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ABSTRACT. A salient problem in translational genomics is the use 
of gene regulatory networks to determine therapeutic intervention 
strategies. Theoretically, in a complete network, the optimal policy 
performs better than the suboptimal policy. However, this theory may not 
hold if we intervene in a system based on a control policy derived from 
imprecise inferred networks, especially in the small-sample scenario. 
In this paper, we compare the performance of the unconstrained (UC) 
policy with that of the mean-first-passage-time (MFPT) policy in terms 
of the quality of the determined control gene and the effectiveness of 
the policy. Our simulation results reveal that the quality of the control 
gene determined by the robust MFPT policy is better in the small-
sample scenario, whereas the sensitive UC policy performs better in the 
large-sample scenario. Furthermore, given the same control gene, the 
MFPT policy is more efficient than the UC policy for the small-sample 



2X.Z. Zan et al.

Genetics and Molecular Research 15 (4): gmr15049334

scenario. Owing to these two features, the MFPT policy performs better 
in the small-sample scenario and the UC policy performs better only 
in the large-sample scenario. Additionally, using a relatively complex 
model (gene number N is more than 1) is beneficial for the intervention 
process, especially for the sensitive UC policy.

Key words: Probabilistic Boolean networks; Intervention policy; UC; 
MFPT

INTRODUCTION

From a translational perspective, modeling gene regulatory networks (GRNs) provides a 
mathematical basis for system-based optimal therapeutic strategies. Among the GRNs, Boolean 
networks are one of the most popular models (Kauffman, 1993; Shmulevich et al., 2002a). 
Specifically, probabilistic Boolean networks (PBNs) can deal with the uncertainty caused by the 
data or other latent conditions. Intervention in a real system is achieved through the following 
general workflow: First, some information about the system, such as microarray data, is obtained. 
Second, an inference algorithm is applied to elucidate the underling regulatory mechanisms. 
Third, a potential intervention policy is designed based on the inferred model. Finally, the 
designed intervention policy is applied to the real system and its effectiveness is verified.

Numerous algorithms, such as ARACNE (Margolin et al., 2006), Reveal (Liang et 
al., 1998), the minimum description length principle (MDL) (Tabus and Astola, 2001; Zhao 
et al., 2006; Dougherty et al., 2008; Chaitankar et al., 2009, 2010), the best-fit extension 
(Shmulevich et al., 2002b; Lähdesmäki et al., 2003) and the coefficient of determination (CoD) 
(Dougherty et al., 2000; Kim et al, 2000), have been proposed to elucidate the fundamental 
gene regulatory structure based on various high-throughput experimental data. The ultimate 
goal of intervening in a system is to find a policy that can maximally shift the long-term 
probability mass of undesirable states to desirable states. Intervention in a system generally 
involves two steps: selection of the control gene and design of a policy based on the control 
gene. Within the framework of PBNs, two basic intervention approaches, that which exploit the 
fact that the probabilistic characteristics of a PBN are characterized by an associated Markov 
chain, have been proposed for GRNs: structural intervention and external control (Dougherty 
and Datta, 2005, Datta and Dougherty, 2006; Shmulevich and Dougherty, 2007). Structural 
intervention involves a one-time modification of the network structure (wiring) to beneficially 
alter its long-term behavior (i.e., steady-state behavior) (Shmulevich et al., 2002c; Xiao and 
Dougherty, 2007; Xiaoning and Dougherty, 2008). Structural intervention generally requires 
that the inferred models are of high quality, but progress on requirement has been slow. External 
control involves flipping (or not flipping) the value of a control gene(s) over time to favorably 
move the steady-state mass. To achieve this goal for intervention in Markov chain GRNs, 
several algorithms motivated by heuristics and suboptimal policies have been proposed that 
avoid using a user-defined cost function and work directly with the transition probabilities of 
the Markov chain associated with the network. These algorithms that aim to reduce the risk of 
entering undesirable states that correspond to aberrant phenotypes of the modeled cells include 
the basin of attraction (BOA),mean-first-passage-time (MFPT), conservative SSD (CSSD), 
and steady-state distribution (SSD) control policies (Vahedi et al., 2008; Qian et al., 2009). 
On average, the SSD policy performs better than the MFPT or BOA policy. Furthermore, the 
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CSSD policy guarantees a beneficial shift of the undesirable steady-state distribution (Qian et al., 
2009). By applying a linear programming technique, Yousefi and Dougherty (2013) proposed two 
optimal approaches, the unconstrained (UC) optimal-intervention policy and the phenotypically 
constrained (PC) optimal-intervention policy, which can obtain maximal phenotype alteration 
according to whether the desirable states are constrained.

Many studies have compared the performance of various control policies. Qian 
et al. (2009) found that the CSSD, MFPT, SSD, and BOA policies all reduce the risk of 
entering undesirable states and that these policies have similar computational complexity; 
however, the SSD and CSSD policies perform better on average than the other two. Yousefi 
and Dougherty (2013) demonstrated the optimality of the UC policy by comparing it with 
the SSD policy. Recently, Yousefi and Dougherty (2014) proposed a Bayesian approach to 
incorporate prior knowledge. They found that on average, the performance of the optimal 
and suboptimal intervention policies are similar. In addition to performance, scalability 
to large networks is also an important issue concerning the control policies. In the study 
by Yousefi and Dougherty (2014), the computational complexity limited the simulation, 
which was only performed on five genes. Ghaffari et al. (2011) proposed a CoD-based 
stationary control policy with similar effect as the MFPT and the SSD policies. The main 
advantage of the CoD-based stationary control policy is that it can be applied to networks 
with 17 genes.

All comparisons of control policies assume that the structure of the underlying 
network is known. However, this is not the case in practice. According to the general 
workflow of intervention, a control policy can only be designed from inferred models 
and not from real models. Because the inferred model is just an approximation of the real 
model, comparing the performance on the real models of various control policies derived 
from inferred models is more appropriate. Recently, Qian and Dougherty (2013) proposed 
a control ability-based validation of various inference algorithms. Specifically, using 
various inference algorithms, they compared the performance of UC policies derived 
from inferred models on a real model, and they found that the best-fit algorithm generally 
performs the best.

Because the inference process involves various uncertainties, the question arises 
whether, given imprecise inferred networks, the optimal control policy (i.e., the UC policy) 
remains superior to the suboptimal control policy (i.e., the MFPT policy), especially in the 
small-sample scenario. In this work, we studied this problem by comparing the stationary 
control policies UC and MFPT on networks inferred by a best-fit algorithm.

MATERIAL AND METHODS

Boolean networks and PBNs

A Boolean network ( , )G V F  is defined by a set of nodes { }1, , nV x x=   and { }0,1ix ∈  and 
a set of Boolean functions { }1,..., nF f f= , { } { }: 0,1 0,1ik

if → . Each node ix  represents the expression 
state of a gene, where 1ix =  means that the gene is on and 0ix =  means it is off. Each node ix  
is assigned a Boolean function 1( , , )

ii i ikf x x  with ik  specific input nodes to update its value. All 
genes are updated simultaneously according to their corresponding update functions using the 
synchronous updating scheme. The network’s state at time t is represented by a binary vector 

1x( ) ( ), , ( )nt x t x t= ( ) . In the absence of noise, the state of the system at the next time step is
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The long-term behavior of a deterministic Boolean network depends on its initial 
state. The network will eventually settle down and cycle endlessly through a set of states in an 
“attractor cycle”. The set of all initial states that reaches a particular attractor cycle forms the 
basin of attraction for the cycle. Following a random perturbation, the network might escape an 
attractor cycle, be reinitialized, and then begin its transition process anew. For a Boolean network 
with perturbation (BNp), the corresponding Markov chain possesses a steady-state distribution. 
Attractors or steady-state distributions in Boolean formalisms have been hypothesized to 
correspond to cell fates or to different cell types of an organism, i.e., the phenotypic traits are 
encoded in the attractors or steady-state distribution (Shmulevich and Dougherty, 2007).

However, a Boolean network is a deterministic model, which is a characteristic commonly 
refuted by gene-expression data. It is natural to extend such models to PBNs. A PBN is a collection 
of N Boolean networks in which a constituent network governs gene activity for a random period 
before another randomly chosen constituent network takes over with a switching probability 
q. q<1, means that latent variables exist outside the network and that change would cause the 
model network to behave stochastically. Therefore, in this case, the PBN can be said to be context 
sensitive. Q = 1, means that the uncertainty in the BNp arises from uncertainty in model inference. 
In this case, the PBN is said to be instantaneously random (Xiaoning and Dougherty, 2008). PBN 
models assign each gene a small perturbation probability p>0 to flip their states from 0 to 1or vice 
versa. This random perturbation allows all states of a PBN to communicate with each other, thereby 
resulting in an ergodic Markov chain with a steady-state distribution { }0 2 1

,..., nπ π π
−

= . iπ  is the long-
term probability of the Markov chain in state xi regardless of the starting state (Shmulevich et al., 
2002d,e). The long-term behavior of PBNs is thus characterized by their steady-state distribution.

Control policy

From the perspective of therapeutic interventions, the state space Scan be generally 
partitioned into the set D of desirable states and the set U of undesirable states, according 
to the expression values of a given set of target genes. Assuming that we can only control a 
single gene 1{ , , }ng x x∈   in the network, we can find a stationary control policy (x) {0,1}ga ∈  for 
all possible states x S∈  in the network to ensure that the perturbed transition probabilities of 
the controlled Markov chain lead to the most beneficial steady-state distribution. Specifically, 

(x) 1ga =  means that we flip the control gene g; otherwise, it remains unchanged. In the following 
sections, we briefly introduce the MFPT and UC optimal intervention policies.

MFPT policy

The intuition behind the MFPT policy is that it is reasonable to apply control to 
flip g and start the next network transition from x, when a desirable x on average reaches 
U faster than x (the state with g flips from x). The transition matrix P of the original 
network can be written as

(Equation 1)1x( 1) ( ), , ( )nt F x t x t+ = ( )

(Equation 2)DD DU

UD UU

P P
P

P P
 

=  
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For each candidate control gene except gene 1x  itself, the MFPT vector DK  and UK  can 
be computed by solving the following system of linear equations:

where the vectors DK  and UK  contain the MFPTs from each state in U to D and from each state 
in D to U, respectively, and e denotes column vectors of 1 with appropriate length. The MFPT 
strategy uses a stationary control policy ( )mfptA g  for all states x and the corresponding flipped 
state as follows to reach desirable states as early as possible and to leave undesirable states 
as early as possible: If x is undesirable, it is necessary to check whether (x) (x)D DK K λ− ≥  to 
reduce the time required to reach the desirable states D. Otherwise, it is necessary to check 
whether (x) (x)U UK K λ− ≥  to reduce the time required to leave the undesirable states U. When 
the ratio of control cost to the cost of the undesirable states increases, the parameter λ needs 
to be set to a higher value so that control is applied less frequently. If limiting the application 
of control is not a goal, 0λ =  is used (Vahedi et al., 2008).

UC policy

When no constraints exist on the cost criteria for the shift-maximization problem, the 
principle of the UC policy is to transform the original problem of finding the optimal cost and 
control policy into the following linear-programming problem:

subject to

where gjav  represents the probability mass of the applied action {0,1}ga ∈  of state j. The 
function ( )ij gp a  gives the transition probability from state i to state j obtained by applying 
action a on control gene g. Solving the linear-programming problem can yield the UC 
optimal intervention, called ( )ucA g , which can lead to maximal steady-state alteration 
(Yousefi and Dougherty, 2013).

Besides the UC policy being optimal and the MFPT policy being suboptimal, the 
main difference between these policies is that the former is sensitive to changes in the system, 
whereas the latter is highly robust against modeling errors, allowing it to adapt to changes in 
the underlying biological system. In addition, the UC method is more time consuming than the 
MFPT method, although the authors pointed out that its average computational complexity is 
polynomial in time (Yousefi and Dougherty, 2013).

Implementation

A network intervention involves two steps: selecting the most effective control gene *g  

(Equation 3)D UU D

U DD U

K e P K
K e P K

= +
 = +

(Equation 4)min
g

g

jav j U a
v

∈ ∈Α
∑ ∑

(Equation 5)

( ), ,

1,

0 for all , .

g g
g g

g
g

g

ja ja ij g
a i S a

ja
j S a

ja g

v v p a j S

v

v j S a

∈Α ∈ ∈Α

∈ ∈Α

 = ∈



=

 ≥ ∈ ∈Α

∑ ∑ ∑

∑ ∑
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and designing a policy A. The UC algorithm can assure that the optimal control policy ( )ucA g  
is found for each control gene 1{ , , }ng x x∈  . To evaluate the quality of g, we define its rank R( )g  
as the order of its corresponding ( )ucA g

Uπ  obtained by applying the optimal UC policy ( )ucA g  on 
the original BNp. For the control policy ˆ( )A g′  derived from the inferred network, we define its 
effectiveness as

where ˆ'( )A g
Uπ  is the stationary mass obtained by applying ˆ( )A g′  on the original BNp. This 

parameter measures the effect of policy ˆ'( )A g
Uπ  with respect to that of the optimal policy ( )ucA g

Uπ . 
The smaller this parameter, the more effective is the corresponding policy, and it goes to unity 
as ˆ ( )'( ) ucA gA g

U Uπ π→ . Because the rank R(g) is proportional to the minimal stationary mass ( )ucA g
Uπ

, we obtain

which means that the stationary mass ˆ'( )A g
Uπ  obtained by policy ' ˆ( )A g  is related to both the rank 

( )R g  and its effectiveness A
gα
′.

In this paper, we use the best-fit algorithm to infer a BNp' from time-series data. This 
algorithm usually returns one BNp' with very small errors, which may reflect different aspects 
of the essential structures of the original BNp. In this paper, we compare the UC and MFPT 
policies by generating three inferred PBN' models constructed from the first ( 1N = ), the first 
two ( 2N = ), and the first three ( 3N = ) smallest-error BNps' with equal selection probability q.

For a given BNp, the workflow used in this study was: (1) Rank the candidate control 
genes 1{ , , }ng x x∈   by the UC policy. 2) Randomly generate a time series from the original 
BNp and infer the PBNs. 3) Determine the best control genes *ˆucg  and *ˆmfptg  and design the 
optimal control policies ' *ˆ( )

uc ucA g , ' *ˆ( )
mfpt ucA g , ' *ˆ( )uc mfptA g , and ' *ˆ( )

mfpt mfptA g  based on the inferred PBNs. 
4) Apply the derived control policies to the original BNp and calculate their corresponding 
stationary mass ˆUπ .

The simulations were performed using the PBN Toolbox(http://code.google.com/p/ 
pbn-matlab-toolbox/).

RESULTS AND DISCUSSION

Simulation on synthetic networks

We first constructed 500 random BNps with n = 7 genes. The perturbation probability 
p of genes was 0.01 and the maximum input degree K = 3. We used the best-fit algorithm to 
generate m = 10, 20, 30, 40, 50, and 60 random time-series data from each BNp to infer the 
PBNs. For simplicity, we chose the first gene 1x  as the target gene and assumed that its down 
regulation is defined by the undesirable states 1U {x | 0}x= = . Figure 1 shows the average rank 

*ˆR( )g  and the stationary mass *ˆ( )U gπ  obtained by applying the derived policy '
ucA  and '

mfptA  from 
the inferred PBNs (N = 1, 2, 3) to the original BNp.

(Equation 6)ˆ ( )( ) / ucA gA A g
g U Uα π π′ ′=

(Equation 7)
ˆ( ) ( )A g A

U gR gπ α′ ′∝
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Figure 1. Average rank index *ˆR( )g  and average stationary mass Uπ  of undesirable states for a network with n = 
7 genes. Red (blue) indicates the result '

ucA  (
'
mfptA ) of the UC (MFPT) policy. The three solid horizontal lines are the 

average stationary mass Uπ  in the original BNps (black), the average minimal stationary mass *( )uc ucA g
Uπ  (red), and the 

*( )mfpt mfptA g
Uπ  (blue) obtained by the optimal UC and MFPT policy.

Figure 1A shows the average ranks *ˆR( )ucg  and *ˆR( )mfptg  with respect to the sample size 
m. Because the inferred PBNs are generally not the same as the original BNp, we have 

* *ˆR( ) R( )uc ucg g≥  and * *ˆR( ) R( )mfpt mfptg g≥ , where *
ucg  and *

mfptg  are the best control genes determined by the 
UC and MFPT policies, respectively, on the original BNp. The average rank *ˆR( )g  can be seen 
to decrease as the sample size m increases, i.e., *ˆR( ) 1g m∝ . The larger the sample size m, the 
better is the inferred PBN′ and the quality of determined control gene *ĝ . More importantly, 
the average rank * *ˆ̂R( ) R( )mfpt ucg g<  in the small-sample scenario, whereas * *ˆ̂R( ) R( )uc mfptg g<  in the large-
sample scenario. This result indicates that selecting the potential control gene by the MFPT 
(UC) policy is more appropriate in the small-sample scenario.

In the comparison of the effectiveness of the derived control policy '
ucA  on the same 

gene *
g  with that of '

mfptA , Figure 1B shows the average stationary masses 

*' ( )uc ucA g
Uπ  and ' *ˆ( )mfpt ucA g

Uπ  for 
control gene *ˆucg  as a function of sample size m. Because the MFPT policy does not allow the 
target gene 1x  to be the control gene, we select the second-best-determined control gene ˆucg  
if *ˆucg  is the target gene 1x  for some inferred PBNs. Figure 1C shows the average stationary 
masses ' *ˆ( )uc mfptA g

Uπ  and ' *ˆ( )mfpt mfptA g
Uπ  for control gene *ˆmfptg  as a function of sample size m. We can see 

that the average stationary mass ' *ˆ( )ucA g
Uπ  is generally larger than ' *ˆ( )mfptA g

Uπ . Here, we define their 
difference as '' ˆ( )ˆ( ) mfptuc A gA g

U Uπ π π∆ = − . This difference π∆  gradually decreases as the sample size m 
increases, which indicates that the MFPT policy '

mfptA  is more effective than the UC policy '
ucA

(i.e., ' '

* *ˆ̂
mfpt ucA A

g g
α α< ), and this advantage decreases as the sample size m increases.

Figure 1D shows the average stationary masses ' *ˆ( )uc ucA g
Uπ  and ' *ˆ( )mfpt mfptA g

Uπ  as a function of 
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sample size m. The relationship between the average stationary masses ' *ˆ( )uc ucA g
Uπ  and ' *ˆ( )mfpt mfptA g

Uπ  
appears similar to that observed for the average ranks *ˆR( )ucg  and *ˆR( )mfptg  [cf. Figure 1A]. We see 
that the average stationary mass ' * ' *ˆ( ) ˆ( )mfpt mfpt uc ucA g A g

U Uπ π<  in the small-sample scenario, whereas ' * ' *ˆ( ) ˆ( )mfpt mfpt uc ucA g A g
U Uπ π>  

in the large-sample scenario. Formula (7) indicates that the average stationary mass ' *ˆ( )uc ucA g
Uπ  ( ' *ˆ( )mfpt mfptA g

Uπ ) 
is determined both by the average rank *ˆR( )ucg  [ *ˆR( )mfptg ] and the effectiveness of their control policy 

'
ucA  ( '

mfptA ). In the small-sample scenario, both ' '

* *ˆ ˆ
mfpt uc

mfpt uc

A A
g g

α α<  and * *ˆ ˆ( ) ( )mfpt ucR g R g<  work together to give 
' * ' *ˆ( ) ˆ( )mfpt mfpt uc ucA g A g

U Uπ π< , whereas ' *' * ˆ( )ˆ( ) mfpt mfptuc uc A gA g
U Uπ π<  is the result of * *ˆ̂R( ) R( )uc mfptg g<  in the relatively-large-

sample scenario.

Figure 2. Average rank index *ˆR( )g  and average stationary mass Uπ  of undesirable states for a network with n = 9 
genes. Red (blue) shows the results '

ucA ( '
mfptA ) of the UC (MFPT) policy. The three solid horizontal lines are the average 

stationary mass Uπ  in the original BNps (black), the average minimal stationary mass *( )uc ucA g
Uπ  (red), and the *( )mfpt mfptA g

Uπ  
(blue) obtained by the optimal UC and MFPT policy.

Figure 2 shows the results obtained from 200 networks with n = 9 genes, which follow 
trends analogous to those observed in Figure 1. For the given imprecise inferred PBN′, both 
the derived UC policy '

ucA  and the derived MFPT policy '
mfptA  are a type of suboptimal policy for 

the original BNp, which causes the former to lose its optimality on the original BNp. Based 
on the results shown in Figures 1 and 2, we conclude that the MFPT policy '

mfptA  generally 
performs better in the small-sample scenario, whereas the UC policy '

ucA  performs better in the 
large-sample scenario.

Additionally, appropriately increasing the number N of constituent BNps in the 
inferred PBN' can improve the performance of the UC policy '

ucA  and has a relatively small 
effect on the MFPT policy. Obviously, as N increases from 1 to 3, the complexity of the 
inferred PBNs will also increase. These complicated PBNs may capture a greater number 
of essential dynamic behaviors of the original BNp, which is advantageous for determining 
the potential control gene *ĝ  and for designing the control policy. In particular, this is more 
favorable to the sensitive UC policy '

ucA  than to the robust MFPT policy '
mfptA .
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A metastatic melanoma network

The metastatic melanoma network has been used to demonstrate the effectiveness 
of various control policies. It contains 7 key genes, WNT5A, pirin, S100P, RET1, MART1, 
HADHB, and STC2, which we label 1x , …, 7x , respectively. The regulatory rules inferred from 
the gene expression data in Ref. (Bittner et al., 2000) are given in Table 1 (Pal et al., 2005), 
where the i-th bit of the binary output string is the binary output for the i-th input. The state 

1 WNT5Ax =  was observed to be strongly related to the metastatic state, and the state 1 1x =  was 
undesirable.

Table 1. Boolean functions of the metastatic melanoma network.

Function Input variables Output 

1f  6x  10 

2f  2 4 6, ,x x x  00010111 

3f  3 4 7, ,x x x  10101010 

4f  4 6 7, ,x x x  00001111 

5f  2 5 7, ,x x x  10101111 

6f  2 3 4, ,x x x  01110111 

7f  2 7,x x  1101 

 
For each sample size m = 10, 20, 30, we randomly generated 500 samples from which 

to infer PBN’ with N = 1, 3. The perturbation probability of each gene is p = 0.01. Before 
intervention, the stationary mass Uπ  of this network was 0.4648. 

Table 2 lists both the minimal stationary masses ( )ucA g
Uπ , ( )mfptA g

Uπ  and the average stationary 
masses ' ˆ( )ucA g

Uπ , ' ˆ( )mfptA g
Uπ  for each sample size m and parameter N. The average stationary mass 

' ˆ( )mfptA g
Uπ  is less than ' ˆ( )ucA g

Uπ  for most sample sizes m.

Table 2. Average stationary masses ' ( )ucA g
Uπ  and ' ( )mfptA g

Uπ  of each control gene g for sample sizes m = 10, 20, and 
30 for the metastatic melanoma network (P = 0.01).

   WNT5A pirin S100P RET1 MART1 HADHB STC2 
( )π ucA g

U   0.4425 0.2604 0.0208 0.0208 0.4648 0.0105 0.0258 

m = 10 N = 1 0.4606 0.4233 0.1232 0.2589 0.4648 0.1977 0.2311 
m = 20 0.4494 0.3546 0.0492 0.1151 0.4648 0.0902 0.0866 
m = 30 0.4458 0.3027 0.0337 0.0852 0.4648 0.0687 0.0458 
m = 10 N = 3 0.4596 0.3938 0.1047 0.1636 0.4648 0.1375 0.1781 
m = 20 0.4466 0.3114 0.0376 0.0464 0.4648 0.0287 0.0554 
m = 30 0.4441 0.2727 0.0234 0.0358 0.4648 0.0213 0.0318 

( )π mfptA g
U   - 0.2604 0.0208 0.0208 0.4648 0.0105 0.0258 

m = 10 N = 1 - 0.4014 0.1172 0.1712 0.4648 0.0510 0.1540 
m = 20 - 0.3414 0.0457 0.0570 0.4648 0.0136 0.0774 
m = 30 - 0.3035 0.0276 0.0354 0.4648 0.0169 0.0567 
m = 10 N = 3 - 0.3785 0.1003 0.1135 0.4648 0.0244 0.1347 
m = 20 - 0.3410 0.0412 0.0365 0.4648 0.0132 0.0741 
m = 30 - 0.2980 0.0246 0.0361 0.4648 0.0121 0.0467 

 

According to the minimal stationary mass ( )ucA g
Uπ , genes S100P, RET1, HADHB, and 

STC2 have the potential to intervene in this network. If we select one of these as the control 
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gene g, the UC policy ' ˆ( )ucA g  and the MFPT policy ' ˆ( )mfptA g  can drastically reduce the average 
stationary masses ' ˆ( )ucA g

Uπ  and ' ˆ( )mfptA g
Uπ . Gene HADHB is the best control of this network, and the 

MFPT policy '
mfptA  performs better than the UC policy '

ucA . This result is easy to understand 
because the UC policy is highly sensitive to the dynamics of the inferred PBN′; therefore, it 
is possible that its performance at this sample level is not as good as that of the MFPT policy. 
Both '

ucA  and '
mfptA  perform very well in general on the second-best control gene. Even for sample 

size m=10, '
ucA  and '

mfptA  can reduce the average stationary mass from 0.4648 to about 0.1.
The rank R( )g  of the above4genes are 2, 3, 1, and 4. Comparing the order of ' ˆ( )mfptA g

Uπ  
for each sample size m, we find that it almost accords with their rank R( )g , but ' ( )ˆucA g

Uπ  only 
accords with R( )g  for N = 3 and m = 20. This indirectly demonstrates that the control gene ˆmfptg  
determined by the MFPT policy ' ˆ( )mfptA g  is better than the control gene ˆucg  determined by the UC 
policy ' ˆ( )ucA g . Finally, we also observe that the average stationary mass ' ˆ( )ucA g

Uπ  or ' ˆ( )mfptA g
Uπ  for N = 3 

is always less than that for N=1.

CONCLUSIONS

An important problem in translational genomics is the use of GRNs to determine 
therapeutic intervention strategies. Two types of control policies exist for external control 
of the simulations: the optimal policy (i.e., UC) and the suboptimal policy (i.e., MFPT). 
Theoretically, in a complete network, the optimal policy performs better than the suboptimal 
policy. However, this might not be the case if we intervene in a system based on a control 
policy derived from an inferred imprecise network, especially in the small-sample scenario. 
Here, we compared the performance of the UC and MFPT policies in terms of the quality 
of the control gene determined and the effectiveness of the policy. Our results reveal that 
the key factor in an intervention is the quality of the control gene. This is especially true in 
biology, where in numerous cases, the activation/inactivation of one gene or protein could 
result in the faster (or with higher probability) attainment of a particular cellular functional 
state or phenotype than the activation/inactivation of another gene or protein (Vahedi et al., 
2008). In the small-sample scenario, the quality of the inferred PBNs is generally not high. 
The robustness of the MFPT policy allows it to determine a better control gene than that 
determined by the UC policy. In the large-sample scenario, the sensitive UC policy determines 
a better control gene than does the MFPT policy. Furthermore, given the same control gene, 
the MFPT policy is more efficient than the UC policy. These two features result in the MFPT 
policy performing better in the small-sample scenario and the UC policy performing better in 
the large-sample scenario.

Because the best control gene plays a level point to successfully intervene in a system, 
it is critical to solve the problem of finding this level point. In any system, one practical 
way to determine the potential control gene is to combine both the inferred structure and the 
knowledge of some biological pathway. Another possibility is to find some heuristic measure, 
such as the average sensitivity of a gene. If the potential control gene is determined, then it is 
preferable to adopt the MFPT policy for the small-sample scenario. In addition to its superior 
performance, the MFPT policy also offers a relatively simple and less time consuming design 
process, making it applicable to larger systems.

Finally, our results show that the use of a relatively complex model (N>1) improves 
the performance of intervention. Thus, such a model can compensate for the lack of data to 
some degree, especially in the case of the sensitive UC policy. This finding indicates that the 
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complex model captures a greater number of essential dynamic behaviors, which is beneficial 
both for determining the potential control gene and for designing the policy.
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