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ABSTRACT. We attempted to identify significant pathway cross-
talk in rheumatoid arthritis (RA) by the Monte Carlo cross-validation 
(MCCV) method. We therefore obtained and preprocessed the gene 
expression profile of RA. MCCV involves identifying differentially 
expressed genes (DEGs), identifying differential pathways (DPs), 
calculating the discriminating score (DS) of the pathway cross-talk, and 
random forest (RF) classification. We carried out 50 bootstrap iterations 
of MCCV to identify the key instances of pathway cross-talk involved 
in RA. We identified a total of 17 significant DEGs and 15 significant 
DPs by comparing RA samples and normal controls. We found the most 
significant difference between RA and the normal controls in the eIF4 
and p70S6K signaling regulation pathway. Furthermore, we identified 10 
instances of pathway cross-talk with the best classification performance 
for RA and normal controls, using the RF classification model. All of 
the top 10 pathway pairs involved cross-talk with eIF4 and p70S6K 
signaling regulation, and the other 10 pathways were immune-related. 
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By MCCV, we identified one critical DP and 10 significant instances 
of pathway cross-talk in RA. We propose that the eIF4 and p70S6K 
signaling regulation pathway and the other significant instances of 
pathway cross-talk play key roles in the occurrence and development 
of RA, and are potential predictive and prognostic markers for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a common, chronic, inflammatory, and destructive 
arthropathy that cannot be cured; it involves substantial personal, social, and economic costs 
(McInnes and Schett, 2011). Current studies indicate that genetic and environmental factors, 
such as smoking and infection, contribute to the development of RA (Liu et al., 2013; Hensvold 
et al., 2015). However, its exact cause remains unclear.

Pathway analysis is a very effective means of gaining insight into the mechanisms 
underlying diseases (Goeman and Bühlmann, 2007). T cells, B cells, and the orchestrated 
interaction of pro-inflammatory cytokines play key roles in the pathophysiology of RA (Choy, 
2012). Cytokine-related signaling pathways are also associated with the disease (McInnes and 
Schett, 2007; Bartok and Firestein, 2010). Most currently available methods consider such 
pathways to be independent mechanisms (Yi et al., 2013), and do not take into account the 
correlation between pathways, which is referred to as cross-talk (Liu et al., 2010). However, 
pathways are likely to interact with or influence each other in biological processes (Li et al., 
2008). Therefore, identifying pathway interactions through genetic screening is an effective 
biological approach to uncovering pathway cross-talk (Tong et al., 2004). There are several 
approaches to leave-one-out cross-talk validation, such as the Cp statistics method (Mallows, 
1973), the jackknife and bootstrap method (Efron, 1986), and cross validation (CV) (Wold, 
1978). These methods are good for calibration but poor for prediction. Monte Carlo cross-
validation (MCCV), an asymptotically consistent method for determining the number of 
components in a calibration model, avoids an unnecessarily large model and therefore reduces 
the risk of over-fitting model calibration (Xu and Liang, 2001).

We performed MCCV to carry out pathway cross-talk analysis on the gene expression 
profile of RA to gain a better understanding of its etiology and underlying mechanism. To 
achieve this, we first obtained and preprocessed the gene expression profile of RA. We then 
implemented MCCV to identify the key instances of pathway cross-talk involved in RA. This 
comprised four steps: identifying differentially expressed gene (DEGs); identifying differential 
pathways (DPs); calculating the discriminating score (DS) of the pathway cross-talk; and 
random forest (RF) classification. Our results might provide new insight into the molecular 
pathology and underlying genetic targets of RA.

MATERIAL AND METHODS

Data recruitment and preprocessing

The gene expression profile of RA (accession number E-GEOD-45291) (Bienkowska 
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et al., 2014) was downloaded from the ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/). It exists on the A-GEOD-13158 - [HT_HG-U133_Plus_PM] Affymetrix HT 
HG-U133+ PM Array Plate platform. This dataset comprised a total of 805 whole blood 
samples, including those from: 378 RA patients who had responded satisfactorily to a disease-
modifying anti-rheumatic drug; 115 RA patients who had not responded satisfactorily to tumor 
necrosis factor (TNF)-blocking therapy, and had discontinued TNF blocking treatment for at 
least 90 days; 292 patients with systemic lupus erythematosus; and 20 healthy volunteer donors. 
We selected 115 RA patients who had not responded satisfactorily to TNF-blocking therapy 
and 20 normal controls for the study. Importantly, the 115 RA patients had discontinued TNF-
blocking treatment for at least 90 days, so the effects of TNF on the blood transcriptome of 
the RA patients were considered to have been eliminated. We then downloaded the microarray 
data and annotation files. The gene expression profile at the probe level was converted to gene 
symbols. Finally, we wiped off the duplicated symbols, leaving a total of 20,276 gene symbols.

MCCV

In the present study, we implemented 50 bootstrap iterations of MCCV to identify the 
instances of pathway cross-talk associated with RA, and quantify the cross-talk. Figure 1 is a 
flowchart of the analytical procedure. In each bootstrap iteration, the expression profile data 
were divided randomly into two groups in a 6:4 ratio, of which 60% was treated as a training 
set and the remaining 40% was treated as a testing set. Cross-validation between the training 
and testing sets was carried out in each bootstrap iteration. Thus, MCCV randomly produced 
new training and testing sets in each bootstrap iteration, which comprised the following four 
steps: identifying DEGs, identifying differential pathways, calculating the DS value of the DP 
cross-talk, and RF classification.

Figure 1. Schematic description of the method of Monte Carlo Cross-Validation (MCCV) that used in the research.
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Identifying DEGs

Before identifying DEGs, we carried out data preprocessing to further control the 
quality of the data and eliminate batch effects caused by experimental parameters and other 
factors. Quantiles (Bolstad et al., 2003) were applied to standardize the normalization of the 
expression data. The genes whose quantile means across all samples were higher than 0.25-fold 
were selected for further analysis. To calculate the differential expression levels, the quantile-
adjusted conditional maximum likelihood (qCML) function of the edgeR package (Robinson 
et al., 2010) was applied to identify the DEGs in the RA samples and normal controls. The 
false discovery rate (FDR) was determined following the Benjamini-Hochberg procedure for 
multiple testing correction (Benjamini and Hochberg, 1995). DEGs were defined as those in 
which the differences in expression between the RA samples and the normal controls were 
significant (i.e., had FDR-adjusted P-values of < 0.05).

Identifying DPs

We performed a pathway analysis based on the DEGs to ascertain DEG-related 
functional relevance in RA. The original pathways were obtained from the Ingenuity 
Pathway Analysis (IPA) database (http://www.ingenuity.com), which is a web-based software 
application that enables researchers to analyze data derived from the expression of single 
nucleotide polymorphism (SNP) microarrays, RNA sequencing, proteomics, metabolomics 
experiments, and small-scale experiments [such as polymerase chain reactions (PCRs)] that 
generate gene or protein lists (Krämer et al., 2014). In the current study, a total of 589 pathways 
(covering 5169 genes) was retrieved from the IPA database. To highlight the regulatory 
apparatus driving phenotypic differentiation, and to identify the pathways responsible for 
coordinating their activity, the DEG-related pathways were retrieved on the basis of the IPA 
pathways. The Fisher’s test was performed to evaluate the significance of the pathways. The 
P values were adjusted by FDR according to the Benjamini-Hochberg procedure for multiple 
testing correction (Benjamini and Hochberg, 1995). Pathways with FDR-adjusted P values < 
0.05 were considered DPs.

Calculating the DS for pathway cross-talk

To further define the relationship between two pathways, a DS (Bertucci et al., 2004) 
was computed by comparing the gene expression levels of each pair of pathways. The DS was 
calculated according to Equation (1):

(  -  )
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(Equation 1)

Where Ma and Sa represent the mean and standard deviation of gene expression levels 
in pathway a, and Mb and Sb represent the corresponding values in pathway b. The DS is 
a measure of pathway cross-talk, and a larger DS indicates a greater difference in activity 
between two pathways.
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RF classification

Over the past few years, RF has attracted the attention of researchers who carry out 
analyses of microarray classifications and other high-dimensional molecular data (Díaz-Uriarte 
and Alvarez de Andrés, 2006; Statnikov et al., 2008). RF is an algorithm for classification that was 
developed by Leo Breiman (2001) and uses an ensemble of classification trees (Hastie et al., 2009). 
Each of the classification trees is built using a bootstrap sample of the data, and the candidate set 
of variables is a random subset of the variables at each split (Díaz-Uriarte and Alvarez de Andrés, 
2006). In the present study, we carried out a 10-fold cross-validation for RF classification of the 
samples according to the DS of the pathway cross-talk. The area under the receiver operating 
characteristics curve (AUC) was used to evaluate classification accuracy. The AUC values were 
ranked in descending order, and the top 10 instances of pathway cross-talk were identified.

We applied 50 bootstrap iterations of the process described above, which randomly 
generated new training and testing partitions each time. For each bootstrap iteration, DEGs, 
DPs, and DSs for pathway cross-talk were analyzed. Based on the training dataset, we detected 
the DSs for the top 10 instances of pathway cross-talk with the best AUC values. We then used 
the testing dataset to validate the top 10 instances of pathway cross-talk. After all 50 bootstrap 
iterations, the top 10 instances of pathway cross-talk were selected by ranking them according 
to their AUC values. We counted the times that an instance of pathway cross-talk appeared in 
the 50 bootstrap iterations. In the present study, the top 10 pathways across all 50 bootstrap 
iterations were regarded as significant instances of pathway cross-talk for RA.

RESULTS

Identifying DEGs

We carried out pathway cross-talk analysis of the gene expression profile of RA to gain 
a better understanding of the pathological mechanism underlying RA. The analysis comprised 
50 bootstrap iterations of MCCV. After quantile normalization, we identified 15,207 genes with 
higher than 0.25-fold quantile means across all samples. DEGs were identified by applying the 
qCML function of the edgeR package. We identified 17 significant DEGs with FDR-adjusted 
P values < 0.05 (Table 1).

Table 1. Differentially expressed genes in rheumatoid arthritis via Monte Carlo Cross-Validation.

Gene Times P value Gene Times P value 
HLA-DQA1 48 0.001 SBNO2 15 0.029 
KDM5D 49 0.001 SLC39A4 15 0.030 
RPS4Y1 49 0.005 ZKSCAN5 19 0.030 
EIF1AY 49 0.008 EFCAB4A 1 0.036 
CYorf15A 21 0.014 C8orf82 1 0.038 
XIST 11 0.014 PEMT 1 0.042 
DFNB31 31 0.015 HIST1H2AD 6 0.043 
CYorf15B 28 0.016 HLA-DRB4 1 0.048 
TSIX 1 0.018    

 

Identifying differential pathways

The biological pathways in the IPA database were downloaded as original pathways. 
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There were 589 pathways (containing 5169 genes) in all. DPs under the threshold value of P 
< 0.05 were identified in each bootstrap iteration of MCCV. After 50 bootstraps iterations, 15 
DPs were obtained (Table 2). The eIF4 and p70S6K signaling regulation pathway showed the 
most significant difference (P = 0.001).

Table 2. Differential pathways in rheumatoid arthritis via Monte Carlo Cross-Validation.

Pathway Gene size Times P value 
Regulation of eIF4 and p70S6K Signaling 142 49 0.001 
Antigen Presentation Pathway 34 48 0.012 
Graft-versus-Host Disease Signaling 39 48 0.012 
T Helper Cell Differentiation 62 48 0.022 
IL-4 Signaling 70 48 0.024 
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 76 48 0.025 
VEGF Signaling 89 48 0.03 
CD28 Signaling in T Helper Cells 107 37 0.031 
iCOS-iCOSL Signaling in T Helper Cells 97 44 0.031 
PKC_ Signaling in T Lymphocytes 107 37 0.031 
Type I Diabetes Mellitus Signaling 101 44 0.033 
Dendritic Cell Maturation 159 19 0.034 
EIF2 Signaling 171 20 0.035 
Role of NFAT in Regulation of the Immune Response 160 19 0.035 
mTOR Signaling 182 19 0.037 

 

Identifying key instances of pathway cross-talk

In this step, the RF classification model was used to measure the classification 
accuracy of instances of pathway cross-talk based on DSs. The DSs of all instances of pathway 
cross-talk were obtained via 50 bootstrap iterations. Next, 10-fold cross-validation was 
performed to carry out RF classification on the samples according to the DSs of the instances 
of pathway cross-talk, and the AUC values were used to evaluate the classification results. 
The top 10 instances of pathway cross-talk with the best classification performance for the 
RA samples and normal controls were defined by ranking all the AUC values in descending 
order after 50 bootstrap iterations. Details of pathway cross-talk between regulation of eIF4 
and p70S6K signaling and the other 10 pathways are listed in Table 3. The role of eIF4 and 
p70S6K signaling regulation in RA cannot be ignored. The top 9 instances of pathway cross-
talk showed the same classification performances, with AUC values of 0.998, and the pathway 
cross-talk of eIF4 and p70S6K signaling regulation and dendritic cell maturation had an AUC 
value of 0.981.

Table 3. The top 10 pathway cross-talks according to the best classification accuracy.

Pathway cross-talk AUC Frequency 
Regulation of eIF4 and p70S6K signaling; Graft-versus-host disease signaling 0.998 16 
Regulation of eIF4 and p70S6K signaling; Antigen presentation pathway 0.998 16 
Regulation of eIF4 and p70S6K signaling; T helper cell differentiation 0.998 15 
Regulation of eIF4 and p70S6K signaling; IL-4 signaling 0.998 17 
Regulation of eIF4 and p70S6K signaling; Altered T cell and B cell signaling in rheumatoid arthritis 0.998 14 
Regulation of eIF4 and p70S6K signaling; iCOS-iCOSL signaling in T helper cells 0.998 11 
Regulation of eIF4 and p70S6K signaling; Type I diabetes mellitus signaling 0.998 10 
Regulation of eIF4 and p70S6K signaling; CD28 signaling in T helper cells 0.998 7 
Regulation of eIF4 and p70S6K signaling; PKC signaling in T lymphocytes 0.998 7 
Regulation of eIF4 and p70S6K signaling; Dendritic cell maturation 0.981 3 

 AUC: the area under the receiver operating characteristics curve.
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To further define the importance of pathway cross-talk, we calculated the frequency 
of the top 10 individual instances of pathway cross-talk in 50 bootstrap iterations (Figure 
2). The pathway cross-talk of eIF4 and p70S6K signaling regulation and IL-4 signaling was 
observed in 17 bootstrap iterations. Two instances of pathway cross-talk (regulation of eIF4 
and p70S6K signaling and graft-versus-host disease signaling, and regulation of eIF4 and 
p70S6K signaling and antigen presentation pathway) were observed in 16 bootstrap iterations.

Figure 2. The heatmap of the key pathway cross-talks ranked according to the AUC values in descending order 
after repeating 50 bootstraps in the training dataset.

Validation analysis

We used another independent RA dataset (E-GEOD-15573) to validate the results by 
MCCV. E-GEOD-15573 (Teixeira et al., 2009) comprised 33 peripheral blood samples from 
18 RA patients and 15 normal controls. The analysis procedure was the same as that described 
above. We screened the top 10 instances of pathway cross-talk by MCCV analysis of dataset 
E-GEOD-15573. Among them, three instances of pathway cross-talk were validated, including 
regulation of eIF4 and p70S6K signaling–antigen presentation, regulation of eIF4 and p70S6K 
signaling-altered T cell and B cell signaling in rheumatoid arthritis, and regulation of eIF4 
and p70S6K signaling-IL-4 signaling. Furthermore, two other instances of pathway cross-talk 
related to regulation of eIF4 and p70S6K signaling were identified. The results indicate the 
critical roles of eIF4 and p70S6K signaling regulation in RA, and show the feasibility and 
repeatability of MCCV analysis in RA studies.

DISCUSSION

RA is a chronic, progressive, inflammatory autoimmune disease that is mainly caused 
by articular, extra-articular, and systemic effects (Okada et al., 2014). During the past few 
years, efforts have been made to gain a better understanding of RA. However, the etiology and 
underlying mechanism of RA have not been fully elucidated. Therefore, in the present study, 
we performed MCCV to conduct pathway cross-talk analysis based on the gene expression 
profile of RA. We found that the eIF4 and p70S6K signaling regulation pathway was most 
relevant to RA, and the top 10 instances of pathway cross-talk were all related to the eIF4 and 
p70S6K signaling regulation pathway. To further understand the relationships between these 
pathways, we have included an in-depth discussion, as follows.

The present study suggests that the eIF4 and p70S6K signaling regulation pathway 
plays an important role in RA. Lin et al. (2017) indicated that regulation of the eIF4 and 
p70S6K signaling pathway is involved in polyarticular juvenile idiopathic arthritis. Both 
eIF4 (eukaryotic initiation factor-4) and p70S6K (p70 ribosomal S6 kinase) play critical 
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roles in translational regulation. Researchers have indicated that p70S6K and the binding 
protein eukaryotic translation initiation factor eIF4 are two main phosphorylation targets of 
mammalian target of rapamycin (mTOR) (Young and Nickerson-Nutter, 2005). The pathway 
of mTOR complex 1 is critical for the initiation of inflammatory reactions and cell homeostasis 
in human RA synovial cells (Yin et al., 2015). Moreover, mTOR signaling is active in the 
synovial membrane of patients with RA, particularly in synovial osteoclasts (Cejka et al., 
2010). In this study, mTOR was identified as a differential pathway in RA.

RA is a well-known inflammatory autoimmune disease. However, we unexpectedly 
discovered that all of the top 10 instances of pathway cross-talk, such as IL-4 signaling, were 
related to immune response. Interleukins (ILs) are a group of cytokines (secreted proteins and 
signal molecules) that are expressed first by white blood cells (leukocytes) (Brocker et al., 
2010). In RA, articular inflammation seems to be caused by the expression of inflammatory 
cytokines and chemokines that determine the activation and proliferation of the synovial lining, 
and by inflammatory cell recruitment and B cell activation with autoantibody production 
(Samson et al., 2012). The IL-1 family of cytokines (IL-1a, IL-1b, IL-18, and IL-33) are highly 
expressed in RA (Bessis et al., 2000; Li et al., 2016). Furthermore, IFN-b, TGFb, IL-4, and 
IL-13 increase the expression of IL-1Ra while diminishing the production of IL-1 (Chizzolini 
et al., 2009). Moreover, a previous report analyzing the blood mononuclear cells obtained 
from RA patients indicates that the apoptotic-dependent reduction of Th1/Th17/Treg cells is 
accompanied by the enhanced expression of IL-4 (Guggino et al., 2014).

Therefore, we conclude that the MCCV method for identifying significant pathway 
cross-talk in RA is effective. By this method, we successfully identified 10 significant instances 
of pathway cross-talk, all of which were related to the regulation of eIF4 and p70S6K signaling. 
We propose that these instances of pathway cross-talk play key roles in the occurrence and 
development of RA, and are potential predictive and prognostic markers for RA.
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