

Identification of novel *DYNC2H1* mutations associated with short rib-polydactyly syndrome type III using next-generation panel sequencing

L.S. Chen*, S.J. Shi*, P.S. Zou, M. Ma, X.H. Chen and D.H. Cao

Aristogenesis Center, Hospital of PLA, Shenyang, China

*These authors contributed equally to this study. Corresponding author: D.H. Cao E-mail: dhcao427@sina.com

Genet. Mol. Res. 15 (2): gmr.15028134 Received November 25, 2015 Accepted January 18, 2016 Published June 3, 2016 DOI http://dx.doi.org/10.4238/gmr.15028134

ABSTRACT. Short rib-polydactyly syndrome type III (SRPS3) is a perinatal lethal skeletal disorder with polydactyly and multisystem organ abnormalities. While ultrasound of the fetus can detect skeletal abnormalities characteristic of SRPS3, the syndrome is often difficult to diagnose before birth. As SRPS3 is an autosomal recessive disorder, identification of the gene mutations involved could lead to the development of prenatal genetic testing as an accurate method of diagnosis. In this study, we describe genetic screening approaches to identify potential abnormalities associated with SRPS3. Karyotype analysis, array comparative genomic hybridization (aCGH), and nextgeneration panel sequencing were each performed on a fetus showing signs of the disorder, as well as on the mother and father. Karyotype and aCGH results revealed no abnormalities. However, next-generation panel sequencing identified novel mutations in the DYNC2H1 gene. The fetus was compound heterozygous for both a missense mutation c.8313A > T and a frameshift mutation c.10711 10714delTTTA in the

Genetics and Molecular Research 15 (2): gmr.15028134

DYNC2H1 gene, which were inherited from the mother and father, respectively. These variants were further confirmed using Sanger sequencing and have not been previously reported. Our study indicates the utility of using next-generation panel sequencing in screening for novel disease-associated mutations.

Key words: Short rib-polydactyly syndrome type III; *DYNC2H1* gene; Next-generation panel sequencing

INTRODUCTION

Short rib-polydactyly syndrome type III (SRPS3) is a perinatal lethal skeletal disorder with polydactyly and multisystem organ abnormalities. It belongs to a group of syndromes called SRPS of which there are five different types: SRPS I [Saldino-Noonan syndrome (MIM 263530)], SRPS II [Majewski syndrome (MIM 263520)], SRPS III [Verma-Naumoff syndrome (MIM 263510)], SRPS IV [Beemer-Langer syndrome (MIM 269860)], and SRPS V (MIM 614091). SRPS3 is an autosomal recessive disease characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. Polydactyly is variably present. Non-skeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of the disease are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas other forms are compatible with life. Recently some studies have found that mutations in the genes *WDR34*, *WDR60*, *IFT80*, *NEK1*, and *DYNC2H1* could cause SRPS3 (Table 1).

Here we present a case study of a fetus with short limbs identified during ultrasound examination. We describe the application of molecular screening methods to identify genetic abnormalities with a particular focus on genes associated with the development of short limbs.

Origin	Age of affected individual	Gene	Nucleotide change	Amino acid change	Location	Reference
Arabic	Carried to term	WDR34	c.1061C > T	p.Thr345Met	Exon 7	Huber et al., 2013
India	Tp at 19 wg	WDR34	c.1339C > T	p.Arg447Gln	Exon 8	Huber et al., 2013
Algeria	Tp at 26 wg	WDR34	c.1022C > T	p.Ala341Val	Exon 7	Huber et al., 2013
France	Tp at 25 wg	DYNC2H1	c.[4610A > G] + [7382G > T]	p.[Gln1537Arg] + [Gly2461Val]	Exon 30 + exon 45	Dagoneau et al., 2009
Madagascar	Tp at 24 wg	DYNC2H1	c.[5959A > G] + [10130delT]	p.[Thr1987Ala] + [Leu3377CysfsX34]	Exon 38 + exon 67	Dagoneau et al., 2009
Australia	Tp at 17 wg	WDR60	c.[2246C > T] + [1891C > T]	p.[Thr749Met] + [Gln631*]	Exon 15 + exon 14	McInerney-Leo et al., 2013
Brazil	Carried to term	IFT80	c.1213G > C	p.Gly241Arg	Exon 8	Cavalcanti et al., 2011
China	Tp at 22 wg	NEKI	IVS4-1A > G	Unknown	Unknown	Chen et al., 2012

Table 1. Mutations of different genes identified in families with short rib-polydactyly syndrome type III (SRPS3).

Tp: terminated preganancy; wg: week of gestation.

MATERIAL AND METHODS

Case subjects

The case subject was a 31-year-old woman at four months of pregnancy. Upon

Genetics and Molecular Research 15 (2): gmr.15028134

ultrasound examination, her fetus was observed to have a shortened bilateral long bone and femur, the shaft of the femur was bent, the end of the shaft of the femur was bulky, and the ribs were short and small. The skeletal system of the fetus was abnormal. The woman was previously pregnant with a fetus that exhibited the same ultrasonic detection patterns, so both mother and father (33 years old) were referred to a prenatal diagnosis clinic and chromosomal analysis was recommended. Neither the mother nor father had a history of consanguinity or genetic disease. They did not smoke or drink, and had not been exposed to radiation or chemical insult. Routine blood, urine, liver, and renal function analyses were normal for both, and electrocardiography and chest X-rays showed no abnormalities in the heart and lungs. The pregnancy was later terminated and the aborted fetus was found to have four shortened limbs.

Informed consent was obtained from both parents for participation in this study, and both were made aware that their information may be used in future research. Participant information was not anonymized, and all authors had access to identifying information. The study was approved by the No. 202 Hospital of People's Liberation Army (PLA) Ethics Committee.

Karyotyping

Karyotyping was performed on G-banded metaphases obtained from peripheral blood of the parents and cultured using standard procedures. Karyotyping of amniotic fluid was performed at 18 weeks of pregnancy according to standard techniques (Chandler and Yunis, 1978). Results are described in accordance with the 2013 International System for Human Cytogenetic Nomenclature (ISCN).

Array comparative genomic hybridization analysis

Genomic DNA was extracted from peripheral blood (parents) and amniocytes (fetus) using a DNA extraction kit (Tiangen, China) according to the manufacturer instructions. Array comparative genomic hybridization (aCGH) analysis was performed with oligonucleotidebased custom arrays (Agilent Technologies, Santa Clara, CA, USA) using standard protocols. Briefly, equal amounts of test DNA and normal sex-matched DNA, which is from 100 unrelated health controls, were digested with *AluI* and *RsaI*. Next, they were differentially labeled with cyanine-5 and cyanine-3 fluorescent dyes using a SureTag Complete DNA Labeling Kit (Agilent Technologies). Hybridizations were carried out at 65°C for 24 h. After washing, slides were scanned using an Agilent SureScan Microarray Scanner, and the images were extracted and analyzed using Feature Extraction v11.5 and Cytogenomics v2.5 software (Agilent Technologies), respectively.

Next-generation panel sequencing

Targeted sequence capture and next generation sequencing

Targeted sequence capture was performed using a protocol developed at the Beijing Genomics Institute (BGI). In brief, 1 µg genomic DNA was fragmented into lengths of 200 bp followed in sequence by end-repair, A-tailing and adaptor ligation, a 4-cycle pre-capture polymerase chain reaction (PCR) amplification, targeted sequence capture, and 15-cycle post-capture PCR. Targeted sequence capture was performed using custom oligonucleotide

Genetics and Molecular Research 15 (2): gmr.15028134

L.S. Chen et al.

probe sets (NimbleGen, Roche, Basel, Switzerland) which cover the exons and immediately adjacent intron region of 463 genetic short-limbed genes (Table 2). Sequencing was performed on a HiSeq 2000 platform (Illumina, San Diego, CA, USA) as paired end 90 bp according to the manufacturer instructions. The targeted regions were covered by a mean depth of over 190-fold, with 99.45% of the targeted region covered by at least one read and 97.71% by at least 20 reads.

Read mapping, variant detection, annotation, and interpretation

Image analyses, error estimation and base calling were performed using the Illumina Pipeline (version 1.3.4) to generate primary sequence data. Low-quality reads and potential adaptor contaminations were removed from the primary data using a local algorithm. The remaining short-reads were mapped to the human genome (hg18) using Burrows-Wheeler Aligner software (http://sourceforge.net/projects/bio-bwa/). Single nucleotide variants (SNVs) were detected using Short Oligonucleotide Analysis Package single nucleotide polymorphism software (http: //soap.genomics.org.cn/) and small insertions and deletions (InDels) were detected using sequence alignment/maps tools Pileup software (http://sourceforge.net/projects/samtools/). Variants were annotated using a BGI in-house developed annotation pipeline and were interpreted according to the American College of Medical Genetics and Genomics recommended standards (Richards et al., 2008).

Confirmation by Sanger sequencing

Potential mutations identified by next-generation panel sequencing were further confirmed by PCR and Sanger sequencing in the proband and the unaffected parents. The specific PCR primers were designed using Primer5 software (Premier Biosoft International, Palo Alto, CA). The products were directly sequenced with an ABI PRISM BigDye kit on an ABI 3730 DNA sequencer (Applied Biosystems, Carlsbad, CA). Sequencing results were analyzed using the DNASTAR package (DNASTAR, Madison, WI). The novel identified variants were subsequently verified and screened in 100 unrelated healthy controls with DNA sequencing

RESULTS

Karyotyping of G-banded metaphases showed that the karyotype of both parents and the fetus were normal (data not shown). Array-CGH analysis also did not reveal any abnormalities, with no copy number changes associated with known microdeletion or microduplication syndromes observed (data not shown).

However, using next-generation panel sequencing, more than 800 SNVs and InDels were identified in each of the three subjects across the 463 short-limbed related genes analyzed. After filtering for potential polymorphism variants (> 0.5% in the 1000 Genomes database (http://www.1000genomes.org/home) and > 0.5% in BGI in-house database) and non-functional relevance, there were between 16 and 17 non-synonymous variants and splicing site/coding InDels remaining (Tables 3 and 4). Two of these mapped to the *DYNC2H1* gene and displayed a typical disease gene inheritance pattern. The mother had a heterozygous c.8313A > T missense mutation, the father had a heterozygous c.10711_10714delTTTA frameshift mutation, and the fetus was compound heterozygous for both. These variants were further confirmed using Sanger sequencing (Figure 1).

Genetics and Molecular Research 15 (2): gmr.15028134

Classification of diseas	e Disease	Targeted Genes	No.	Total No
Metabolic system	Rickets	PHEX, ENPP1, FGF23, CLCN5, SLC34A3, VDR,	8	53
		CYP2R1, CYP27B1		
	Lysosomal storage disease	SLC37A4, AGL, PFKM, PHKA1, PHKB, PHKA2,	19	
		ALDOA, PGAM2, G6PC, GALNS, IDUA, IDS,		
		MAN2RI		
	Congenital disorder of glycosylation	MGAT2 SLC35C1 TMEM165	3	
	Others	GPD1, GBA, SMPD1, MLYCD, CTSA, UROC1.	23	
		FUCA1, PIGO, AGA, GK, CTNS, PHGDH, HGD,		
		ATP7A, SLC17A5, MPO, MVK, ADA, PCCB,		
·		PLOD3, SLC6A19, ACADS, SUMF1		
Endocrine system	Growth hormone deficiency	SOX3, GHSR, GHRHR, GHR, BTK, GH1, SHH,	12	46
	Urmothymoidiam	SLC29A3, NDN, CEP57, ALMS1, SNRPN	17	
	Hypothyroidism	TG DUOYA2 DUOY2 SLC26AA SLC5A5	1/	
		GCM2 SECISBP2 THRB TRHR TRH		
	Hyperthyroidism	TSHR	1	
	Pituitary hormone deficiency	PROP1. OTX2. POU1F1. HESX1. LHX4. LHX3	6	
	Microcephalic osteodysplastic primordial dwarfism	PCNT, RNU4ATAC	2	
	Others	IGF1R, GNAS, HSD11B2, B3GALTL, INSR,	7	
		CYP11B1, CASR		
Skeletal system	Achondrogenesis	TRIP11, COL2A1	2	114
	Hypochondroplasia	FGFR3	1	
	Chondrodysplasia	ARSE, PTH1R, IMPAD1, EBP, GNPAT, PEX7,	9	
		AGPS, BMPR1B, RMRP		
	Chondrosarcoma	EXT1	1	
	Acrodysostosis	PDE4D, PRKAR1A	2	
	Acromesomelic dysplasia	GDF5, NPR2	2	
	Brachydactyly	GDF5, ROR2, NOG, PTHLH, HOXD13, IHH,	9	
	Deleder to de	BMPRIB, HDAC4, SOX9	£	
	Polydactyly Eniskussel duanlasia	NEKT, WDR55, DINC2HI, PIK5R2, AKT5	2	
	Epipityseai dyspiasia	SIC2642	0	
	Metaphyseal anadysplasia	MMP13 COL1041 MMP9	3	
	Osteogenesis imperfecta	SERPINHI CRTAP BMP1 FKBP10 COL142	11	
		LEPRE1, IFITM5, SERPINF1, PPIB, COL1A1, SP7		
	Spondyloepiphyseal dysplasia	MMP13, PAPSS2, MATN3, TRAPPC2, KIF22,	10	
		ACP5, DDR2, ACAN, COL2A1, CHST3		
	Spondylocostal dysostosis	HES7, DLL3	2	
	Microcephaly	MCPH1, ASPM	2	
	Arthrogryposis	MYH3, TPM2, TNNT3	3	
	Craniodiaphyseal dysplasia	IFT43, SOST, WDR35, WDR19	4	
	Stickler syndrome	COL2A1, COL9A2, COL9A1, COL11A1	4	
	Others	SEC23A, MMP2, ESCO2, RIN2, LMX1B, GHR,	48	
		SLC35DI, EFNBI, DYM, LIFK, GOKAB, SH3BP2, EGEP1 TRV15 COMP CANTL TEAD2A PUNY2		
		TMCO1 CHRNA1 CTSK FLNB EVC FRN1		
		B3GAT3. EFTUD2. EIF2AK3. SLC26A2. EVC2.		
		CHRNG, CHRND, SMAD4, POC1A, TBX3,		
		WNT7A, ERCC6, ERCC2, FBN1, ADAMTSL2,		
		EXT2, TRPV4, SF3B4, CA2, WDR19, GDF6,		
D' d' d		FAM123B, TNFRSF11B, TNN12	2	-
Digestive system	Cholestasis	AIP8BI, ABCBII	2	2
		BUBIB	1	
	Hepatocentular carcinoma, somatic	CASP8	1	
Clrin	Cutia lava		1	17
SKIII	Durlantaria concenit	DKCL TERT TRE2	4	17
	Dyskeratosis congenit	DKCI, IERI, IINF2	3	
	Tricherthingerhalten and som denne	EXCUS, GIF2H3	2	
	Enidermelygic hylloge gimpley	EATT, IKPST	2	-
	Epidermolysis burlosa simplex	I LECI DODCN	1	-
	Pocai dermai nypopiasia		1	-
	Deilidiadormo	SLC37A4 C16auf57	1	-
	roikilouellila		1	-
	Postriative dermonathy		1	-
	Restrictive definopatity	LINI 51E27	1	1

Continued on next page

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 15 (2): gmr.15028134

L.S. Chen et al.

Classification of disease	Disease	Targeted Genes	No.	Total No
Neuromuscular	Mental retardation	SLC9A6, SMS, HCFC1, NSUN2, RAB40AL, CASK, KDM5C, RPS6KA3, CUL4B	9	36
	Pontocerebellar hypoplasia	CHMP1A, EXOSC3	2	1
	Spastic paraplegia	AP4S1, AP4E1, AP4B1	3	1
	Spinocerebellar ataxia	GRM1, ZNF592		1
	Muscular dystrophy	SEPNI, LARGE, SEPT9		1
	Myasthenic syndrome	RAPSN		1
	Myosclerosis	COL6A2		1
	Polymicrogyria	RTTN		1
	Mental retardation	SOX3	1	1
	Others	NAA10, NF1, LRP5, ATM, SHROOM4, SIL1, SLC6A8, IGBP1, SHH, NDE1, IKBKAP, KIF1A, VLDLR	13	
ENT (ear-nose-throat)	Microphthalmia	BCOR, STRA6, OTX2, SMOC1, HCCS, SOX2	6	11
facial features	Enlarged vestibular aqueduct	FOXI1, KCNJ10	2	1
	Deafness with enlarged vestibular aqueduct	SLC26A4	1	1
	Tooth agenesis	LTBP3		1
	Dent disease	CLCN5	1	1
Hematological system	Fanconi anemia	FANCE, FANCC, FANCA, FANCG, FANCF, RAD51C, FANCD2, SLX4	8	19
	Heinz body anemia	HBB, HBA1	2	
	Anemia	SLC19A2, RPS19, KLF1, GATA1	4	
	Leukemia	RARA	1	
	Others	LBR, ATRX, RBM8A, UROS	4	
Immune system	Immunodeficiency	LAMTOR2, LRBA	2	6
, ,	Agammaglobulinemia BTK		1	
	Arthropathy, progressive pseudorheumatoid	WISP3	1	
	Autoimmune disease	ITCH	1	
	others	SMARCAL1	1	1
Other syndromes	3-M syndrome	CUL7, CCDC8	2	141
	Bartter syndrome	KCNJ1, SLC12A2	2	
	Cockayne syndrome	ERCC8, ERCC6	2	
	Cornelia de Lange syndrome	SMC1A, NIPBL, SMC3, HDAC8, RAD21	5	
	Ehlers-Danlos syndrome	ADAMTS2, SLC39A13, COL1A2, B4GALT7, COL3A1, COL1A1, COL5A2, COL5A1	8	
	Feingold syndrome	MYCN, MIR17HG	2	
	Meier-Gorlin syndrome	ORC6, ORC1, CDT1, CDC6, ORC4	5	
	Noonan syndrome	KRAS, RAF1, BRAF, SOS1, PTPN11	5	
	Oral-facial-digital syndrome	OFD1, TCTN3	2	
	Robinow syndrome	WNT5A, ROR3	2	
	Rubinstein-Taybi syndrome	CREBBP, EP300	2	
	Schwartz-Jampel syndrome	LIFR, HSPG2	2	
	Seckel syndrome	ATR, RBBP8, CEP152, NIN, CEP63, CENPJ		1
	Weill-Marchesani syndrome	ADAMTS17, FBN1, LTBP2, ADAMTS10		1
	Warburg micro syndrome	RAB3GAP1, RAB3GAP2, RAB18		1
	Rett syndrome	FOXG1, MECP2	2	1
	Others	LRP2, NKX2-1, RAB3GAP2, FGD1, KCNJ2, SBDS, L1CAM, AAAS, BRAF, TWIST1, NBAS, SEMA3E,	94	
		PQBP1, SPG20, G6PC3, HYLS1, NBN, RAII, IGF2, UBR1, OCRL, CHD7, GLA, CD96, LMNA, PHF6, HRAS, JFT140, SRCAP, CTC1, OTX2, ASXL1, FTO, ANKRD11, HSD17B4, MED12, KIF7, DHCR7, CTDP1, MYH8, DDX11, POR, KAT6B, ALDH42, TP63, SDHA, ALPL, MLL, WRN		
		MAP2KI, NSDHL, FAM20C, NSDI, H19, RECQL4, TRIM37, ZEB2, FOXEI, KANSLI, BANFI, BLM, VPS13B, RAB23, TBX1, HPRTI, SLC16A2, SMARCA2, COX412, MAP2K2, NOTCH2, CRLF1, WFS1, ZBTB16, ARX, DLX5, MGP, FGFR2, TAZ, PITX2, ACTB, PLOD2, SLC34A1, MBTPS2, TMEM237, TBCE, MKS1, GPC6, RIPK4, FLNA, GJB6, ERCC3, MPV17,		

Neither of these mutations has been previously reported, nor were they observed in the approximately 6000 controls in the 1000 Genomes Project and the BGI in-house database.

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 15 (2): gmr.15028134

Table 3. Mother with 17 mutational sites of non-synonymous variants and splicing site/coding InDels remaining.

Gene	NM ID	Mut name	Function	Mut type
ASPM	NM_018136.4	c.1732G > A	missense	Het
PLOD2	NM_000935.2	c.805G > A	missense	Het
NSD1	NM_172349.2	c.2380A > G	missense	Het
SLC34A1	NM_003052.4	c.533T > A	nonsense	Het
PLEC	NM_000445.3	c.12728G > A	missense	Het
SLC34A3	NM_001177316.1	c.1612C > T	missense	Het
KAT6B	NM_012330.3	c.3270_3278delTGAAGAGGA	cds-del	Het
RAPSN	NM_032645.4	c.457G > T	missense	Het
DYNC2H1	NM_001080463.1	c.8313A > T	missense	Het
PTHLH	NM_198965.1	c.447C > G	missense	Het
FBN1	NM_000138.4	c.3455C > T	missense	Het
SRCAP	NM_006662.2	c.8018C > T	missense	Het
ATP8B1	NM_005603.4	c.1151G > A	missense	Het
GDF5	NM_000557.2	c.979C > G	missense	Het
CTSA	NM_001127695.1	c.1036G > A	missense	Het
PCNT	NM_006031.5	c.6150+3G > A	intron	Het
EP300	NM_001429.3	c.2237A > C	missense	Het

Table 4. Father with 16 mutational sites of non-synonymous variants and splicing site/coding InDels remaining.

Cana	NIM ID	Mut and	Europtica	Must true a
Gelle		wiut_name	Function	with_type
LEPREI	NM_022356.3	c.1057A > G	missense	Het
NBAS	NM_015909.3	c.656C > G	missense	Het
MPV17	NM_002437.4	c.373C > T	missense	Het
FLNB	NM_001164319.1	c.3583G > A	missense	Het
EVC	NM_153717.2	c.884C > G	missense	Het
GHR	NM_000163.4	c.206C > T	missense	Het
FANCE	NM_021922.2	c.266G > T	missense	Het
GUSB	NM_000181.3	c.10G > A	missense	Het
SLC34A3	NM_001177316.1	c.1612C > T	missense	Het
DYNC2H1	NM_001080463.1	c.10711_10714delTTTA	frameshift	Het
MLL2	NM_003482.3	c.15403A > G	missense	Het
STRA6	NM_001142619.1	c.380-9A > T	intron	Het
SRCAP	NM_006662.2	c.6610-5G > A	intron	Het
CCBE1	NM_133459.3	c.654+5G > C	intron	Het
PCNT	NM_006031.5	c.3557G > A	missense	Het
PCNT	NM 006031.5	c 5582C ≥ T	missense	Het

Het = heterozygous.

Figure 1. Mutations detected in the DYNC2H1 gene in the mother, father and fetus. A comparison between all three individuals is shown.

Genetics and Molecular Research 15 (2): gmr.15028134

©FUNPEC-RP www.funpecrp.com.br

L.S. Chen et al.

DISCUSSION

The aim of this study was to determine whether a four-month-old fetus with short limbs harbored any genetic abnormalities. Given that the karyotype analysis and aCGH levels were normal in both the fetus and the parents, we suspected a single gene defect. Among a panel of 463 genes associated with short limb development, we identified mutations in the *DYNC2H1* gene which is associated with SRPS3.

The *DYNC2H1* gene is located at chromosome 11q22.3. It encodes a large cytoplasmic dynein protein involved in the structure and function of cilia. Cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play diverse roles in cellular motility, sensory transduction, and signaling. In humans, ciliary dysfunction is associated with a large spectrum of disorders (Bisgrove and Yost, 2006; Eggenschwiler and Anderson, 2007; Tran et al., 2008), including defects in a variety of proteins necessary for intraflagellar transport as well as in components of the primary cilia, basal body, and centrosome. Many of these phenotypes include polydactyly and some include abnormal skeletogenesis. Mutations in *DYNC2H1* have been associated with a heterogeneous spectrum of conditions related to altered primary cilium function that often involve polydactyly, abnormal skeletogenesis, and polycystic kidneys.

To date, there are several reports of *DYNC2H1* mutations being associated with SRPS3. Dagoneau et al. (2009) identified two cases with SRPS3. The first case had compound heterozygosity for mutations c.4610A > G and c.7382G > T in exons 30 and 45, respectively, of the *DYNC2H1* gene. The second case had compound heterozygosity for mutations c.5959A > G and c.10130delT in exons 38 and 67, respectively, of the *DYNC2H1* gene. Merrill et al. (2009) identified three cases with SRPS3. The first case had homozygosity for the mutations c.1759C > T in exon 12 of the *DYNC2H1* gene. The second case had compound heterozygosity for mutations c.6614G > A and c.8512C > T in exons 41 and 53, respectively, of *DYNC2H1*. The third case had compound heterozygosity for mutations c.624_625GT > AA and c.IVS33 + 1G > T in exons 5 and 33, respectively, of *DYNC2H1*. Okamoto et al. (2015) identified compound heterozygosity for mutations c.5682_5683delAA and c.9070C > T in exons 37 and 57, respectively, of the *DYNC2H1* gene in a fetus with SRPS3. Mei et al. (2015) identified compound heterozygosity for mutations c.1151C > T and c.4351C > T in exons 8 and 28, respectively, of the *DYNC2H1* gene in a fetus with SRPS3. All cases showed similar radiographic findings, such as shortened long bones and a narrow thorax.

In our study, the *DYNC2H1* mutations identified have not been previously reported. The c.8313A > T missense mutation results in an arginine to serine substitution at amino acid position 2771. The c.10711_10714delTTTA mutation causes a frameshift that introduces a stop codon at amino acid position 3571, resulting in a truncated protein and possible protein instability. The presence of both of these mutations in the fetus, but only one copy in each of the unaffected parents, follows the pattern of an autosomal recessive disease gene. At the same time, we found the skeletal system of the fetus showed similar characteristic to the reported cases. With the known association between *DYNC2H1* mutations and SRPS3, we conclude that these novel mutations are the cause of SRPS3 in the fetus.

We have identified novel mutations in *DYNC2H1* that appear to be associated with SRPS3. This was achieved using the innovative approach of next generation sequencing to screen for mutations in a panel of genes potentially associated with the disease under study. Similar application of this new technology to other disorders may enhance our ability to

Genetics and Molecular Research 15 (2): gmr.15028134

identify disease-associated gene mutations. Furthermore, use of this methodology in prenatal genetic testing could help strengthen our understanding of the genetic causes of birth defects, as well as improve the prospects for early detection.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank all the patients who participated in this study. Research supported by the Youth Breeding Project of PLA Medical Science (#14QNP004).

REFERENCES

- Bisgrove BW and Yost HJ (2006). The roles of cilia in developmental disorders and disease. *Development* 133: 4131-4143. http://dx.doi.org/10.1242/dev.02595
- Cavalcanti DP, Huber C, Sang KH, Baujat G, et al. (2011). Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J. Med. Genet. 48: 88-92. http://dx.doi.org/10.1136/jmg.2009.069468
- Chandler ME and Yunis JJ (1978). A high resolution in situ hybridization technique for the direct visualization of labeled G-banded early metaphase and prophase chromosomes. *Cytogenet. Cell Genet.* 22: 352-356. <u>http://dx.doi.org/10.1159/000130970</u>
- Chen CP, Chern SR, Chang TY, Su YN, et al. (2012). Prenatal diagnosis and molecular genetic analysis of short ribpolydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus with a homozygous splice site mutation in intron 4 in the NEK1 gene. *Taiwan. J. Obstet. Gynecol.* 51: 266-270. http://dx.doi.org/10.1016/j.tjog.2012.04.018
- Dagoneau N, Goulet M, Geneviève D, Sznajer Y, et al. (2009). DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am. J. Hum. Genet. 84: 706-711. <u>http://dx.doi.org/10.1016/j. ajhg.2009.04.016</u>
- Eggenschwiler JT and Anderson KV (2007). Cilia and developmental signaling. *Annu. Rev. Cell Dev. Biol.* 23: 345-373. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123249
- Huber C, Wu S, Kim AS, Sigaudy S, et al. (2013). WDR34 mutations that cause short-rib polydactyly syndrome type III/ severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am. J. Hum. Genet. 93: 926-931. http://dx.doi.org/10.1016/j.ajhg.2013.10.007
- McInerney-Leo AM, Schmidts M, Cortés CR, Leo PJ, et al.; UK10K Consortium (2013). Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am. J. Hum. Genet. 93: 515-523. <u>http://dx.doi.org/10.1016/j. ajhg.2013.06.022</u>
- Mei L, Huang Y, Pan Q, Su W, et al. (2015). Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Clin. Chim. Acta 447: 47-51. <u>http:// dx.doi.org/10.1016/j.cca.2015.05.005</u>
- Merrill AE, Merriman B, Farrington-Rock C, Camacho N, et al. (2009). Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am. J. Hum. Genet. 84: 542-549. <u>http:// dx.doi.org/10.1016/j.ajhg.2009.03.015</u>
- Okamoto T, Nagaya K, Kawata Y, Asai H, et al. (2015). Novel compound heterozygous mutations in DYNC2H1 in a patient with severe short-rib polydactyly syndrome type III phenotype. *Congenit. Anom. (Kyoto)* 55: 155-157. <u>http://dx.doi.org/10.1111/cga.12098</u>
- Richards CS, Bale S, Bellissimo DB, Das S, et al.; Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee (2008). ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. *Genet. Med.* 10: 294-300. <u>http://dx.doi.org/10.1097/GIM.0b013e31816b5cae</u>
- Tran PV, Haycraft CJ, Besschetnova TY, Turbe-Doan A, et al. (2008). THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. *Nat. Genet.* 40: 403-410. <u>http://dx.doi.org/10.1038/ng.105</u>

Genetics and Molecular Research 15 (2): gmr.15028134