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ABSTRACT. The study of quantitative trait effects is of great significance 
for molecular marker-assisted breeding. The accuracy of quantitative trait 
loci (QTL) mapping is the key factor affecting marker-assisted breeding, 
and is extremely significant. The effect of different heritability rates (10, 
30, 50, 70, and 90%) on the accuracy of QTL mapping of five recombinant 
inbred lines (RILs) were analyzed via computer simulation. RILs display 
additive and epistatic genetic effects. The QTLs were analyzed using four 
different mapping procedures: multiple QTL model (MQM), composite 
interval mapping (CIM), multiple interval mapping (MIMR), and inclusive 
composite interval mapping (ICIM). The results revealed an increase in the 
QTL mapping accuracy and QTL detection power, and a decrease in the 
QTL interval range with the increase in heritability; conversely, an irregular 
number of false positive QTLs were generated. CIM and MQM only screen 
the additive and dominant effects; MIMR and ICIM screen the additive, 
dominant, and epistatic effects. The highest QTL detection power obtained 
using MQM and CIM was only 75%, while MIMR and ICIM showed a 
detection power of 100%. At heritability rates of more than 50 and less than 
10%, the detection powers of the MIMR and ICIM procedures were >95 
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and <35%, respectively. QTL mapping has no significance at heritability rates 
<10%. The results of this study suggest that QTL mapping has significance at 
a heritability rate >30% (at least >10%) for practical marker-assisted breeding.

Key words: QTL mapping; Heritability; Multiple procedures; Accuracy; 
Detection power; Computer simulation

INTRODUCTION

The late nineteenth century was witness to a rapid development in genetic linkage maps, 
QTL mapping methods, and related research on molecular genetics, accompanying the advancement 
in molecular marker technology. This has provided breeders with a powerful tool to study the 
genetic mechanism of quantitative traits of DNA at a molecular level. The mapping of quantitative 
trait loci (QTL) in plants and animals has become a worldwide phenomenon. A previous study has 
reported the mapping of 1287, 630, and 657 QTLs in pigs, cattle, and chicken (among animals), 
respectively, up to August, 2006 (Hu et al., 2007). Among plants, over 2000 QTLs have been reported 
(mapped) in soybean up to 2010 (Su et al., 2010a). QTLs can be used with high accuracy in marker-
assisted breeding or map-based cloning; however, false-positive QTLs cannot be utilized for these 
applications. Although QTL mapping has developed quickly over the past few years, a large number 
of these mapped QTLs cannot be used in marker-assisted breeding because of their low accuracy 
and dependability. The results of QTL mapping performed repeatedly (several times) have always 
been different (Beavis, 1994, 1998). Based on its accuracy, a genetic linkage map could be used 
for further marker-assisted breeding. The accuracy of QTL mapping is dependent on the detection 
power, the identified QTL range, and accuracy of the genetic parameters. Effective strategies must 
be developed and analyzed to increase the accuracy and dependability of QTL mapping; this is 
especially of significance in the case of marker-assisted breeding in plants.

Several QTL mapping methods, such as interval mapping (IM), composite interval mapping 
(CIM), and multiple interval mapping (MIM), have been developed and improved gradually over 
time. Mapmaker/QTL is the earliest QTL analyzing software, reported for the first time by Lander 
and Bostein (1989). Mapmaker/QTL is based on the IM model. Since then, other QTL mapping 
software, such as QTL Cartographer (Basten et al., 1994), PLABQTL (Utz and Melchinger, 1996), 
Map Manager (Manly et al., 2001), QGene (Nelson, 1997), MapQTL (van Ooijen and Maliepaard, 
1996), PGRI (Lu and Liu, 1995), QTLMAPPER (Wang et al., 2003), QTLSTA, IciMapping (Li et al., 
2007), and QTLnetwork (Yang et al., 2007, 2008) have been developed and reported. A number 
of QTL mapping software or software packages can be downloaded freely from a website created 
by the University of Wisconsin-Madison (http://www.stat.wisc.edu/~yandell/qtl/software/) (Su et al., 
2013). The composite interval mapping (CIM) and multiple interval mapping (MIM) functions of 
the WinQTL Cartographer v.2.5 (Wang et al., 2007) software program, the multiple-QTL model 
(MQM) of the MapQTL v.5.0 (van Ooijen et al., 2004) program, and the inclusive composite interval 
mapping (ICIM) model of the IciMapping v.2.0 software platform (Li et al., 2007) are four types of 
QTL mapping models that have found worldwide applicability.

The statistical algorithms and genetic models of the six mapping procedures are different 
(Utz and Melchinger, 1996; van Ooijen and Maliepaard, 1996; Kao et al., 1999; Wang, 2009). The 
CIM and MQM models only estimate the additive and dominant characteristics, while MIM and 
ICIM can be used to estimate the additive, dominant, and epistasis characteristics of the genetic 
models. In a practical experiment where the genetic model of the data is unknown, a multiple model 
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mapping strategy must be utilized (Su et al., 2013).
The heritability and marker density of the linkage map are two main factors that significantly 

affect the QTL mapping accuracy. Over the past few years, several researchers have attempted to 
analyze the QTL mapping accuracy, in order to increase the efficiency of marker-assisted breeding. The 
results obtained varied for different researchers because of the differences in the simulation methods, 
segregation population, and QTL mapping procedures used. A majority of the previous studies on QTL 
mapping accuracy consider only the additive and dominant effects, and not the epistatic effects. 

In this study, five RIL populations with different levels of heritability (10, 30, 50, 70, and 90%) 
were subjected to computerized simulation and (subsequently) QTL analysis. The RIL populations 
displayed the same genetic model (y = µ + a1 + a2 + aa12 + a3 + e). The influence of the different 
levels of heritability on the accuracy of QTL mapping was analyzed in this study. The results of this 
study could serve as a theoretical and practical basis for future marker-assisted breeding in plants.

MATERIAL AND METHODS

Genetic model setting and analysis index

Five sets of RIL data on the additive and interactive functions between genes in a genetic 
model were produced (simulated 120 times) based on the differences in the heritability level. The 
five sets of RIL data, named RIL-1 ~ RIL-5, were completed by computer simulation, and utilized 
for further QTL detection. A sample size of 250 family lines was set for each simulated RIL. Three 
QTLs located within three linkage groups, with the genetic model “y = µ + a1 + a2 + aa12 + a3 + 
e”, were set up. The letter y indicates the phenotypic value of quantitative characters, while the 
letters µ and a represent the general average number and mean additive effects, respectively. 
The combined aa indicates the interaction between the genes (epistatic effect), while the letter e 
represents the error that complies with the normal distribution “e ~ N (0, σe

2)”.
The analysis index calculated for all 120 simulations considered the QTL detection 

power, number of false-positive QTLs, variation range of the effects of QTLs, accuracy of the QTL 
effects, coefficient of variation (CV) of the QTL effects, and the variation range of QTL position. 
The accuracy of the QTL effects was calculated using the following equation “1-|average value-set 
value| / set value”. The QTLs identified within 10 cM (centimorgan) were considered to be identical 
to the QTL analyzed in this study.

RIL simulation

Marker genotype and QTL simulation

The computer simulation methodology reported by He et al. (2001) was utilized as the 
reference for this study. This method assumed the presence of two adjacent markers, Mk and 
Mk+1, on a chromosome with a recombination frequency r. The genotypes of the two markers (Mk 

and Mk+1) were recorded to be xk and xk+1. The values assigned to xk and xk+1 (0 and 1, respectively) 
indicate that the DNA of the two loci arise from two homozygous parents (P1 and P2, respectively). 
While the value of xk was confirmed to be “1”, the genotype of xk+1 was inferred and confirmed 
from the known genotype of xk. The presence of n1 individuals with the genotype xk (with a value 
of “1”) was assumed. A total of n1 uniformly distributed random numbers (between 0 and 1) were 
generated continuously, and recorded as “rnd”. The value of xk+1 was determined to be “1”, when 
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rnd ≤ (1-r)2. The value of xk+1 was determined to be “0” when rnd > (1-r)2. The value of xk+2, xk+3, and 
so on, were inferred and confirmed based on the known value of xk+1. The value of xk was confirmed 
to be “0”; the values of xk+1, xk+2, xk+3, and so on were inferred based on an assumed xk value of “1”.

Confirmation of the marker genotypes at the starting position of the simulated 
linkage group 

The xk value can be determined as 0 or 1 based on a probability of 0.50. A total of n 
random numbers were generated continuously between 0 and 1. The value of xk was calculated to 
be 0 and 1 when the rnd values were ≤ 0.5 or > 0.50, respectively. The same method was applied 
to confirm the QTL marker genotype; this value was recorded as xQ. Each simulated RIL generated 
a total of three linkage groups (Lg1, Lg2, and Lg3) containing 20 markers; these markers were 
used for further QTL analyses. Different recombination frequencies were set up between the two 
adjacent markers in the different linkage groups (0.06 in Lg1, 0.08 in Lg2, and 0.10 in Lg3). Three 
related QTLs (Qset1, Qset2, and Qset3) were simulated according to the different genetic models of the 
simulated RILs. Qset1 was set up to be located at the marker 12 ~ marker 13 (M12 ~ M13) interval 
in linkage group 1 (Lg1). On the other hand, Qset2 and Qset3 were set up to be located at the M12 ~ 
M13 and M6 ~ M7 intervals in Lg2 and Lg3, respectively.

Confirmation of the phenotypic value of the quantity trait

The phenotypic values were set up according to the genetic model “y = µ + a1 + a2 + aa12 

+ a3 + e”. The genetic parameters in the model were set up as follows: the genetic effect of a1, a2, 

a3, and aa12 were -3, -2.5, -1.5, and 2, respectively. Different heritability levels (10, 30, 50, 70, and 
90%) were set up for the five sets of simulated RILs.

QTL mapping procedures

Four types of QTL mapping procedures were utilized for further QTL analysis of the simulated 
data. These were the composite interval mapping (CIM) and regression forward selection of multiple 
interval mapping (MIMR) models provided in the WinQTL Cartographer v.2.5 software package, 
inclusive composite interval mapping (ICIM) function of the IciMapping (v.2.0) package, and the 
multiple-QTL model (MQM) provided by the MapQTL v.5.0 software platform. The data was analyzed 
up to one thousand permutations to determine the threshold logarithm of Odd’s ratio (LOD) values. 

RESULTS 

Coincidence analysis between the actual and preset values when analyzed using 
different procedures 

Different mapping procedures were applied to analyze the effects of QTL on five sets of RIL 
data (repeated 120 times). Several parameters, including the average, accuracy, minimum value, 
maximum value, and coefficient of variation (CV), were obtained by calculating and analyzing 
the 120 values obtained from the 120 simulations. The related results of all statistical analyses 
conducted on the QTL mapping power, the range of variation in the QTL position, and the numbers 
of false positive QTLs, are summarized in Table 1. 
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Table 1. Estimates of genetic parameters using simulation data of five sets of recombinant inbred line (RILs) 
subjected to four different quantitative trait loci (QTL) mapping procedures: multiple QTL model (MQM), composite 
interval mapping (CIM), inclusive CIM (ICIM), and multiple interval mapping (MIMR)).

Procedure	 Effect	 True value	 Average	 Accuracy	 Minimum	 Maximum	 CV	 RanQTL (cM)	 Power (%)	 False QTL

MQM, 120 times of simulation
   10%	 a1	   -3.00	   -3.62	 0.28	     -5.16	   -2.98	 0.130	   24.59	   20	 -
	 a2	   -2.50	   -3.78	 0.49	     -5.00	   -2.94	 0.140	   39.08		  -
	 aa12	    2.00	 -	 -	 -	 -	 -	 -		  -
	 a3	   -1.50	   -3.58	 0.28	     -4.56	   -3.12	 0.148	   24.20		  -
   30%	 a1	   -3.00	   -2.84	 0.95	     -4.15	   -1.78	 0.160	   11.46	   51	 -
	 a2	   -2.50	   -2.46	 0.99	     -3.38	   -1.77	 0.149	   12.42		  -
	 aa12	    2.00	 -	 -	 -	 -	 -	 -		  -
	 a3	   -1.50	   -2.11	 0.60	     -2.63	   -1.79	 0.126	   32.45		  -
   50%	 a1	   -3.00	   -2.75	 0.92	     -3.51	   -1.89	 0.106	     0.34	   58	 -
	 a2	   -2.50	   -2.39	 0.96	     -3.18	   -1.76	 0.121	     0.00		  -
	 aa12	    2.00	 -	 -	 -	 -	 -	 -		  -
	 a3	   -1.50	   -1.63	 0.91	     -2.12	   -1.33	 0.115	 38.9		  -
   70%	 a1	   -3.00	   -2.81	 0.94	     -3.26	   -2.14	 0.070	     0.00	   65	 -
	 a2	   -2.50	   -2.37	 0.95	     -2.97	   -1.86	 0.081	     0.00		  -
	 aa12	    2.00	 -	 -	 -	 -	 -	 -		  -
	 a3	   -1.50	   -1.33	 0.89	     -1.75	   -1.11	 0.108	   21.13		  -
   90%	 a1	   -3.00	   -2.79	 0.93	     -3.04	   -2.55	 0.034	     0.00	   74	 -
	 a2	   -2.50	   -2.36	 0.97	     -2.58	   -2.07	 0.044	     0.00		  -
	 aa12	    2.00	 -	 -	 -	 -	 -	 -		  -
	 a3	   -1.50	   -1.19	 0.79	     -1.37	   -0.97	 0.074	     0.39		  -
CIM, 120 times of simulation
   10%	 a1	 -3.0	   -4.11	 0.63	     -5.80	   -2.88	 0.208	   28.52	 27.1	 -
	 a2	 -2.5	   -3.98	 0.41	     -6.55	   -2.93	 0.182	   47.15		  -
	 aa12	  2.0	 -	 -	 -	 -	 -	 -		  -
	 a3	 -1.5	   -3.96	 0.39	     -5.56	   -2.99	 0.172	   29.95		  -
   30%	 a1	 -3.0	   -2.98	 0.99	     -4.50	   -1.75	 0.191	   12.46	 62.3	 -
	 a2	 -2.5	   -2.59	 0.96	     -3.70	   -1.55	 0.170	   11.42		  -
	 aa12	  2.0	 -	 -	 -	 -	 -	 -		  -
	 a3	 -1.5	   -2.12	 0.58	     -3.31	   -1.53	 0.218	   33.45		  -
   50%	 a1	 -3.0	   -2.77	 0.92	     -4.00	   -1.38	 0.145	     3.87	   72	 -
	 a2	 -2.5	   -2.56	 0.98	     -3.46	   -1.75	 0.131	     1.87		  -
	 aa12	  2.0	 -	 -	 -	 -	 -	 -		  -
	 a3	 -1.5	   -1.65	 0.90	     -2.83	   -1.12	 0.218	   31.56		  -
   70%	 a1	 -3.0	   -2.83	 0.94	     -3.41	   -2.12	 0.081	     0.34	   75	 -
	 a2	 -2.5	   -2.52	 0.99	     -3.33	   -2.07	 0.085	 0		  -
	 aa12	  2.0	 -	 -	 -	 -	 -	 -		  -
	 a3	 -1.5	   -1.51	 0.99	     -2.09	   -1.04	 0.148	     9.99		  -
   90%	 a1	 -3.0	   -2.79	 0.93	     -3.14	   -2.52	 0.040	     0.34	   75	 -
	 a2	 -2.5	   -2.49	 1.00	     -2.80	   -2.17	 0.049	 0		  -
	 aa12	  2.0	 -	 -	 -	 -	 -	 -		  -
	 a3	 -1.5	   -1.48	 0.99	     -1.82	   -1.13	 0.088	     1.39		  -
ICIM, 120 times of simulation
   10%	 a1	   -3.00	   -3.89 	 0.70 	     -6.35 	   -2.72 	 0.198	   30.00 	   26	 20 (A) +2 (AA)
	 a2	   -2.50	   -3.80 	 0.48 	     -5.43 	   -2.75 	 0.151	   45.00 		
	 aa12	    2.00	    5.11 	 0.34 	      4.28 	    6.07 	 0.116	 -		
	 a3	   -1.50	   -3.71 	 0.32 	     -4.34 	   -3.10 	 0.092	   33.00 		
   30%	 a1	   -3.00	   -2.90 	 0.97 	     -4.95 	   -1.73 	 0.198	     1.00 	   70	 18 (A) +3 (AA)
	 a2	   -2.50	   -2.59 	 0.97 	      3.84 	   -1.62 	 0.166	     0.00 		
	 aa12	    2.00	    2.55 	 0.73 	      2.01 	    3.27	 0.119	 -		
	 a3	   -1.50	   -2.03 	 0.64 	     -3.23 	   -1.57 	 0.162	   35.00 		
   50%	 a1	   -3.00	 -2.9	 0.97	     -4.01	   -1.60	 0.140	     1.00	   95	 31 (A) +5 (AA)
	 a2	   -2.50	   -2.54	 0.99	     -3.32	   -1.91	 0.122	     1.00		
	 aa12	    2.00	    1.91	 0.96	      1.37	    2.72	 0.152	 -		
	 a3	   -1.50	   -1.64	 0.91	     -2.55	   -1.10	 0.178	   40.00		
   70%	 a1	   -3.00	   -2.94	 0.98	     -3.60	   -2.38	 0.088	     1.00	   98	 27 (A) +5 (AA)
	 a2	   -2.50	   -2.55	 0.98	     -3.36	 -2.1	 0.083	     0.00		
	 aa12	    2.00	    1.89	 0.95	      1.44	    2.44	 0.108	 -		
	 a3	   -1.50	   -1.55	 0.97	     -2.00	   -0.98	 0.148	     0.00		

Continued on next page
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Procedure	 Effect	 True value	 Average	 Accuracy	 Minimum	 Maximum	 CV	 RanQTL (cM)	 Power (%)	 False QTL

   90%	 a1	   -3.00	   -2.89 	 0.96 	     -2.52 	   -3.49 	 0.069	     0.00 	 100	 23 (A) +7 (AA)
	 a2	   -2.50	   -2.50 	 1.00 	     -2.79 	   -2.21 	 0.045	     0.00 		
	 aa12	    2.00	    1.92 	 0.96 	      1.49 	    2.36 	 0.069	 -		
	 a3	   -1.50	   -1.54 	 0.97 	     -1.80 	   -1.16 	 0.074	     0.00 		
MIMR, 120 times of simulation
   10%	 a1	   -3.00	   -4.26 	 0.58 	   -12.02	   -2.91 	 0.327	   29.52 	 32.1	 16 (A) +1 (AA)
	 a2	   -2.50	   -4.10 	 0.36 	   -10.40 	   -2.93 	 0.277	   44.67 		
	 aa12	    2.00	    3.73 	 0.13 	      3.27 	    4.25 	 0.098	 -		
	 a3	   -1.50	   -4.61 	 0.52 	 -15.3 	   -2.99 	 0.556	   28.16 		
   30%	 a1	   -3.00	   -3.15 	 0.95 	     -7.73 	   -1.97 	 0.236	     9.00 	 85.4	 12 (A) +1 (AA)
	 a2	   -2.50	   -2.63 	 0.95 	     -4.00 	   -1.63 	 0.166	     5.00 		
	 aa12	    2.00	    2.10 	 0.95 	      1.53 	    2.97 	 0.166	 -		
	 a3	   -1.50	   -2.07 	 0.62 	     -4.22 	   -1.46 	 0.207	     5.51 		
   50%	 a1	   -3.00	   -3.00 	 1.00 	     -4.01	   -1.89 	 0.136	     0.43 	 95.6	 23 (A)+5 (AA)
	 a2	   -2.50	   -2.62 	 0.95 	     -3.71 	   -1.77 	 0.131	     1.00 		
	 aa12	    2.00	    1.92 	 0.96 	      1.19 	    2.73 	 0.173	 -		
	 a3	   -1.50	   -1.64 	 0.90 	     -2.38 	   -1.07 	 0.203	   35.45 		
   70%	 a1	   -3.00	   -3.06 	 0.98 	     -3.93 	   -2.56 	 0.073	     0.09 	 100	 13 (A) +1 (AA)
	 a2	   -2.50	   -2.57 	 0.97 	     -3.37 	   -2.01 	 0.089	     0.09 		
	 aa12	    2.00	    1.92 	 0.96 	      1.30 	    2.46 	 0.106	 -		
	 a3	   -1.50	   -1.55 	 0.97 	     -2.02 	   -1.05 	 0.143	     1.39 		
   90%	 a1	   -3.00	   -2.98 	 0.99 	     -3.29 	   -2.69 	 0.040	     0.09 	 100	 14 (A) +2 (AA)
	 a2	   -2.50	   -2.57 	 0.97 	     -5.46 	   -2.24 	 0.113	     0.09 		
	 aa12	    2.00	    1.94 	 0.97 	      1.59 	    2.21 	 0.056	 -		
	 a3	   -1.50	   -1.56 	 0.96 	     -1.86 	   -1.30 	 0.065	     0.48 		

Table 1. Continued.

Accuracy is determined as (1-|average-true value| / true value); CV, coefficient of variation; A, additive QTL; AA, 
epistatic QTL pair; RanQTL, the range of QTL location.

QTL detection power 

The CIM and MQM procedures could not detect the epistatic effect. The detection power 
of CIM and MQM was observed to be much lower than that of MIMR and ICIM; however, the 
heritability level was the same in all four procedures. The detection power increased with the 
increase in the heritability levels; the progressive increase in heritability levels from 10 to 90% 
resulted in a corresponding increase in the detection power of MQM from 20 to 74%, of CIM from 
27.1 to 75%, of ICIM from 26 to 100%, and that of MIMR from 32.1 to 100%. The highest detection 
power of the MQM and CIM procedures (which can only estimate the additive and dominant effects) 
was 75% despite the increase in heritability. The highest detection power of MIMR and ICIM (which 
estimates the additive, dominant, and epistatic effects), on the other hand, was 100%. Unlike MQM 
and CIM, the detection power of MIMR and ICIM could be increased up to 100% by increasing the 
heritability level.

Variation range of QTL position

The QTLs detected within 10 cM were considered to be the same as the QTL analyzed 
in this study. The QTL position of the five sets of RILs, detected using different procedures, varied 
from 0 to 45 cM. The variation range of the QTL position showed a gradual decrease with the 
progressive increase in heritability levels from 10 to 90%; that is, the variation range of the QTL 
position was at its maximum at a heritability of 10%. The variation ranges of the Qset1, Qset2, and 
Qset3 positions as determined by the four different QTL mapping procedures, MQM, CIM, ICIM, and 
MIMR, at a heritability level of 10% were 24.59, 28.52, 30.00, and 29.52 cM, 39.08, 47.15, 45.00, 
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and 44.67cM, and 24.20, 29.95, 33.00, and 28.16 cM, respectively. The minimum variation range of 
the QTL position was observed at a heritability of 90%. The variation ranges of the Qset1, Qset2, and Qset3 
positions as determined by the MQM, CIM, ICIM, and MIMR mapping procedures, were 0.00, 0.34, 
0.00, and 0.09 cM, 0.00, 0.00, 0.00, and 0.09 cM, and 0.39, 1.39, 0.00, and 0.48 cM, respectively.

Conformity analysis between the actual and preset values 

The actual values calculated using the different procedures and the preset values were 
consistent unless the mapping procedure was not fit for the genetic model data; for example, the 
actual value of epistasis between Qset1 and Qset2 (aa12) could not be detected using the CIM and 
MQM procedures (which cannot determine the epistasis effects; Table 1). The genetic effects, 
accuracy, and CV of the same QTL fluctuated to a certain extent when subjected to 120 simulations. 
The accuracy of a1, a2, and a3 in RIL-1, using the MQM, CIM, ICIM, and MIMR QTR mapping 
procedures, were 0.28, 0.30, 0.70, and 0.58, 0.49, 0.41, 0.48, and 0.36, and 0.28, 0.39, 0.32, and 
0.52, respectively, in RIL-1. The accuracy of aa12, as determined by ICIM and MIMR, was 0.34 
and 0.13, respectively. The highest accuracy (0.70) of the actual value of a1 was obtained using 
ICIM. The least variation range of the actual value of a1 was obtained using the MQM procedure 
(2.18), followed by CIM (2.92). The highest accuracy of 0.49 was obtained for the actual value of 
a2, when evaluated with MQM. The least variation range was obtained when the actual value of 
a2 was determined using MQM (2.06) and ICIM (2.68). On the other hand, the actual value of a3 
was calculated with highest accuracy (0.52) using the MIMR procedure. The least variation range 
in the actual value of a3 was obtained when determined using the MIMR and MQM procedures 
(1.24 and 1.44, respectively). The accuracy of a1, a2, and a3, as determined by the MQM, CIM, 
ICIM, and MIMR QTL mapping procedures, were 0.95, 0.99, 0.97, and 0.95, 0.99, 0.96, 0.97, and 
0.95, and 0.60, 0.58, 0.64, and 0.62, respectively, in RIL-2. ICIM and MIMR effected accuracies of 
0.73 and 0.95 to aa12, respectively. The actual values of a1, a2, and a3 were determined with highest 
accuracy (0.99, 0.99, and 0.64) using the CIM, MQM, and ICIM models, respectively. The least 
variation ranges of the actual values of a1, a2, and a3 were obtained using MQM and CIM (2.37 
and 2.75), MQM and CIM (1.61 and 2.15), and MQM and ICIM (0.84 and 1.66), respectively. The 
accuracies of a1, a2, and a3 in RIL-3 were determined by the MQM, CIM, ICIM, and MIMR mapping 
methods to be 0.92, 0.92, 0.97, and 1.00, 0.96, 0.98, 0.99, and 0.95, and 0.91, 0.90, 0.91, and 
0.90, respectively. The accuracy of aa12 was determined to be 0.96 by both ICIM and MIMR. The 
actual values of a1, a2, and a3 were determined with highest accuracy (1.00, 0.99, and 0.91) using 
the MIMR, ICIM, and both MQM and ICIM procedures, respectively. The least variation ranges of 
the actual values of a1, a2, and a3 were obtained using MQM and MIMR (1.62 and 2.12), ICIM and 
MQM (1.41 and 1.42), and MQM and MIMR (0.79 and 1.31), respectively. The MQM, CIM, ICIM, 
and MIMR models generated a1, a2, and a3 values in RIL-4 with accuracies of 0.94, 0.94, 0.98, and 
0.98, 0.95, 0.99, 0.98, and 0.97, and 0.89, 0.99, 0.97, and 0.96, respectively, while ICIM and MIMR 
generated aa12 values with accuracies of 0.95 and 0.96, respectively. The actual values of a1, a2, 
and a3 were determined with highest accuracy (0.98, 0.99, and 0.99) using the ICIM and MIMR, 
CIM, and CIM procedures, respectively. The least variation ranges of the actual values of a1, a2, 
and a3 were obtained using MQM and ICIM (1.12 and 2.12), MQM (1.11), and MQM and MIMR 
(0.64 and 0.97), respectively. The MQM, CIM, ICIM, and MIMR QTL mapping models generated 
a1, a2, and a3 values in RIL-5 with accuracies of 0.93, 0.93, 0.96, and 0.99, respectively, 0.97, 1.00, 
1.00, and 0.97, respectively, and 0.79, 0.99, 0.97, and 0.96, respectively, while ICIM and MIMR 
generated aa12 values with accuracies of 0.97 and 0.96, respectively. The actual values of a1, a2, 
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and a3 were determined with highest accuracy (0.99, 1.00, and 0.99) using the MIMR, CIM and 
ICIM, and CIM procedures, respectively. The least variation ranges of the actual values of a1, a2, 
and a3 were obtained using the MQM and MIMR (0.49 and 0.60), MQM and ICIM (0.51 and 0.58), 
and MQM and MIMR (0.40 and 0.56) models, respectively. 

Analysis of false-positive QTLs

The counting of false positive QTLs screened by MQM and CIM is of no significance, 
as these two QTL mapping procedures cannot detect the epistatic effects. Therefore, only the 
false positive QTL numbers generated by ICIM and MIMR were counted; the statistical results are 
summarized in Table 1. 

The number of false positive QTLs detected by ICIM and MIMR were different when the 
same RIL data was simulated 120 times. The ICIM and MIMR procedures detected 20 and 16 
additive and 2 and 1 pair(s) of epistatic false-positive QTLs, respectively, in RIL-1. ICIM generated 
18 additive and 3 pairs of epistatic false-positive QTLs, while MIMR detected 12 additive and 1 
pair of epistatic false-positive QTLs in RIL-2. On the other hand, the ICIM and MIMR procedures 
generated 31 and 23 additive false-positive QTLs and 5 pairs each of epistatic false-positive QTLs, 
respectively, in RIL-3. ICIM detected 27 additive and 5 pairs of epistatic false-positive QTLs and 
MIMR generated 13 additive and 1 pair of epistatic false-positive QTL in RIL-4. Finally, the ICIM 
and MIMR procedures detected 23 and 14 additive and 7 and 2 pairs of epistatic false-positive 
QTLs, respectively, in RIL-5.

In summary, the detection power of QTL was observed to increase with the increase in 
heritability level. The highest detection power of the MQM and CIM procedures (which cannot 
detect the epistatic effects of five RILs) was 75%, while MIMR and ICIM effected detection powers 
of 100%. The power of detection of the four QTL mapping procedures was less than 35% at 
QTL heritability rates of less than 10%; this can be classified as a small probability event. At QTL 
heritability rates of > 30%, the detection power of ICIM and MIMR was > 70 and 85%, respectively. 
On the other hand, at a QTL heritability of > 50%, the detection power of the ICIM and MIMR QTL 
mapping procedures was > 95% each. The number of false-positive QTLs generated in the five 
sets of simulated RILs using the same QTL mapping procedure remained unchanged. Overall, the 
number of false-positive QTLs detected by MIMR was lesser than that detected by ICIM for the 
same genetic model with the same heritability. The accuracy of QTL mapping was increased by 
adding the heritability level. The accuracy of both a1 and a2, as detected by the four QTL mapping 
procedures was > 90% at a QTL heritability rate of > 30%. The accuracy of a1, a2, a3, and aa12, as 
determined by the four QTL mapping procedures, was > 90% percent at QTL heritability rates of 
> 50%. The range of variation of the QTL position, on the other hand, became narrower with the 
addition of the QTL heritability level. The variation ranges of both the Qset1 and Qset2 positions were 
< 10 cM, when calculated using the by four QTL mapping procedures, at heritability rates of > 
30%. Conversely, the variation in the range of Qset1 and Qset2 was < 5 cM (as calculated by the QTL 
mapping procedures) at a heritability rate of > 50%. The four QTL mapping procedures displayed 
variation ranges of < 10 cM for the Qset1, Qset2, and Qset3 positions at heritability rates > 70%. On the 
other hand, the MQM, ICIM, and MIMR QTL mapping procedures generated variation ranges < 5 
cM for the Qset1, Qset2, and Qset3 positions.

We observed an increase in the accuracy of QTL mapping and QTL detection power, and 
a decrease in the variation range of the QTL position with the increase in heritability. In addition, 
we identified an irregular number of false-positive QTLs. The QTL mapping analysis is of no 



13011Heritability level and process affect QTL mapping accuracy

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 13003-13012 (2015)

significance at heritability rates < 10%. In a practical study, however, at least three strategies 
must be applied at QTL heritability rates < 30% to increase the confidence of the results of QTL 
mapping: use of multiple QTL mapping strategies (Su et al., 2013), the development of a secondary 
population based on the results of primary mapping, and the use of repetitive results obtained from 
experiments conducted over many years or locations. It has been suggested that QTL mapping 
has meaning at heritability rates > 30% (at least > 10%) in practical marker-assisted breeding.

DISCUSSION

The QTL analysis was performed using four different QTL mapping procedures (MQM, 
ICIM, CIM, and MIMR) to increase the persuasiveness and reproducibility of the five sets of 
computer simulated RIL data. Among these, MQM and CIM could only detect the additive and 
dominant effects, while ICIM and MIMR could be applied to estimate the additive, dominant, and 
epistatic effects. The obtained results, which shared some similar aspects with the results of a 
previous study (Su et al., 2010b and 2013), revealed the importance of selecting the appropriate 
QTL mapping procedure for different populations, using different genetic models. Many research 
groups have previously analyzed the QTL mapping accuracy. However, these studies were 
inadequate; for example, Xu (1994) analyzed only one QTL, linked to a single molecular marker 
with a heritability of 60%, in order to determine the influence of the QTL mapping accuracy based 
on the differences in the sample size. On the other hand, Beavis (1994, 1998) subjected only 
one marker interval, located in a single linkage, to computer simulation. A majority of researchers 
have considered only one QTL in their studies. The genetic parameters of the simulated QTL 
contains only the additive and dominant effects (always); very few studies have considered any 
epistatic effects of the QTLs. A majority of the previously conducted studies applied simple genetic 
statistical models, such as interval mapping or composite interval mapping. The above-mentioned 
shortcomings were overcome in this study by simulating three additive effects a1, a2, and a3 and one 
epistatic effect aa12 of Qset1, Qset2, Qset3, and the interaction between Qset1 and Qset2. The influence of 
different heritability levels on QTL mapping accuracy was also analyzed using different procedures. 
The heritability, power of QTL detection, false positive rate, and accuracy of a majority of the QTLs 
is always between 10 and 30% in the factual QTL mapping process. The mechanism with which 
the change in heritability from 10 to 30% results in changes in the genetic parameters requires 
further analysis. The results of this study indicated that the QTL mapping accuracy was affected by 
the heritability level. The results of this study could lay the foundation for the application of marker-
assisted breeding for some important agronomic traits in plants in the future.
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