
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 13476-13484 (2015)

Identification of molecular markers related 
to human alveolar bone cells and pathway 
analysis in diabetic patients

X. Sun, Q.H. Ren, L. Bai and Q. Feng

Department of Stomatology, 
The First Affiliated Hospital of Henan University of Science and Technology, 
Luoyang, Henan, China

Corresponding author: X. Sun
E-mail: quinvo016796@126.com

Genet. Mol. Res. 14 (4): 13476-13484 (2015)
Received March 29, 2015
Accepted July 3, 2015
Published October 28, 2015
DOI http://dx.doi.org/10.4238/2015.October.28.8

ABSTRACT. Alveolar bone osteoblasts are widely used in dental and 
related research. They are easily affected by systemic diseases such 
as diabetes. However, the mechanism of diabetes-induced alveolar 
bone absorption remains unclear. This study systematically explored 
the changes in human alveolar bone cell-related gene expression and 
biological pathways, which may facilitate the investigation of its 
mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics 
and 5 male healthy adults were cultured. Total RNA was extracted from 
these cells and subjected to gene microarray analysis. Differentially 
expressed genes were screened, and a gene interaction network was 
constructed. An enrichment pathway analysis was simultaneously 
performed on differentially expressed genes to identify the biological 
pathways associated with changes in the alveolar bone cells of diabetic 
humans. In total, we identified 147 mRNAs that were differentially 
expressed in diabetic alveolar bone cells (than in the normal cells; 
91 upregulated and 36 downregulated mRNAs). The constructed 
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co-expression network showed 3 pairs of significantly-expressed 
genes. High-enrichment pathway analysis identified 8 pathways that 
were affected by changes in gene expression; three of the significant 
pathways were related to metabolism (inositol phosphate metabolism, 
propanoate metabolism, and pyruvate metabolism). Here, we identified 
a few potential genes and biological pathways for the diagnosis and 
treatment of alveolar bone cells in diabetic patients.
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INTRODUCTION

Bone tissue has a strong regenerative capacity. Bone reshaping originates from os-
teoclast absorption and is maintained by osteoblast formation (Vestergaard, 2014). In vitro 
cultured bone cells provide valuable information regarding bone growth and metabolism, and 
for the treatment of bone disease. The in vitro osteoblast model is the most actively researched 
bone cell model (Grey, 2015). In vitro alveolar bone osteoblast culture is widely used in the 
study of teeth and tooth-related diseases. Alveolar bone is an active region of bone metabo-
lism in the body, and is easily affected by systemic diseases, such as diabetes mellitus (DM) 
(Sargent, 2014). Previous research studies have indicated that the reduced infection resistance 
of local tissues aggravates periodontal inflammation, which in turn results in alveolar bone 
inflammatory absorption. However, the specific mechanism of diabetes-induced alveolar bone 
resorption remains to be elucidated (Khosravi and Trackman, 2014).

Owing to the complexity of the disease, specifically with respect to the gene-gene 
interactions governing the disease, recent studies have focused on elucidating the gene expres-
sion via network analysis. The co-expression network is the best among the various networks 
(analysis techniques) to indicate the correlation between genes, since the network is con-
structed based on changes in the gene expression and direction of regulation. The empirical 
Bayesian co-expression analysis method is the best method (among all available methods) to 
identify different groups without genome condition number limitation, while controlling the 
false discovery rate (FDR) (Dawson and Kendziorski, 2012). Broët et al. (2002) confirmed 
that the empirical Bayesian method can be used to identify changes in the microarray gene 
expression and co-expression analysis (Broët et al., 2002). Therefore, the empirical Bayesian 
method was used in this study to build a gene expression network, and to explore the relation-
ship between differential gene expression and pathway analysis in alveolar bone osteoblasts 
obtained from diabetes patients.

Primary in vitro alveolar bone osteoblast cultures were prepared in this study; 
these were subjected to high-throughput gene expression analysis, to determine the mo-
lecular mechanism of the effect of diabetes on the biological character of, and patho-
logical changes in alveolar bone osteoblasts. In addition, the microarray characteristics 
of primary culture models were investigated, and differentially expressed genes between 
diabetic patients and normal controls were compared, to further select a local implantable 
drug delivery system.
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MATERIAL AND METHODS

Alveolar bone acquisition

Alveolar bone debris was obtained from five male type-2 diabetic patients and normal 
controls with tooth loss and treated with oral planting. The ages of the enrolled subjects varied 
between 45 and 50, and the DM type 2 (DM2) patients had at least 5 years of diabetes his-
tory. Random blood glucose and glycosylated hemoglobin levels were determined to be 11-15 
mM/L and l0-15% in diabetic patients without glucose control, and 4.5-5.9 mM/L and 5-6% in 
healthy subjects. The blood glucose levels were controlled in the DM2 patients; the resulting 
fasting blood glucose and glycosylated hemoglobin levels were 5-6 mM/L and 5-6%, respec-
tively. Informed consent was obtained from all patients prior to the surgery. Enough alveolar 
bone mass was reserved to guarantee plantation. The bone fragments obtained on the pioneer 
and twist drills were collected for further experiments.

Osteoblast cultivation

The collected bone debris was flushed thrice with D-Hanks buffer (Nanjing Shenbei-
jia Biotechnology Co., Ltd.) supplemented with 100 mg/L penicillin-streptomycin, and subse-
quently centrifuged twice at 300 g for 5 min. The supernatant was removed, and the pellet was 
cultured on a dish coated with a small amount (1100 mg/L) of fetal bovine serum. Bone debris 
was moistened with low-sugar Dulbecco’s modified Eagle’s medium (Gibco), and maintained 
in an incubator at 37°C and 5% CO2. Complete medium was added to this after 3 hours, and 
the medium changed every 3 days. The cells were collected upon covering approximately 80% 
of the bottom (area) of the culture dish.

RNA extraction and purification

RNA was extracted using TRIzol reagent (Life Technologies, Carlsbad, CA, USA), 
according to the standard operating procedure provided by the manufacturer. The sample was 
ground with liquid nitrogen, TRIzol reagent was added for 5-10 minutes, and the chloroform 
was subsequently added at room temperature for 15 min. This was centrifuged for 15 min, 
and the obtained sample was incubated with isopropyl alcohol for 10 min. Another round 
of centrifugation for 10 min was carried out and total RNA was extracted by the addition of 
DEPC-treated water. The extracted RNA was quantified by electrophoresis on an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The RNA samples were then 
purified using the RNeasy micro kit (Qiagen, Venlo, Netherlands) and RNase-free DNAse kit 
(Qiagen, Hilden, Germany). The obtained RNA samples were reverse transcribed to obtain 
cDNA by the RT kit (Bio-Rad), and the sample was ultimately scanned after hybridization.

Gene microarray

Microarray profiling of the synthesized mRNA was performed using the HumanGene 
U133 plus 2.0 Arrays (HumanGene, Santa Clara, CA, USA) according to manufacturer proto-
cols. The Affymetrix array cassette was subjected to standard staining, washing, and scanning. 
Feature extraction was performed using the Affymetrix Command Console software (Barrett 
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et al., 2013). The raw data was processed in the following sequence: background detection was 
followed by RMA global background correlation, quantile normalization, median estimation, 
and log2-transformation, using the mRNA QC software tool (Affymetrix). 

The Limma package was used to treat the extracted data, and the significance was 
detected using the t-test.

Mean:  

Deviation:

Here, ni represents the repeat time of the experiment, Xij denotes a certain gene expression 
level for condition i and the j time repeat. The P value was obtained based on the statistical 
value of t. P value less than 0.05 was considered to be a statistically significant.

The Benjamini and Hochberg algorithm (Benjamini and Hochberg, 1995) was used 
to correct the sample P value for multiple testing FDR (threshold value, 0.05); genes exhibit-
ing P values < 0.01 were treated as differentially expressed genes. The FDR correction was 
calculated as follows:

                                                   FDR = E(V/ R)

where, V denotes the unobservable random variables and R indicates observable random variables.

Co-expression network

Gene co-expression networks were built using the empirical Bayesian approach. 
The log2 value was applied for background standardization of the expression matrix m x 
n (m denotes the number of genes at a specific condition and n indicates the total number 
of genes in the microarray), resulting in the matrix X. “n” indicated the length of the con-
dition sequence, whose value should vary between 1 and K (K indicates the total number 
of conditions). The differential co-expression/identical co-expression (EC/DC) grade was 
defined.

The genes were subjected to intra-class correlation calculation, using the equation p 
= m*(m - 1) / 2, and the correlation matrix D (p x K). The hyper-parameters were subjected 
to an initial treatment to ensure consistency of the transformed D with the components of the 
standard hybrid model; the posterior probability of DC production was estimated. The match 
degree of the selected model and database was tested. In case of good model matching, the 
model was provided with an ideal soft threshold value. However, soft threshold might result 
in higher FDR; therefore, the FDR was set to ≤ 0.05.

(Equation 04)
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Pathway analysis

The significant pathways affected by the differential genes were identified by pathway 
analysis, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Enrich-
ment analysis was also used to select significant pathways (Grossgaluser and Vetterli, 2003). 
The enrichment analysis was performed using the following equation

where, N is the total number of genes in the microarray, n denotes the number of differential 
genes within a particular category, M indicates the number of genes in N, that pertain to a spe-
cific biological process, and k denotes the number of genes in n that pertain to a specific pro-
cess. P is the degree of confidence of enrichment of differentially expressed genes to a specific 
biological process. A threshold P value ≤ 0.05 was set for significance. Functional enrichment 
analysis was performed using the DAVID software platform (Huang Da et al., 2008), which 
is a comprehensive online analysis tool that facilitates pathway enrichment analysis to mine 
the statistically significant differentially expressed genes or co-expressed genes. This software 
can be used to quickly determine gene enrichment pathways and tentative biological signifi-
cance. DAVID can be used to identify signaling pathways with differentially expressed genes.

RESULTS

Differentially expressed genes

We identified a total of 147 differentially-expressed mRNAs in alveolar bone cells 
obtained from diabetics (91 upregulated and 56 downregulated mRNAs) by the Student t-test. 
Figure 1 lists 20 genes with the highest significance, including RASSF3, C11orf96, ALDH6A1, 
ABRA, TMEM135, PPM1K, INPP4B, ATRNL1, TFPI, KIAA1109, LOC151121, SCGB1D2, 
FOXP2, LDHA, TMEM120A, DBNDD1, PBXIP1, and TST.

(Equation 05)
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Figure 1. Differentially expressed genes in alveolar bone cells of diabetic and healthy control patients.
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Pathway analysis

Significant pathways with P values < 0.05 were screened via KEGG pathway en-
richment analysis (Table 1). The identified 147 differentially expressed genes were mainly 
enriched in 8 pathways, majority of which were metabolic pathways. The metabolic pathways 
with the highest level of significance were inositol phosphate metabolism, propanoate metabo-
lism, and pyruvate metabolism. 

Table 1. KEGG pathway analysis.

No Pathway P value

1 Inositol phosphate metabolism 0.0055
2 Propanoate metabolism 0.0204
3 Pyruvate metabolism 0.0248
4 Valine, leucine and isoleucine degradation 0.0269
5 Non-small cell lung cancer 0.0320
6 Glycolysis/Gluconeogenesis 0.0349
7 Complement and coagulation cascades 0.0390
8 ErbB signaling pathway 0.0464

Co-expression of differentially expressed genes

Co-expression networks were constructed based on the dynamic changes in gene ex-
pression values, regulation relationships, and regulation direction (Stuart et al., 2003). Co-ex-
pression analyses can reveal the interaction of genes with each other, and the changes effected by 
these genes in the disease. Three pairs of genes (ABHD2 and BDH1, MS4A2 and CAPG, LSG1 
and HPS6) showed significant differences (Figure 2). The white dots in Figure 2 represent genes, 
the red line indicates positive co-expression, blue line denotes negative co-expression, and the 
deeper colors indicated a higher degree of co-expression. The results indicated that the gene 
pairs exhibited identical trends in both diabetes and healthy control alveolar cells. Meanwhile, 
there was change in the co-expression relationship in the diabetes group, compared to the normal 
group. The 6 differentially expressed genes were further subjected to a cluster analysis (Figure 
3). Each row in Figure 3 represents a gene, red indicates negative expression, green denotes 
positive expression, values closer to the green or red were indicative of higher or lower expres-
sion, and black represented a low degree of expression. The expression of BDH1 and LSG1 was 
significantly different between the diabetes patients and healthy controls. 

Figure 2. Differences in the co-expression network of alveolar bone cells in diabetes and healthy controls.
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Figure 3. Heat map of differentially expressed genes in diabetic patients than those in the healthy control subjects.

DISCUSSION

Osteoblasts are derived from pluripotent bone marrow stromal cells. They are the ma-
jor functional cell involved in bone matrix synthesis, secretion, and mineralization. Alveolar 
bone osteoblasts play an important role in bone matrix collagen formation and osteoclast re-
sorption control, and facilitate the maintenance of balance in the bone metabolism. However, 
such a balance is vulnerable to the effects of systemic diseases, especially diabetes (Fiorellini 
and Nevins, 2000). Diabetes influences osteoblasts via two mechanisms: reduced insulin se-
cretion, which may lead to reduction in osteoblast number and bone matrix synthesis; continu-
ous high blood glucose levels, which would restrict osteoblast differentiation, which in turn 
delays bone deposition and mineralization (Santana et al., 2003; Mellado-Valero et al., 2007). 
Therefore, it is important to study the biological characteristics of osteoblasts in DM patients. 
At present, very little scientific literature is available regarding alveolar bone osteoblast-relat-
ed gene expression and enriched pathway analysis in diabetes patients.

Our study revealed the presence of 147 differentially expressed genes in alveolar bone 
osteoblasts in DM patients, compared to the normal control subjects (91 upregulated and 36 
downregulated mRNA). The co-expression network developed based on the empirical Bayes-
ian approach revealed six differentially-expressed gene pairs. Functional annotation and clas-
sification of genes using the DAVID software suggested that these differentially-expressed 
genes affected eight pathways that were mainly related to metabolism.

Pathway analysis mainly enriched the metabolic related pathways. Diabetes is a meta-
bolic disease with many complications that seriously influence the quality of life of the pa-
tients. Therefore, it is important to attempt the early detection and prevention of diabetes. 
The use of metabolic methods for early classification and diagnosis of diabetes has become 
an important focal area for diabetes research, and is playing an increasingly important role in 
diabetes diagnosis (Bain et al., 2009). Studies have shown that diabetes caused carbohydrate 
metabolic disorder, can reduce bone formation, and decrease bone mineral density. Mean-
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while, diabetes can also further influence protein and fat metabolism (Xu et al., 2014). For 
example, Yi et al. (2006) obtained valuable information regarding biomarkers through the 
pattern recognition in DM patients and healthy controls (YiHe et al., 2006). In this experi-
ment, diabetes was found to be mainly associated with carbohydrate metabolism, suggesting 
that glyco-metabolism plays an important role in osteoblast formation and function. This also 
provided credibility to the enrichment results.

Inositol phosphate, propionic acid, and pyruvic acid are the intermediates of glyco-me-
tabolism under normal physiological conditions. Diabetes is known to cause disorders in the glu-
cose metabolism, impacting a series of metabolic processes, and eventually leading to multiple 
metabolic disorders (Garg et al., 2014; Lopez et al., 2014). The pentose phosphate pathway is a 
major pathway for glucose metabolism. This pathway provides NADPH oxidase to maintain the 
reduced state of glutathione, which is closely related to diabetes (Eid et al., 2009). Meanwhile, 
pyruvic acid is inoxidizable, which promotes tissue glycolysis, inhibits sorbitol synthesis, im-
prove lens energy metabolism, and delays the occurrence of diabetes (Grey, 2015).

RASSF3 showed the most significant difference among the 147 differentially ex-
pressed genes. RASSF3 contains five exons, and encodes a 28.6-kDa protein composed of 247 
amino acids. The carboxyl end of the RASSF3 protein contains a highly conserved Ras-related 
domain (Tommasi et al., 2002). RASSF3 is widely expressed in normal tissues, and is down-
regulated in lung, ovarian, and colorectal cancer tissues (Tommasi et al., 2002; Jacquemart 
et al., 2009). The downregulation of RASSF3 resulted in hypermethylation of the promoter 
region, which in turn accelerates tumor growth by inhibiting apoptosis (Jacquemart et al., 
2009). For example, RASSF3 hypermethylation may result in gene silencing, which might 
be an important early indicator of pituitary adenoma (Peng et al., 2013). These suggested that 
RASSF3 is an important regulatory protein. So far, there has been no report regarding the role 
of RASSF3 in diabetes. Our results revealed that RASSF3 is upregulated in diabetic alveolar 
bone cells, which may result in an increase in alveolar bone cell apoptosis and a decrease in 
cell proliferation.

In summary, 147 differentially-expressed genes were identified. The enrichment path-
way analysis indicated that metabolic reactions were mainly affected by these genes. There-
fore, the results of this study identified a few potential gene- and biological pathway-targets for 
the diagnosis and treatment of alveolar bone cells in diabetic patients. Metabolic pathways can 
be used to analyze and judge the proliferative ability of diabetic alveolar bone cells. Therefore, 
this study lays a foundation for selection of future local implantable drug delivery systems.

Conflicts of interest

The authors declare no conflict of interest. 

ACKNOWLEDGMENTS

We thank the anonymous reviewers for reviewing this manuscript. 

REFERENCES

Bain JR, Stevens RD, Wenner BR, Ilkayeva O, et al. (2009). Metabolomics applied to diabetes research moving from 
information to knowledge. Diabetes 58: 2429-2443.



13484

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 13476-13484 (2015)

X. Sun et al.

Barrett T, Wilhite SE, Ledoux PL, Evangelista C, et al. (2013). NCBI GEO: archive for functional genomics data sets-
update. Nucleic Acids Res. 41: D991-D995.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate-a practical and powerful approach to multiple 
testing. J. R. Statist. Soc. 57: 289-300.

Broët P, Richardson S and Radvanyi F (2002). Bayesian hierarchical model for identifying changes in gene expression 
from microarray experiments. J. Comput. Biol. 9: 671-683.

Huang Da W, Sherman BT and Lempicki RA (2008). Systematic and integrative analysis of large gene lists using DAVID 
bioinformatics resources. Nat. Protoc. 4: 44-57.

Dawson JA and Kendziorski C (2012). An empirical Bayesian approach for identifying differential coexpression in high-
throughput experiments. Biometrics. 68: 455-465.

Eid AA, Gorin Y, Fagg BM, Maalouf R, et al. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome 
P450 and NADPH oxidases. Diabetes. 58: 1201-1211.

Fiorellini JP and Nevins ML (2000). Dental implant considerations in the diabetic patient. Periodontology 2000 23: 73-77.
Garg M, Mehra P and Bansal DD (2014). Hormonal imbalance and disturbances in carbohydrate metabolism associated with 

chronic feeding of high sucrose low magnesium diet in weanling male wistar rats. Mol. Cell. Biochem. 389: 35-41.
Grey A (2015). Diabetes medications and bone. Curr. Osteoporos. Rep. 13: 35-40.
Grossglauser M and Vetterli M (2003). INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer 

and Communications. IEEE Societies, 1954-1964.
Jacquemart IC, Springs AE and Chen WY (2009). Rassf3 is responsible in part for resistance to mammary tumor 

development in neu transgenic mice. Int J Oncol. 34: 517-528.
Khosravi R and Trackman PC (2014). Diabetes-induced fibrotic matrix inhibits intramembranous bone healing. J. Cell 

Commun. Signal 9: 19-26.
Lopez LM, Grimes DA and Schulz KF (2014). Steroidal contraceptives: effect on carbohydrate metabolism in women 

without diabetes mellitus. Cochrane Database Syst. Rev. 4: CD006133
Mellado-Valero A, Ferrer-García JC, Herrera Ballester A and Labaig Rueda C (2007). Effects of diabetes on the 

osseointegration of dental implants. Med. Oral Patol. Oral Cir. Bucal. 12: E38-E43.
Peng H, Liu H, Zhao S, Wu J, et al. (2013). Silencing of RASSF3 by DNA hypermethylation is associated with 

tumorigenesis in somatotroph adenomas. PLoS One 8: e59024.
Santana RB, Xu L, Chase HB, Amar S, et al. (2003). A role for advanced glycation end products in diminished bone 

healing in type 1 diabetes. Diabetes 52: 1502–1510.
Sargent J (2014). Diabetes: Functional impairment of bone marrow progenitor cells in diabetes mellitus. Nat. Rev. 

Endocrinol. 10: 379.
Stuart JM, Segal E, Koller D and Kim SK (2003). A gene-coexpression network for global discovery of conserved genetic 

modules. Science 302: 249-255.
Tommasi S, Dammann R, Jin SG, Zhang XF, et al. (2002). RASSF3 and NORE1: identification and cloning of two human 

homologues of the putative tumor suppressor gene RASSF1. Oncogene 21: 2713-2720.
Vestergaard P (2014). Diabetes and bone fracture: risk factors for old and young. Diabetologia 57: 2007-2008.
Xu F, Dong Y, Huang X, Li M, et al. (2014). Decreased osteoclastogenesis, osteoblastogenesis and low bone mass in a 

mouse model of type 2 diabetes. Mol. Med. Rep. 10: 1935-1941.
Yi LZ, He J, Liang YZ, Yuan DL, et al. (2006). Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes 

mellitus based on GC/MS and PLS-LDA. FEBS Lett. 580: 6837-6845.


