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ABSTRACT. The aim of this study was to screen for key biomarkers 
of osteosarcoma (OS) by tracking altered modules. Protein-protein 
interaction (PPI) networks of OS and normal groups were constructed 
and re-weighted using the Pearson correlation coefficient (PCC), 
respectively. The condition-specific modules were explored from OS 
and normal PPI networks using a clique-merging algorithm. Altered 
modules were identified by a maximum weight bipartite-matching 
method. The important biological pathways in OS were identified by 
a pathway-enrichment analysis using genes from disrupted modules. 
The most important genes in these pathways were selected as key 
biomarkers. Finally, the mRNA and protein expressions of hub genes in 
OS bone tissues were analyzed using reverse transcription-polymerase 
chain reaction and western blotting, respectively. We identified 703 and 
2270 modules in normal and disease networks, respectively; 150 altered 
modules were identified from among these and explored. We identified 
10 important pathways based on gene pairs with altered PCC > 1 in 
the disrupted modules (P < 0.01), and PCNA, ATP6V1C2, ATP6V1G3, 
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FEN1, CDC7, and RPA3 (expressed in these pathways) were selected as 
key genes of OS. We observed that these genes (and the proteins they 
encoded) were differentially expressed between normal and OS samples 
(P < 0.01) (excluding ATP6V1C2, whose protein expression did not 
differ significantly). Therefore, we identified 5 gene signatures that may 
be potential biomarkers for the detection and effective therapy of OS.

Key words: Osteosarcoma; Altered modules; Key genes; 
Reverse transcription-polymerase chain reaction; Western blot

INTRODUCTION

Osteosarcoma (OS) is a cancerous tumor occurring in the bone. It is the most common 
histological form of primary bone cancer (Ottaviani and Jaffe, 2009) and occurs mostly in 
adolescents where the proliferation is most active, with a second peak in patients older than 
40 years (Anninga, 2013). It is characterized by cells with OS differentiation, poorly defined 
borders, and cortical destruction that results in bone pain and compromised structural integrity 
(Luetke et al., 2014). Approximately 30% of the patients with OS present clinically detectable 
metastatic disease at diagnosis (Kaste et al., 1999; Kager et al., 2003). So far, researchers 
have not thoroughly investigated treatment methods that could significantly increase survival, 
excluding preoperative chemotherapy (Buddingh et al., 2011).

Recent studies have mainly focused on individual gene-related analyses (Rosemann 
et al., 2014; Liu and Chen, 2015; Zeng and Xu, 2015; Li et al., 2016). However, these do not 
accurately reflect the interaction between integral genes under different conditions (Slonim, 
2002). Fortunately, functional modules integrate the most closely related proteins or genes 
through their interactions. Recently, Srihari and Ragan (2013) reported a systematic method 
to track the behavior of genes and modules across normal and disease conditions, in order to 
identify and elucidate significant pathways.

In this study, we systematically tracked the altered modules of reweighted protein- 
protein interaction (PPI) networks in order to identify the key biomarkers of OS. Initially, 
we inferred the PPI networks of normal and OS systems, based on the Pearson correlation 
coefficient (PCC). Subsequently, the modules from PPI networks were identified using a 
clique-merging algorithm. We then extracted the altered modules according to the module 
correlation density (MCD). We also analyzed the active genes and the functional pathways 
of gene pairs with a PCC > 1 in disrupted modules. Ultimately, the expression of key genes 
was verified by reverse transcription-polymerase chain reaction (RT-PCR) and western 
blot analyses. The results of this study could elucidate the mechanism of OS, which would 
contribute to its diagnosis and treatment.

MATERIAL AND METHODS

Data collection and preprocessing

Microarray expression data

The gene expression profile E-MEXP-3628 (Jones et al., 2012) comprising 14 OS 



3Identifying key biomarkers in osteosarcoma

Genetics and Molecular Research 15 (3): gmr.15038277

samples and 4 normal bone samples was downloaded onto the A-AFFY-44-Affymetrix 
GeneChip Human Genome U133 Plus 2.0 platform (Affymetrix; Life Technologies, Carlsbad, 
CA, USA). The gene profile data were preprocessed using the express function in the Affy 
package (Gautier et al., 2004). Background adjustments were performed using a robust multi-
array average method. Gene expression was summarized using median polish. Ultimately, 
20,102 genes were obtained.

PPI network data

All PPIs and their combined-scores (comprising 1,048,576 interactions) were retrieved 
from the Search Tool for the Retrieval of Interacting Genes (STRING; http://string-db.org/) 
database (von Mering et al., 2005). The oneself-loops were removed and interactions with 
combined-scores ≥0.8 were retained for the construction of a PPI sub-network; the completed 
PPI network was composed of 8590 nodes and 53,975 interactions.

Construction of re-weighted PPI network

Gene interactions in the PPI sub-networks (occurring under OS and normal conditions) 
were re-weighted using PCC (value ranging from -1 to +1) (Li et al., 2012). Additionally, we 
defined the absolute value of PCC of each gene-gene interaction as the value of the interaction 
in the PPI sub-network. The PCC of a pair of genes (m and n), which encoded the corresponding 
paired interacting proteins (u and v) in a PPI network, was defined as:

where s denotes the number of samples; g (m, k) or g (n, k) indicates the level of expression of 
gene m or n in the sample k; ḡ (m) or ḡ(n) represents the mean expression of gene m or n; and 
ρ(m) or ρ(n) denote the standard deviation of expression of gene m or n.

In this study, the PCC of each gene-gene interaction was defined by its weight. All 
interactions with PCC changes >1, i.e. |PCC (m,n)1 – PCC (m,n)2| > 1, between two conditions 
were selected for further analysis.

Identifying modules in PPI sub-networks

Modules were identified in PPI networks using the clique-merging method (Liu et 
al., 2009; Srihari and Leong, 2013). All maximal cliques were obtained from the disease and 
normal networks using the fast depth-first method; the cliques were ranked according to their 
weighted density; highly overlapping cliques were then either merged or removed. The score 
of a clique (C) was defined as its weighted density:

where w (u, v) denoted the weight of interactions between u and v.
Highly overlapping maximal cliques were removed, or were merged into single bigger 
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cliques. We also calculated the interconnectivity of cliques to determine if two overlapped 
cliques should be merged together. The inter-connectivity between the non-overlapping 
portions of cliques C1 and C2 was defined as follows:

Given a set of cliques ranked in descending order of the score {C1, C2, ..., Ck}, if |Ci∩Cj|/|Cj 
| > t0, the weighted inter-connecting scores between Ci and Cj were analyzed. Ci and Cj were 
combined into the module if the inter-score was > tm (Srihari and Ragan, 2013). In this study, 
t0 = 0.5 and tm = 0.25.

Identification of altered modules

If S = {S1, S2, …, Sn} and T = {T1, T2, …, Tm} are the sets of modules identified from the 
normal and disease networks, respectively, for each Si ϵ S, the MCD was measured as follows:

where p and q denote a pair of genes encoding the corresponding paired proteins. The 
correlation densities in the disease modules were calculated in a similar manner.

We built a similarity graph M = (VM, EM), where VM = { S ∪ T } and EM = {(Si, Tj): J(Si, 
Tj) ≥ tJ, ∆CC (Si, Tj) ≥ δ}, wherein J(Si, Tj) = |Si ∩ Tj|/|Si ∪ Tj| indicates the Jaccard similarity 
and ∆CC (Si, Tj) = |dcc(Si) - dcc(Tj)| denotes the differential correlation density between Si and Tj 
(Srihari and Ragan, 2013). Furthermore, the disrupted module pairs T (Si, Tj) were identified 
by determining the maximum weight matching in M; these were then ranked in descending 
order of their differential density ∆CC. The disrupted module pairs with tJ ≥ 2/3 and ∆CC ≥ 0.05 
were defined as distinct modules.

Pathway-enrichment analysis

Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a web-
accessible program that offers a number of data-mining tools used to determine the biological 
functional annotations for thousands of genes (Huang et al., 2009). In this study, the KEGG 
pathway-enrichment analysis was performed to further explore the biological functions of 
genes in disrupted modules and gene pairs with PCC > 1, using DAVID. The top 10 pathways 
(ascending order) with P < 0.01 were denoted as important pathways.

Screening key genes

The gene compositions of each module were analyzed to better understand the 
differences of altered modules. The key genes in altered modules, including missed genes 
(genes in normal module, but not in the disease module), added genes (genes in the disease 
module, but not in the normal module), and intersection genes, were analyzed. In this study, 
we focused mainly on the added genes, missed genes, and genes in key pathways.

(Equation 4)
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RT-PCR and western blot validation

In order to verify key genes identified from our study, 10 OS samples and 10 normal 
bone tissues were selected to perform verification analysis. The total RNA was extracted using 
the Trizol reagent (Invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer 
instructions and utilized in first-strand synthesis. RT-PCR was performed using primer 
sequences specific for 6 hub genes (PCNA, ATP6V1C2, ATP6V1G3, FEN1, CDC7, and 
RPA3), as shown in Table 1. The PCR mixture was composed of 10 µL 10X PCR Buffer, 1 
µL Taq DNA polymerase, 3 µL forward and reverse primer each, and 8 µL dNTPs. The PCR 
conditions were set as follows: initial denaturation at 95°C for 3 min; 30 cycles of denaturation 
at 95°C for 40 s, annealing at 58°C for 30 s, and extension at 72°C for 45 s; and a final 
elongation at 72°C for 7 min. The synthesized cDNA was used as the template, and β-actin 
was used as the internal reference.

Table 1. Primer sequences and product lengths of the six hub genes.

Genes Primer sequences (5'3') Length (bp) 
PCNA F: CAAGTAATGTCGATAAAGAGGAGG 126 

R: GTGTCACCGTTGAAGAGAGTGG 
ATP6V1C2 F: GCCGCCTACAACACTCTGAAGA 145 

R: CGATGACCAGAAGTGTGACGAG 
ATP6V1G3 F: GCGATTGAAGCAAGCCAAGGAG 122 

R: CATCTGAGAGATTATTCTGAGAGC 
FEN1 F: ACTAAGCGGCTGGTGAAGGTCA 146 

R: GCAGCATAGACTTTGCCAGCCT 
CDC7 F: GGAAAACTGCCAGTTCTTGCCC 150 

R: GGCACTTTGTCAAGACCTCTGG 
RPA3 F: AAGCCTGTCTGCTTCGTAGGGA 157 

R: CGGTTACTCTTCCAACCACTTCC 
-actin F: CTCCATCCTGGCCTCGCTGT 268 

R: GCTGTCACCTTCACCGTTCC 
 

All tissue samples were ground to a powder in liquid nitrogen and then incubated 
with lysis buffer [62.5 mM Tris-HCl, pH 6.8, 10% glycerol, and 2% sodium dodecyl 
sulfate (SDS)] on ice. Protein concentration was determined by the Bradford assay (Bio-
Rad). Ten micrograms of total protein was separated using 12% SDS-polyacrylamide gel 
electrophoresis; the separated proteins were electrically transferred at 4°C and 300 mA (2 h) 
onto a nitrocellulose (NC) membrane. The NC membrane was then incubated in Tris-buffered 
saline Tween (TBST) with 5% skimmed milk at 37°C for 2 h; the membrane was blocked 
with a blocking solution (1:10,000) at 37°C for 2 h, and subsequently incubated with rabbit 
anti-human IgG antibody (Sigma-Aldrich, St. Louis, MO, USA). Unbound antibodies were 
washed with TBST (3 times). The membrane was then incubated with horseradish peroxidase 
(HRP)-labeled sheep anti-rabbit IgG secondary antibody (1:5000; Amersham Pharmacia 
Biotech, Little Chalfont, Buckinghamshire, UK) for 2 h at 37°C. The excess antibodies were 
washed with TBST, and the reaction was completed by the addition of the HRP substrate for 3 
min. The membrane was then analyzed in a darkroom.

Data analysis

The PCR products were electrophoresed on 1.5% agarose gel and analyzed using the 
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Quantity One software. Gene expression was determined relative to that of β-actin. The gray 
value of the target bands obtained by western blot was analyzed using the Image J software. P 
values <0.05 were considered to be statistically significant.

RESULTS

Analyzing disruptions in the PPI sub-network

PPI sub-networks containing 20,102 intersecting genes (identified by pre-processing 
as well as those in the general PPI network) were constructed. The PPI sub-networks exhibited 
an equal number of interactions (49,151) and nodes (8015), with mean PCC scores of 0.320 
and 0.698 in the OS and normal groups, respectively. The number of interactions in the OS 
network was higher than that in the normal cell network, at a score distribution of -0.5-0.7 
(Figure 1). Furthermore, 10,570 interactions were extracted with an absolute difference of 
PCC > 1 between two conditions for further analyses.

Figure 1. Expression correlation-wise distribution of interactions in osteosarcoma and normal group.

Analysis of disruptions in OS modules

A total of 8405 maximal cliques were screened in normal and OS PPI sub-networks 
based on a node threshold-value ≥ 5. A total of 703 and 2270 modules were extracted from 
the normal and OS PPI sub-networks, respectively (Table 2). The average module size and 
maximum MCD of OS were lower than those of the normal bone tissues. Figure 2 shows 
the relationship between the numbers and weighted densities of modules. The distribution of 
modules was higher in OS tissues than in normal tissues, at a weighted density of -0.2-0.4.

Subsequently, 150 disrupted module pairs were obtained, with a tJ = 2/3 and δ = 
0.05. These disrupted module pairs were composed of 587 genes. The OS group contained 77 
correlation-altered modules more than the normal group, based on the MCD of the modules.
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Table 2. Properties of normal and disease modules. 

Module set No. of modules Average module size Correlation 
Max Min Average 

Normal 703 46.8 0.8 -0.2 0.1 
Disease 2270 21.9 0.7 -0.1 0.1 

 

Figure 2. Correlation-wise distribution of modules in osteosarcoma and normal group. Expression correlation of 
each module is equivalent to the weighted correlation density in the module.

Pathway-enrichment analysis

The extraction of the intersections of genes in disrupted modules, as well as genes 
with PCC changes >1, yielded 489 genes, which were enriched in 37 pathways (P < 0.01). The 
top 10 pathways are summarized in ascending order in Table 3.

Screening of key genes

The 587 genes in the disrupted module pairs contained 211 missed genes, 121 added 
genes, and 46 intersection genes. Six of the intersection genes played a role in the top 10 
significant pathways. In this study, these 6 genes were treated as the key genes involved in OS.

Table 3. Ten most significant gene interaction pathways in disrupted modules with Pearson correlation 
coefficient >1.

KEGG ID Terms P value 
Hsa03050 Proteasome 1.5E-34 
Hsa04110 Cell cycle 2.3E-26 
Hsa05120 Epithelial cell signaling in Helicobacter pylori infection 1.3E-14 
Hsa04114 Oocyte meiosis 6.0E-10 
Hsa05110 Vibrio cholerae infection 6.1E-10 
Hsa05222 Small cell lung cancer 1.2E-9 
Hsa00190 Oxidative phosphorylation 1.5E-9 
Hsa04510 Focal adhesion 9.1E-9 
Hsa05200 Pathways in cancer 9.2E-9 
Hsa03030 DNA replication 1. 6E-8 
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RT-PCR and western blot detection

Relative expressions of the screened genes (N = 6), as determined by RT-PCR and 
western blot analyses, are presented in Figure 3. The expression of these key genes was 
significantly different between OS samples and controls (P < 0.05) at the mRNA level (Figure 
3A). Additionally, relative protein expressions of PCNA, ATP6V1G3, FEN1, CDC7, and 
RPA3 were also remarkably different among the OS and normal samples (P < 0.05); however, 
the difference in the ATP6V1C2 protein expression was not significant (P > 0.05; Figure 3B).

Figure 3. Results of reverse transcription polymerase chain reaction and western blot analysis. A. B. Results of RT-
PCR and western blot: T represents the osteosarcoma group, C represents the control group. *Relative expressions 
of a gene was significant at P < 0.05.

DISCUSSION

The identification of differentially expressed genes under different conditions is a 
conventional method for the analysis of gene expression data; however, this does not accurately 
reflect the integral interaction between these genes under different conditions (Slonim, 2002). 
The rapid advancement in high-throughput experimental methods has led to the identification 
of a large amount of PPI data, which in turn facilitate the systematic study of proteins. In this 
study, we employed a more reliable analytical technique than those used in previous studies, 
to identify novel OS genes and understand disease mechanisms, by analyzing the behavior of 
modules across specific conditions in a controlled manner.

Here, we have successfully identified a total of 150 altered module pairs, as well as the 
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important biological pathways of the intersection genes between altered modules and the PPI, 
with PCC > 1. Moreover, we screened 6 key genes that may be related to OS. The results of 
RT-PCR and western blot analyses indicated that the expression of PCNA, ATP6V1G3, FEN1, 
CDC7, and RPA3 in OS samples differed significantly from that in normal controls; therefore, 
these were speculated to be potential markers of OS.

FEN1 is a protein-coding gene (Hiraoka et al., 1995), which encodes an essential enzyme in 
microhomology-dependent alternative end joining, an inaccurate pathway for the repair of double-
stranded breaks in DNA (microhomology-mediated end joining) (Sharma et al., 2015). A previous 
study has reported that FEN1 mRNA and protein is differentially expressed between an OS and 
osteoblast cell line (Zhang et al., 2011). Therefore, we speculated that FEN1, a key regulator of the 
DNA damage response framework, could play a significant role in OS development.

The protein encoded by CDC7, cdc7 kinase, plays a major role in the regulation of 
cell cycle (Kim et al., 2003). CDC7 is conserved throughout eukaryotic evolution; that is, the 
majority of the eukaryotic cells produce Cdc7 kinase. It has been speculated that abnormal 
expression of this protein may be associated with neoplastic transformation in some tumors. For 
instance, it has been previously reported that the deletion of CDC7 abrogates the hydroxyurea-
induced activation of Chk1 in mouse embryonic stem cells and human cancer cell lines (Kim 
et al., 2008). Therefore, we concluded that CDC7 might also be an important biomarker of OS.

Through a systematic tracking of the altered modules from re-weighted normal and OS 
PPI networks, we conclude that the 5 genes identified in this study as key genes associated with the 
development of OS could be underlying biomarkers for the diagnosis and treatment of this tumor.
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