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Identification of marker genes in diabetic 
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ABSTRACT. This study aimed to identify marker genes in diabetic 
wounds using a dataset based on a DNA microarray of dermal lymphatic 
endothelial cells, and our results provide a basic understanding of 
diabetic wounds through further study of these differentially expressed 
genes (DEGs). From the Gene Expression Omnibus database, we 
downloaded a gene expression microarray (GSE38396) that includes 8 
samples: 4 normal controls and 4 disease samples (type II diabetes). We 
then identified genes that were differentially expressed between normal 
and disease samples using packages in R language, constructed a protein-
protein interaction (PPI) network and analyzed modules in the network. 
In addition, phylogenetic analysis was performed by MEGA to find the 
most conserved genes. Two hundred and thirteen genes were identified 
as being differentially expressed between normal and disease samples, 
and we constructed a PPI network that included 213 pairs of proteins. We 
then identified a module including 20 genes, the function of which was 
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significantly enriched in wounding response. Lastly, the most conserved 
genes, CD44 and CCL5, were identified through phylogenetic analysis. 
In summary, we found differentially expressed marker genes, a wounding 
response-related module, and the most important genes CD44 and CCL5. 
Our findings suggest new approaches to therapies for diabetic wounds.
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INTRODUCTION

With the development of a global economy, living standards have improved markedly at the 
same time as eating habits have clearly deteriorated. The global prevalence of diabetes has increased 
as a consequence of this situation (Unsal et al., 2012). Nowadays, more and more researchers 
are focusing on the diabetes, which is a complex disease with multiple symptoms, including the 
sensitivity to injury of patients’ skins. Wound healing is a complex biological process involving 
several overlapping phases including inflammation, proliferation, and cellular remodeling (Baker 
and Leaper, 2003). Diabetic ulcers are refractory wounds because of their long disease duration and 
easy recurrence (Pierce, 2001). Moreover, diabetic wounds often deteriorate into intractable ulcers. 
Therefore, diabetic ulcer wounds are clinical problems which need to be solved (Ackermann and 
Marrero, 2007). With the development of biological science, research on diabetic wound healing 
has become more in-depth. Current studies with animal models show exogenous neuropeptides 
(sP) can significantly accelerate healing of refractory diabetic wounds and improve the healing 
quality (Gibran et al., 2002). Nilsson et al. (1985) confirmed that substance P can stimulate tissue 
cell growth and promote DNA synthesis. In addition, increasing expression of advanced glycation 
end-products in the membranes of fibroblasts can cause their injury and dysfunction (Goova et al., 
2001). However, studies screening differentially expressed genes (DEGs) in diabetic wounds using 
bioinformatics methods remain rare. Nevertheless, genome-wide approaches have reshaped the 
landscape of the problem, and meta-analysis of multi-study data has allowed the identification of 
differentially expressed genes that may have biomarker potential (Chan et al., 2008).

In this study, 213 genes were identified as being differentially expressed between 
normal and disease samples using a DNA microarray from dermal lymphatic endothelial 
cells, following which a protein-protein interaction (PPI) network was constructed. Cytoscape 
and its plugin, Mcode, were used to visualize the network and identify modules within it. 
In addition, phylogenetic analysis was performed by the Molecular Evolutionary Genetics 
Analysis software (MEGA) to find the most conserved genes, which were CD44 and CCL5. 
Many earlier studies have shown that CD44 and CCL5 are involved in diabetic wound healing 
(Falanga, 2005; Gallagher et al., 2007; Dulmovits and Herman, 2012).

MATERIAL AND METHODS

Affymetrix microarray profile

Gene expression profiles of dermal lymphatic endothelial cells (GSE38396) were 
downloaded from the Gene Expression Omnibus database. These comprised four normal 
controls and four disease samples (type II diabetes). Platform information: GPL6244 [(HG-
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U133_Plus_2) Affymetrix Human Genome U133 Plus2.0 Array]. Annotation information for 
all ATH1 (25 K) probe sets is provided by Affymetrix. 

Data processing and differentially expressed gene analysis

Package Affy (Troyanskaya et al., 2001; Fujita et al., 2006) in R language was used 
to pretreat the datasets. The limma package (Smyth, 2004) was then used to identify DEGs 
between disease and normal samples (P < 0.05, |logFC| > 1). Multiple test correction was per-
formed using Bias methods (Benjamini and Hochberg, 1995). 

Selection of hub gene product

String 8.3 (Szklarczyk et al., 2011) was used to predict the interaction of these DEGs. 
Pairs with a combination score larger than 0.5 were recorded. The interaction network was 
analyzed, and the degree of each node calculated.

Analysis of modules in the interaction network
 
Gene products in the same module often have the same or similar roles (Table 1), 

working together to carry out their biological function. Therefore, Cytoscape and its plugin 
Mcode were used to visualize the network and identify the modules within (Bader and Hogue, 
2003; Smoot et al., 2011). Parameters: Degree cutoff ≥ 2 (each node in the module was larger 
than 2 degrees), K-core ≥ 2 (more than 2 subgraphs of each node in the module). Then Bingo 
(Maere et al., 2005) was used to determine which gene ontology (GO) terms are significantly 
overrepresented in the genes in our module (adj P < 0.01).

Phylogenetic analysis of module genes
 
Phylogenetic analysis was performed using the MEGA software (Tamura et al., 2011) 

to find the most conserved genes in the module. These are regarded as the most important 
genes in our study. The MEGA software is multifunctional, providing many convenient facili-
ties for the assembly of sequence data sets from files or web-based repositories. It includes 
tools for visual representation of the results in the form of interactive phylogenetic trees and 
evolutionary distance matrices. The maximum likelihood algorithm was used to construct a 
phylogenetic tree.

RESULTS

DEG selection 

After data processing (Figure 1), differential expression analysis was performed. Two 
hundred and thirteen genes were selected as being differentially expressed (P < 0.05, |logFC| 
> 1): 89 were downregulated and 124 upregulated. The 213 DEGs are listed in Table 1. As 
show in Figure 1, the medians of each set of data are similar, demonstrating that the degree of 
standardization is optimal.
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Figure 1. Boxplot of expression data. The blue and pink boxes represent the normal and disease samples, 
respectively. The black lines in the box represent the median of each set of data.

GO-ID P corr P-value Description

9611 1.25E-07 1.02E-04 Response to wounding
32502 1.06E-06 1.85E-04 Developmental process
48513 1.58E-06 1.90E-04 Organ development
42221 2.49E-06 2.43E-04 Response to chemical stimulus
10033 4.55E-06 2.63E-04 Response to organic substance
48731 3.65E-06 2.63E-04 System development
50896 4.76E-06 2.63E-04 Response to stimulus
9653 5.48E-06 2.81E-04 Anatomical structure morphogenesis
48856 9.94E-06 4.30E-04 Anatomical structure development
6950 1.42E-05 5.56E-04 Response to stress
7275 3.31E-05 9.72E-04 Multicellular organismal development
48522 2.99E-04 3.67E-03 Positive regulation of cellular process
32501 3.31E-04 3.88E-03 Multicellular organismal process
16043 3.59E-04 4.10E-03 Cellular component organization
48518 6.28E-04 6.30E-03 Positive regulation of biological process

Table 1. Function list of genes in module.
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Construction of a protein interaction network
 
Combination score was calculated by STRING 8.3 for all differentially expressed 

genes, and pair records with combination scores larger than 0.5 were chose as DEGs. An in-
teraction network was created which includes 213 pairs of proteins. In addition, we calculated 
the degree of distribution of the whole network, as shown in Figure 2A.

Analysis of modules in the interaction network

Cytoscape and its plugin, Mcode, were used to visualize the network and identify 
the modules within. (Parameters are listed in Material and Methods). One module was 
identified in which there were 20 differentially expressed genes: six upregulated and fourteen 
downregulated. Bingo was performed to assess the functional enrichment of the module based 
on the GO pathway annotation terms (adj P < 0.01). Fifteen significantly enriched functions 
were found of which response to wounding was the most significant in our study.

Phylogenetic analysis of module genes

Phylogenetic analysis was performed and a phylogenetic tree constructed using 
MEGA, as shown in Figure 3. From Figure 3, we learn that genes in the module are associated 
with each other in the evolutionary processes. In this study, they were divided into several 
parts according to the distances between branches. Among the genes, CCL5 was closest to the 
root of the phylogenetic tree. Considering CCL5 still persists after a long genetic evolutionary 
process, we concluded that the function and the structure of CCL5 are important.

The degree of distribution of module genes is shown in the Figure 2B. Nodes with a 
high degree are less common, but most of the nodes in our module are 7 degrees or higher, 
with CD44, at 24, being the highest. 

From the phylogenetic tree branches, we can conclude that the phylogenetic relation-
ship of genes CD44 and CCL5 is very close. Furthermore, they are in the same branch. All 
the evidence suggests there is functional and structural similarity between CD44 and CCL5. 

Figure 2. A. Degree distribution of interaction network. X coordinate axis refers to degree, and Y coordinate axis 
refers to number of genes. B. Degree of genes in the module. Names around the circle are gene names, and numbers 
are degree of genes. 
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DISCUSSION

In this study, using a dataset based on a DNA microarray from dermal lymphatic en-
dothelial cells, 213 genes were identified as being differentially expressed between normal and 
disease samples. Considering that single genes cannot act in isolation (Gauderman, 2002), we 
looked at how these DEGs execute their regulatory functions through interactions with other 
genes by constructing a PPI network. Modules in the network were identified by Cytoscape. 

To identify the most conserved genes in the module, phylogenetic analysis was per-
formed using MEGA. The MEGA software is a desktop application designed for comparative 
analysis of homologous gene sequences either from multigene families or from different spe-
cies. It places a special emphasis on inferring evolutionary relationships and patterns of DNA 
and protein evolution (Kumar et al., 2008). This analysis identified CD44 and CCL5, which 
have been shown in many earlier studies to be involved in diabetic wound healing

Thus, through construction of an interaction network and phylogenetic analysis, func-
tional modules were identified along with the most important genes, CD44 and CCL5. From 
the module function, we concluded that CD44 and CCL5 are most likely to be related to dia-
betic wound healing (Gallagher et al., 2007; Dulmovits and Herman, 2012). 

The CD44 antigen is a cell-surface glycoprotein involved in cell-cell interactions, cell 
adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromo-
some 11 (Haynes et al., 1989) and plays important roles in oocyte maturation, fertilization and 
preimplantational embryo development (Luz et al., 2012). CD44 can also affect the regulation 
of the wound repair process. In particular, CD44 expression is upregulated in non-insulin-de-

Figure 3. Phylogenetic tree for module genes. The length scale is shown left corner. Bar = 0.5 my (million year).
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pendent diabetes mellitus, and the increased expression is considered to affect the properties of 
fibroblasts. Specific properties of fibroblasts may be involved in the increased susceptibility of 
patients with diabetes to chronic ulceration (Yevdokimova and Podpryatov, 2005). When consid-
ered with other research (Cha and Falanga, 2007; Schwarz et al., 2013), our study indicates that 
fibroblasts could potentially become a therapeutic cell population in diabetic wounds.

CCL5 is an 8 kDa protein recognized as a kind of chemotactic cytokine for T cells 
and basophils, and it often plays an important role in recruiting leukocytes into inflammatory 
sites (Donlon et al.,1990). CCL5 is expressed in healing wounds, and abnormal expression 
or activity of CCL5 is associated with impaired healing (Gillitzer and Goebeler, 2001). Some 
previous studies reported that CCL5 might recruit leukocytes to execute their function in heal-
ing wounds. Sustained induction of chemokines such as CCL5 in diabetic mice often leads to 
wounds becoming refractory (Wetzler et al., 2000). These findings may be very valuable in 
the design of new drugs.

Molecular biological, genetic, and other experimental techniques are continually be-
ing updated. Progress in these fields can provide us with new methods and new ideas for the 
treatment of refractory diabetic wounds. In this study, 213 DEGs were identified. Through PPI 
network construction and phylogenetic analysis, CD44 and CCL5 were identified as the genes 
most likely to play an important role in diabetic wound healing. Although more experiments 
are needed to verify these results, our findings increase the likelihood that improved treat-
ments will be developed for diabetic and other chronic wounds.
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