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ABSTRACT. Robust adaptation is a critical ability of gene regulatory 
network (GRN) to survive in a fluctuating environment, which represents 
the system responding to an input stimulus rapidly and then returning to 
its pre-stimulus steady state timely. In this paper, the GRN is modeled 
using the Michaelis-Menten rate equations, which are highly nonlinear 
differential equations containing 12 undetermined parameters. The 
robust adaption is quantitatively described by two conflicting indices. 
To identify the parameter sets in order to confer the GRNs with 
robust adaptation is a multi-variable, multi-objective, and multi-peak 
optimization problem, which is difficult to acquire satisfactory solutions 
especially high-quality solutions. A new best-neighbor particle swarm 
optimization algorithm is proposed to implement this task. The 
proposed algorithm employs a Latin hypercube sampling method to 
generate the initial population. The particle crossover operation and 
elitist preservation strategy are also used in the proposed algorithm. The 
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simulation results revealed that the proposed algorithm could identify 
multiple solutions in one time running. Moreover, it demonstrated a 
superior performance as compared to the previous methods in the sense 
of detecting more high-quality solutions within an acceptable time. 
The proposed methodology, owing to its universality and simplicity, is 
useful for providing the guidance to design GRN with superior robust 
adaptation.
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Robust adaptation; Particle swarm optimization algorithm

INTRODUCTION

Gene regulatory networks (GRNs) are used to investigate the interactions between 
genes; however, acquiring a systematic understanding of the interactions remains a 
challenge (Harbi and Harrison, 2014). The mathematical modeling of a GRN is a workable 
and effective way to address this issue (Politano et al., 2014; Tindall and Clerk, 2014). 
Adaptation is an important property of a GRN, which defines its reaction performance 
under variant input (Drengstig et al., 2008; David et al., 2013). Two characteristic quantities 
frequently used to describe the robust adaptation of a GRN are sensitivity and adaptation 
precision. They represent the system’s ability to respond to the input stimulus and then 
return to its original steady state after being disturbed. Determining the parameters for 
a three-node GRN with robust adaptation is of biological universality and significance 
because most GRNs can be functionally reduced to a simplified framework with three 
nodes (Milo et al., 2002). Three-node enzyme GRNs with robust adaptation can be 
divided into two topological classes (Ma et al., 2009), which are the negative feedback 
loop with a buffering node (NFBLB) and incoherent feedforward loop with a proportioner 
node (IFFLP). It is worth noting that a well-studied example of a robust adaptation, i.e., 
Escherichia coli chemotaxis, is similar to the NFBLB topology GRN (Ma et al., 2009). 
Therefore, in the remaining sections of this paper, we have used the NFBLB GRN to 
exemplify the effectiveness of the proposed method.

For the three-node NFBLB type GRN model, there are 12 parameters to be determined 
to demonstrate its robust adaptation. Not all the parameter sets in this topology can confer 
the GRN with a robust adaptation. Ma et al. (2009) obtained only eight satisfactory solutions 
from 104 grid-division parameter sets using a Latin hypercube sampling (LHS) method, while 
Chiang et al. (2014) obtained 74 satisfactory solutions from 105 grid-division parameter sets 
using the LHS method. This observation indicates that it is very difficult for the LHS method 
to provide a large number of satisfactory solutions. Ren et al. (2015) proposed a multi-
objective genetic algorithm (GA) to identify the undetermined and predetermined topology 
three-node GRNs.

In this study, we proposed a best-neighbor particle swarm optimization (PSO) 
algorithm, combined with an LHS-based initial population, crossover operation, and elitist 
preservation strategy to identify the robust adaptation GRN model parameters.

This paper is organized as follows: Section 2 provides a brief description of the 
problem, Section 3 enumerates the proposed algorithm, Section 4 presents the simulation 
results and the comparison, and Section 5 provides the conclusion.
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MATERIAL AND METHODS

Problem description

Determining the parameter set that can confer the GRN with a robust adaptation is a 
generalized system parameter identification problem. The inherent nonlinear property of the 
GRN model prevents the use of conventional system identification methods for addressing this 
kind of problem. System biologists have proposed an ergodic-like searching method using the 
LHS method (Ma et al., 2009; Chiang et al., 2014). However, owing to its ergodic property, 
the LHS method is low efficiency; moreover, the results of the LHS depend on the grid 
division. Chiang et al. (2014) attempted to find more satisfactory solutions by increasing the 
grid division by one order. However, the number of satisfactory solutions was not increased 
significantly as compared to the increasing time cost. Moreover, this parameter identification 
is a multi-variable, multi-objective, and multi-peak optimization problem and the satisfactory 
parameter sets can be determined using optimization algorithms. We decided to commence 
addressing this problem using mathematical modeling of the NFBLB GRN.

Modeling NFBLB network using Michaelis-Menten rate equations

In this study, the three-node GRN with NFBLB topology was used to demonstrate 
robust adaptation, which in this case approximated the biological process of E. coli chemotaxis. 
The schematic diagram is shown in Figure 1, and can be described by the Michaelis-Menten 
rate equations provided in Equation 1.

Figure 1. Three-node enzyme gene regulatory network (GRN) with a negative feedback loop with a buffering node 
(NFBLB) topology. The biological process of Escherichia coli chemotaxis is similar to NFBLB topology GRN. 
Node A receives input I, node C gives output O, and a third node B plays diverse regulatory roles.
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where I denotes the input signal; X and 1-X denote the concentrations of enzyme X in the active 
and inactive states, respectively, where X = A, B, or C; and FB and FC are the concentrations of the 
deactivating enzymes (FB = FC = 0.5), which transform the active states of B and C to the inactive 
states. The enzymatic regulation transforms its regulatory target between active and inactive states.

There are 12 parameters to be estimated in Equation 1, which are kIA, KIA, kBA, KBA, 
kAB, KAB, kFBB, KFBB, kAC, KAC, kFCC, and KFCC. The ranges of the catalytic rate constants k and 
Michaelis-Menten catalytic reaction constants K are kÎ[10-1, 101] and KÎ[10-3, 102], respectively. 
Furthermore, Equation 1 shows that the GRN is a highly nonlinear differential equation with 
as many as 12 undetermined parameters. Although I and O can be treated as the input and 
output of the conventional nonlinear dynamical system, the parameter identification of the 
GRN model is beyond the scope of the conventional system identification problem.

Robust adaptation

The adaptation of the GRN is measured quantitatively using two indices (Ma et al., 
2009): the sensitivity and adaptation precision, given by Equations 2 and 3. The former index 
describes the system transient response peak with respect to the input change while the latter 
describes the system’s ability to return to its original steady state in a timely fashion. The 
notations in Equations 2 and 3 are shown in Figure 2.

Figure 2. Input-output curve of gene regulatory network (GRN) used to define adaptation. I1 and I2 are initial and 
changed inputs; O1 and O2 represent steady-state output before and after stimuli, corresponding to inputs I1 and I2, 
respectively; and Opeak is peak value of transient output, due to input change.
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The robust adaptation is defined as follows: the transient peak output Opeak is more 
than 20% higher than the initial steady-state output O1 is; the after-stimulus steady-state output 
O2 is close to the initial steady-state output O1 with a deviation less than 2% (Ma et al., 2009; 
Chiang et al., 2014; Ren et al., 2015). This indicates that S > 1 and P > 10.

Methods

Based on the GRN model given by Equation 1, this study focused on identifying the 
parameter sets required to confer the GRNs with a robust adaptation. The strategy for selecting 
the parameter set is a challenging task owing to the following two main reasons. First, the 
model has as many as 12 parameters, which are interdependent to have the desired adaptation. 
Second, it is a multi-objective optimization problem involving two conflicting objectives, 
which are the high sensitivity and adaptation precision (Ehrgott et al., 2014). In this study, we 
proposed a novel multi-objective best-neighbor PSO algorithm, combined with an LHS-based 
initial population, crossover operation, and elitist preservation strategy to obtain higher quality 
solutions than obtained with previous methods.

PSO algorithm

The PSO algorithm is a swarm intelligence evolutionary optimization method 
(Engelbrecht, 2006), where the swarm consists of a number of particles. Each particle 
represents a potential solution and flies within the search space with a velocity and position 
vector (vi and xi, respectively). The PSO algorithm is divided into two types, the best-global 
and best-neighbor PSO. The former is likely to have a fast convergence rate but may fall into 
the local optimum. The latter is likely to have a slow convergence rate but to avoid the local 
optimum. The best-global PSO updates its velocity and position according to its previous 
personal best position (pbesti) and the global best position (gbest); the position and velocity 
update algorithms are given in Equations 4 and 5. The best-neighbor PSO updates its velocity 
and position according to its previous personal best position (pbesti) and its neighbor best 
position (nbesti); the position and velocity update algorithms are given in Equations 6 and 7.

vi(t) = w × vi(t-1) + c1 × rand1 × (pbesti - xi[t]) + c2 ×rand2 × (gbest - xi[t]) (Equation 4)

xi(t) = xi(t-1) + vi(t) (Equation 5)

vi(t) = w × vi(t-1) + c1 × rand1 × (pbesti - xi[t]) + c2 ×rand2 × (nbesti - xi[t]) (Equation 6)

(Equation 7)xi(t) = xi(t-1) + vi(t)

where, N is the population size, w is the inertia weight, T is the generation number, rand1 and 
rand2 are two random values in [0,1], and c1 and c2 are the positive learning factors.

LHS algorithm

Population initialization using the LHS method is a random-based sampling method, 
which ensures that the samples are distributed across the entire range (Shu and Jirutitijaroen, 
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2011). Assuming that Z is an n-dimensional hypercube, and then ZjÎ[Zj
L, Zj

U], Zj
L and Zj

U are 
the lower and upper bands of the jth variable Zj, where j=1, ⋅⋅⋅, n. The LHS algorithm required 
to generate H samples (solutions) within this hypercube is given as follows: 1) Determine the 
sampling size H. 2) Divide the Zj range, i.e., [Zj

L, Zj
U], into H sub-ranges, so that Zj

L= Zj
0< Zj

1< 
Zj

2<⋅⋅⋅< Zj
H= Zj

U, thereby the hypercube Z is divided into Hn sub-hypercubes. 3) Generate a 
matrix DH*n, such that each column of DH*n is the random full permutation of the sequence {1, 
2, ⋅⋅⋅, H}. 4) Each row of DH*n consisting of n elements is used as an index to select one sub-
hypercube, and a sample point (solution) is generated randomly within this sub-hypercube.

For example, Figure 3 illustrates the LHS method using H=10 and n=2, and the 
corresponding matrix D10*2 is

This configuration of D10*2 indicates that there is a two-dimensional (2-D) space 
searching problem (within [0, 1; 0, 1] in Figure 3), and each dimension is divided into 10 
sub-spaces indexed by [1, 2, ⋅⋅⋅, 10] and, therefore, 100 sub-squares are latticed in the whole 
space, which can be referred to by two index number. The black dots in the grids in Figure 3 
correspond to the D10*2 selection in Equation (8). Because the row index in Equation 8 is in 
ascending order in Figure 3, i.e., the first row corresponds to the bottom row in Figure 3. Only 
one grid is selected, which is determined by the indexes given by the first row of D10*2, i.e., [1, 
3]. For any other row in the grids in Figure 3, only one grid is selected and marked with a black 
dot; the 10 dots shown in Figure 3 are 10 solutions produced by the LHS method. Therefore, 
the samples generated by the LHS algorithm are distributed in the entire hypercube spaces 
and, therefore, it is a space-filling sampling method. The LHS simply guarantees the space 
filling but not their distribution.
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Figure 3. Example of Latin hypercube sampling (LHS) method with H = 10 and n = 2.

Best-neighbor PSO algorithm with LHS-based population initialization, crossover 
operation, and elitist preservation strategy

We proposed a novel best-neighbor PSO, characterized by an LHS-based initial 
population, particle crossover operation, and elitist preservation strategy. The flow chart of 
the algorithm is shown in Figure 4 and can be summarized as follows: 1) The population 
is initialized with N individuals using the LHS method. 2) The fitness of each particle is 
evaluated. 3) The elitists with the 10% top fitness are preserved, i.e., Pelite = 0.1. 4) The velocity 
and position of each particle are updated. 5) The crossover operation to the particles with 
probability PC = 0.5 is performed. 6) The termination condition is tested. 7.1) Yes, indicates to 
stop iteration and show the result. 7.2) No, indicates to return to step (2).

Here, there are three key points: population initialization, fitness function selection, 
and crossover operation. Moreover, the elitist preservation strategy is performed to preserve 
the individuals with 10% top fitness, which directly proceed to the next generation instead of 
being involved in the subsequent operations including steps 4 and 5.

LHS-based initial population

Population initialization is important to the PSO algorithm because it contributes to 
the quality of the final solutions. Conventionally, the random initialization method is used 
to generate the initial population. However, for the multi-peak multi-parameter optimization 
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problem, the conventional random initialization has the propensity to cause the initial particles 
to concentrate in a particular region and, thereby, lead to locally optimal solutions. Replacing 
the random population initialization with the LHS-based population initialization can enhance 
the diversity of the initial population.

In this study, the initialization strategy using LHS method was as follows: the catalytic 
rate constants k were divided into two ranges, [10-1,100] and [100,101], from which each of 
the N/2 individuals were sampled. Then, the Michaelis-Menten catalytic reaction constants K 
were divided into five ranges, [10-3,10-2], [10-2,10-1], [10-1,100], [100,101], and [101,102], from 
which each of the N/5 individuals were sampled, where N is the sampling size.

Pareto rank-based fitness function

In this study, two conflicting objectives required optimization, which were the 
sensitivity and adaptation precision that needed to be higher, and no single objective was 
considered more important than the other. There are multiple optimal solutions that can satisfy 
multiple objectives based on the different compromising strategies. These solutions are called 
non-dominated solutions or Pareto-optimal fronts. For the m objectives minimization problem, 

Figure 4. Flow chart of proposed algorithm.
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solution x1 dominates solution x2, if the following conditions are obtainable: 1) x1 is strictly 
better than x2 is for at least one objective, i.e., ∃ d such that fd(x1)< fd(x2), where fd is the dth 
objective function; 2) x1 is no worse than x2 is for all the objectives, i.e., ∀ d such that fd(x1) ≤ 
fd(x2), where d=1, ⋅⋅⋅, m, m is the number of objectives.

Assuming that solution x is dominated by g(T) solutions in generation T, the rank of 
solution x in generation T is given by:

rank(x, T) = 1 + g(T) (Equation 9)

Therefore, we can sort every particle in generation T into a sequence, and this sorting 
strategy is called the “Pareto ranking” (Chaudhry et al., 2011). For example, Figure 5 is the 
schematic diagram of the bi-objective minimization problem, which illustrates the Pareto 
ranking. The non-dominated solutions are ranked as ‘1’, which represents the ‘best’ solutions. 
The solutions dominated by only one solution are ranked as ‘2’, which represents the ‘second 
best’ solutions. Obviously, the smaller the rank, the better the solution is. Furthermore, there 
might be multiple solutions possessing the same Pareto rank.

(Equation 10)f1(x) = P(x) - 10 f2(x) = S(x) - 1

The two objective functions for the problem in this study are given as:

( , )

1( , ) rank x Tfitness x T
e

= (Equation 11)

where P(x) and S(x) are the precision and sensitivity of the GRN with the parameter set x. The 
rank-based fitness function used in this study is given as:

Figure 5. Pareto rank of two objectives minimization problem.

where rank(x,T) is the Pareto rank of particle x in generation T and, thereby, each solution is 
assigned a fitness based on Pareto-rank to evaluate its performance. The solutions with a superior 
adaptation, including a higher sensitivity and adaptation precision would have larger fitness values.
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PSO with crossover operation

The crossover operation is a genetic operator in the GA, which exchanges the partial 
chromosomes between two individuals (Schlottfeldt et al., 2015). Using a crossover strategy, 
the offsprings combine the characteristics of both parents, which improves their diversity. 
The crossover operation is performed using a specified number of individuals based on the 
crossover probability, PC. In this study, the crossover operation is given as follows:

(Equation 12)xchild1
 = q × xparent1

 + (1-q) × xparent2

xchild2
 = q × xparent2

 + (1-q) × xparent1
(Equation 13)

1 2

1 1

1 2
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v v
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(Equation 15)

where q is the random value in [0, 1]; xparenti
 and xchildi

 are the positions of the parent particle 
i and the position of offspring i, respectively; and vparenti

 and vchildi
 are the speed of the parent 

particle i and the speed of offspring i, respectively, where i = 1, 2.

RESULTS

In this study, based on the three-node enzyme GRN with NFBLB topology, we identify 
the parameter sets that created GRNs with satisfactory adaptation of S > 1 and P > 10. The 
initial input was given as I1 = 0.5, and then it is increased by 20%, that is, I2 = 1.2 × I1 = 0.6 to 
produce the changed input.

To compare the performance of the proposed algorithm with that of existing methods, 
we used six methods to identify the parameter set of the GRN. These were the LHS method 
(Ma et al., 2009; Chiang et al., 2014); best-global PSO with random initial population (GPSO) 
(Engelbrecht, 2006); best-global PSO with LHS-based initial population (GPSO-LHS); best-
global PSO with LHS-based initial population, elitist preservation strategy and crossover 
operation (ECGPSO-LHS); GA with LHS-based initial population and elitist preservation 
strategy (EGA-LHS) (Ren et al., 2015); and the newly proposed method, the best-neighbor 
PSO algorithm with LHS-based initial population, elitist preservation strategy, and crossover 
operation.
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Algorithm parameters

The parameters of the four PSO methods were as follows: the learning factors c1 = c2 
= 1.5; the inertia weight w, which linearly decreased from 0.9 to 0.4; the population size N = 
500; and the maximum iteration times, itermax = 50. Furthermore, for the ECGPSO-LHS and 
the proposed methods, the crossover and elitist preservation probability were PC = 0.5 and Pelite 
= 0.1, respectively. For EGA-LHS method, the catalytic rate constants k and the Michaelis-
Menten catalytic reaction constants K were encoded by 18 and 26 binary bits, respectively 
(Ren et al., 2015) (because of the similar parameter resolution (precision) as compared to LHS 
method; Chiang et al., 2014). In addition, the elitist preservation probability was Pelite = 0.1, 
the population size was also N = 500, the maximum iteration time was also itermax = 50, the 
GA crossover probability was pC = 0.85, and the GA mutation probability was pm = 0.02. The 
sampling size was H = 2.5 × 104 for the LHS method and all the parameters were determined 
using a trial and error procedure.

Performance comparison

All the results reported in this section were obtained based on 30 independent runs 
(Monte Carlo tests) to avoid the randomness of the algorithms and evaluate the algorithms 
statistically. Four criteria were used to compare the performance of all the algorithms.

1) Time, the total computation time (for 30 runs).
2) Pfind, the possibility of finding satisfactory solutions, defined as:

Pfind=runfind/30 (Equation 16)

where runfind is the number of runs that detected, at least, one satisfactory solution in 30 
independent runs.

3) timend, the average computation time of finding one non-dominated solution, 
defined as:

(Equation 17)timend=Time/numnd

where numnd is the number of non-dominated solutions (best solutions in the sense of the 
Pareto optimum) derived from 30 times runs.

4) Pnd, the percentage of non-dominated solutions, with respect to all non-dominated 
solutions found by all algorithms.

The comparisons of the results of the six methods are shown in Table 1. The six 
sub non-dominated sets derived using the six methods are shown in Figure 6, and only the 
solutions above the dotted line are the final non-dominated solutions with respect to all the 
solutions obtained by all algorithms. The square, circle, eight-line, triangle, and pentagram 
symbols represent the LHS, GPSO-LHS, EGA-LHS, ECGPSO-LHS, and the newly proposed 
algorithm, respectively.
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Figure 6. Distribution diagram of non-dominated solutions for six methods. Square, circle, eight-line, triangle, 
and pentagram represent the LHS, GPSO-LHS, EGA-LHS, ECGPSO-LHS, and newly proposed algorithm, 
respectively. No solution was obtained for GPSO in the 30 independent runs, therefore, nothing was plotted for this 
method. Final non-dominated solutions are located above the dotted line.

As shown in Table 1, the Time of the GPSO and the proposed algorithm were the 
shortest and longest, respectively in their reading values. However, it was challenging for 
the GPSO to determine satisfactory solutions from the Pfind = 0%. The proposed algorithm 
as well as the LHS and EGA-LHS methods all detected satisfactory solutions with the 
Pfind = 100%. The GPSO-LHS and ECGPSO-LHS methods discovered satisfactory 
solutions with the Pfind = 86.7% and 70.0%, respectively. The index Pnd demonstrates 
the method’s ability to discover the best solutions. The average computation time of 
finding one non-dominated solution, i.e., timend, represents the efficiency of discovering 
the best solutions. Figure 6 and Table 1 show that three methods, the ECGPSO-LHS, 
EGA-LHS, and the proposed methods (triangle, eight-line, and pentagram symbols, 
respectively) discovered non-dominated solutions while the other three methods did not. 
The proposed method discovered half of non-dominated solutions, i.e., 7 out of all the 14 
non-dominated solutions. This suggests that the proposed method discovered the most 
high-quality solutions compared to the other five methods. For the average computation 
time of detecting one non-dominated solution, timend, we found that the EGA-LHS 
method performed the best while that the proposed method was slightly longer than that 
of the EGA-LHS method. Consequently, the proposed method discovered more of the 
best solutions (in the sense of Pareto rank) within acceptable average time than the other 
methods did.
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LHS = latin hypercube sampling; GPSO = best-global particle swarm optimization with random initial population; 
GPSO-LHS = best-global particle swarm optimization with LHS-based initial population; ECGPSO-LHS = best-
global particle swarm optimization with LHS-based initial population, elitist preservation strategy and crossover 
operation; EGA-LHS = genetic algorithm with LHS-based initial population, elitist preservation strategy; Pfind 
= possibility of finding satisfactory solutions; Pnd = percentage of non-dominated solutions; timend = average 
computation time of finding one non-dominated solution; inf = infinity.

Table 1. Comparison of six methods.

Algorithm Time (min) Pfind (%) Pnd (%) timend (min) 
LHS (Ma et al., 2009; Chiang et al., 2014) 1311.6 100 0 inf 
GPSO (Engelbrecht, 2006) 346.0 0 0 inf 
GPSO-LHS 675.7 86.7 0 inf 
ECGPSO-LHS 903.2 70.0 21.4 301.1 
EGA-LHS (Ren et al., 2015) 737.5 100 28.6 184.4 
Proposed algorithm 1385.9 100 50.0 198.0 

 

CONCLUSION

In this study, a crossover operation from the genetic algorithm was introduced into the 
best-neighbor PSO algorithm together with an LHS-based population initialization and elitist 
preservation strategy. The proposed optimization approach successfully identified the parameter 
sets with a possibility equal to 1, which conferred the GRNs with robust adaptation. Compared 
to the conventional exhaustive searching LHS (Ma et al., 2009; Chiang et al., 2014), GPSO 
(Engelbrecht, 2006), GPSO-LHS, and ECGPSO-LHS methods, the newly proposed method 
discovered more high-quality solutions with a high efficiency. Compared to the EGA-LHS (Ren 
et al., 2015), the proposed method determined more best solutions with a slightly longer time.
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