feature1309} of 
the colon tumor dataset were selected and the dimension of data was greatly reduced. Figure 
3B shows a 2-dimensional scatter plot of the two features, in which the feature values of 
the original data can be divided into positive and negative classes. However, the features of 
the two classes of sample points were mixed together, and the classification condition was 
not clear. The cross-validation classification accuracy was 75.81% under Weka, which was 
increased by only approximately 5% compared to the original dataset. Thus, the classical RS 
method was not effective for gene selection of the colon cancer dataset, and its classification 
accuracy of selected features was not ideal.

LLE-NRS-based optimized gene selection

Discretization of classical RS model can lead to information dropout. To address this 
issue, many extended RS models have been employed, and NRS models were proposed for 
gene selection and classification (Wang et al., 2010; Hou et al., 2010). These methods employ δ 
neighborhood to deal with numerical data directly and use a forward feature reduction algorithm 
to select genes. Three key components of the gene selection methods using the RS model based 
on neighborhood are the construction of neighborhoods, approximation operators, and feature 
reduction. How to construct neighborhoods to suit for various data structures and design more 
effective feature reduction algorithm require further investigation (Meng et al., 2014).

Figure 3. A. Two-Dimensional scatter plot for three features of the acute leukemia dataset; B. 2-dimensional scatter 
plot for two features of the colon tumor dataset.
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A neighborhood of an object x is a set of objects with similar characteristics to x. 
A generalized definition for neighborhood has been given according to the binary relation 
(Yao and Lin, 1996). For an object x∈U, U is a nonempty finite set of objects, and a binary 
relation R on U, the neighborhood of x is NR(x) = {y | xRy, y∈U}. Based on the generalized 
definition, many specific formulas for neighborhood are proposed to deal with complex real 
datasets. Because all datasets in gene selection are numerical features, the δ neighborhood is 
an effective method for dealing with numerical features. For an object x∈U and a subset of 
features B⊆C, the δ neighborhood of x induced by B is defined as:

δB(x) = {y|∆B(x, y) ≤ δ, y∈U} (Equation 3)

where ∆B(x, y) is a distance metric function to determine the shape of the neighborhood and δ 
is a threshold to control the size of the neighborhood.

Note that the original dataset requires dimension reduction before feature reduction of 
NRS, and the requirements of the reduction model can be satisfied. Next, forward optimization 
during the tumor gene selection process is necessary. The specific steps of LLE-NRS-based 
optimized gene selection algorithm are as follows:

Step 1: Input original data xij and delete unrelated genes with Bhattacharyya distance 
to obtain gene subset Gb. The Bhattacharyya distance is adopted to process tumor gene samples 
and the unrelated genes are eliminated. Next, the concrete model can be expressed as

2 2 2

2 2

( ( ) ( )) ( ) ( )1( ) ln
4( ( ) ( )) 2 2 ( ) ( )

x x x xB x
x x x x

µ µ σ σ
σ σ σ σ
+ − + −

+ − + −

 − +
= +  +  

(Equation 4)

where µ+ and µ– are the averages of the expression levels of feature x in two different gene 
samples respectively, and σ+ and σ– are the corresponding standard deviations. Greater 
Bhattacharyya distances of genes result in larger differences in the expression level distribution 
of gene samples in the two classes; sample classification is also stronger.

Step 2: Perform pair-wise redundant analysis to remove strongly correlated 
redundancy genes of Gb and get gene subset Gr. If the correlation coefficient is greater than the 
specified threshold, the two genes are strongly related. The genes with a smaller classification 
information index are eliminated, and the classified gene subsets will have a larger classification 
information index.

Step 3: Perform wavelet analysis to eliminate noise of Gr under a given soft threshold 
and obtain gene subset Gx. Deviation is produced when the genes are extracted from gene 
datasets containing noise. In order to ensure the effectiveness of gene extraction and accuracy 
of classification recognition, noise should be eliminated, and the genes are extracted to obtain 
the corresponding feature reduction subset.

For practical application, the essence of the wavelet denoising problem is a function 
approximation. The denoising wavelet threshold is mainly based on the threshold function of 
the wavelet high-frequency subspace. Coefficients that are less than the threshold are set to 
zero by appropriate thresholds. Wavelet coefficients that are greater than the threshold will be 
retained. Next, the estimated coefficients can be obtained by mapping of the threshold function. 
This can be achieved by inverse wavelet transform processing, and the signal after denoising 
will be rebuilt. The selected threshold function model of the wavelet soft threshold denoising 
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algorithm is expressed as jkw = sign(wjk)(|wjk| – λ) if |wjk| ≥ λ, otherwise jkw = 0, where wjk 
is a wavelet coefficient of the original signal containing noise by wavelet transform, and jkw  
is an estimated coefficient after threshold processing, namely soft threshold function. The 
signal can be estimated as the maximum mean variance and minimum error by using the soft 
threshold denoising method. This signal after denoising is an approximate optimal estimation 
of the original signal. These signals show the same smoothness as the original signals and do 
not produce additional shocks, indicating its wide adaptability and practicability.

Step 4: Reduce dimensionality of Gx using the LLE algorithm and get gene subset 
Gp. Apply the maximum and minimum method expressed as min

max min
( ) i

i
x xf x x x
−

= −  to perform 
normalization processing of Gp, where i = 1, 2, …, n, xi is a sample feature and xmax and xmin are 
the maximum and minimum values of the samples, respectively. To obtain accurate processing 
results from NRS, all genes Go are distributed on [0, 1].

Step 5: Reduce genes of Go, using the NRS algorithm to obtain the optimal approximate 
gene subset Gn according to transformation of the neighborhood setting. Classify genes of Gn 
after reduction, output corresponding classification results under Weka, and achieve cross-
validation classification accuracy.

Note that feedbacks exist in the LLE-NRS algorithm, and the aim is to select the best 
parameter combination. These parameters include the given wavelet soft threshold, k of LLE 
algorithm, neighborhood of the NRS algorithm, and related parameters under Weka.

RESULTS

To demonstrate the classification performance of tumor genes by our proposed LLE-
NRS algorithm, three subtypes of public microarray datasets with different sample sizes and 
number of genes were downloaded from http://www.broad.mit.edu/cgi-bin/cancer/datasets.
cgi, including ALL-T (acute lymphoblastic leukemia, T_cell), ALL-B (acute lymphoblastic 
leukemia, B_cell), and AML (acute myeloid leukemia). The datasets include 72 case samples. 
Each sample includes 7129 features. Next, the results for the acute leukemia (ALL) dataset 
after adjustment are shown in Table 1, where the numbers of training data and test data are 38 
and 34, respectively.

Table 1. Results of acute leukemia dataset after adjustment.

Dataset Training data Test data 
ALL-T ALL-B AML ALL-T ALL-B AML 

Original sample classification 8 19 11 2 18 14 
Adjusted sample classification 6 21 11 4 16 14 
Sample proportion 27 11 20 14 

 

The training samples are processed using Bhattacharyya distance. Three hundred 
genes were extracted as a foundation for further reduction. The redundant genes with strong 
correlations were extracted using a pair-wise redundant analysis algorithm. A total of 276 genes 
were obtained. When a wavelet transform denoising method was adopted, the db1 wavelet was 
used for decomposition of three levels and extraction of coefficients. Soft threshold values 
{1.465, 1.823, 2.768} were used to deal with noise. Next, a new signal was refactored and 
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extracted. The signal analysis diagram is shown in Figure 4, in which the signal obtained 
from wavelet denoising was better than that from the forced denoising. This did not omit the 
small percentage of detailed data points, and the topology of the original signal was retained. 
Compared with the signal from acquiescent threshold denoising, the signal from wavelet 
denoising was clear and integrated, and the denoising process of genes was effective.

Figure 4. Signal analysis diagrams of acute leukemia dataset.

The gene samples were subjected to reduction dimension using the LLE algorithm. 
Gene subsets with most classification information were obtained. Next, feature reduction was 
carried out using the NRS algorithm. Weka was used to obtain the classification accuracy 
of each gene subset. In the following experiments, to obtain better experimental results and 
reflect the comparability and repeatability of the data, the proposed LLE-NRS algorithm 
was compared using several different gene selection and classification algorithms with an 
acute leukemia dataset. Here, PCA (Whipple et al., 2004) selected principal components 
whose contribution rates were greater than 85%. Supervised LLE (SLLE) was applied to the 
classification problem of tumor genes (Pillati and Viroli, 2005). When the sample supervised 
information was added to the LLE algorithm to guide the classification of data, locally linear 
discriminant embedding (LLDE) (Huang, 2009) was used to identify linear transformation, 
which met the requirements of minimum reconstruction error in LLE and best translation 
and scaling transformation. In order to verify the classification accuracy of our proposed 
algorithm, the LLE-NRS algorithm was compared with PCA, PCA+NRS, SLLE+KNN, and 
LLDE+KNN algorithms under 10-fold cross-validation, where k-nearest neighbor (KNN) was 
used for gene expression classification. The experimental results are shown in Table 2. The 
LLE-NRS algorithm outperformed some of the existing standard techniques and showed the 
highest classification accuracy.
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To further evaluate the classification performance of the LLE-NRS algorithm, using 
acute leukemia and colon cancer datasets, LLE-NRS was compared with the other seven gene 
selection methods including LLE (Lang et al., 2011), RS (Sun and Xu, 2014), SNRS (Xu et al., 
2015), FRADM (Zhang, 2008), BAHSIC (Song et al., 2012), APBEFS (Meng and Wei, 2015), 
and LNB-MS (Wu et al., 2012). Table 3 shows the classification results of tumor datasets with 
several gene selection algorithms. The classification accuracy of the LLE-NRS algorithm was 
higher than those of the other algorithms, except for APBEFS on the acute leukemia dataset. 
Furthermore, the classification accuracy of the acute leukemia dataset using our optimized 
gene selection model was 23.69% higher than that of the original data. Similarly, the accuracy 
of the colon tumor dataset was 30.65% higher than that of original dataset, and in some cases 
reached 100%. Thus, our proposed LLE-NRS-based gene selection method is efficient for 
classification.

Table 2. Classification results of five methods for acute leukemia dataset.

Dimension reduction methods Genes Cross-validation classification accuracy (%) 
PCA 21 86.84 
PCA + NRS 6 84.21 
SLLE + KNN 6 87.21 
LLDE + KNN 3 89.44 
LLE-NRS 2 94.74 

 

Tumor dataset Cross-validation classification accuracy (%) 
Original data LLE RS SNRS FRADM BAHSIC APBEFS LNB-MS LLE-NRS 

Acute leukemia 71.05 86.84 89.93 68.06 87.54 95.7 98.32 93.42 94.74 
Colon tumor 69.35 80.65 75.81 64.52 85.48 81 85.22 89.7 100 
 

Table 3. Classification results of eight gene selection algorithms for two tumor datasets.

DISCUSSION

Tumor classification and gene selection from high-dimensional data have been widely 
examined in genetics and molecular biology studies (Algamal and Lee, 2015). In this study, 
irrelevant and redundant genes were identified and removed by Bhattacharyya distance and pair-
wise redundant analysis. The wavelet soft threshold method was applied to eliminate the noise 
from genes. Prior optimized pre-processing was carried out. LLE and NRS were combined to 
develop gene selection and classification models, which improved the classification ability of 
selected gene subsets. Weka was applied to distinguish different tumor types and verify cross-
validation classification accuracy of our proposed method. Our experimental results showed 
that LLE-NRS outperformed the other related feature selection algorithms with a positive 
tradeoff between classification precision and performance on public microarray datasets, ant it 
can be applied to further improve the performance of dimension reduction, feature selection, 
and classification of other datasets.
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