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ABSTRACT. The objective of this paper was to identify hub genes and 
pathways associated with retinoblastoma using centrality analysis of 
the co-expression network and pathway-enrichment analysis. The co-
expression network of retinoblastoma was constructed by weighted 
gene co-expression network analysis (WGCNA) based on differentially 
expressed (DE) genes, and clusters were obtained through the molecular 
complex detection (MCODE) algorithm. Degree centrality analysis of the 
co-expression network was performed to explore hub genes present in 
retinoblastoma. Pathway-enrichment analysis was performed using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation 
of hub gene expression in retinoblastoma was performed by reverse 
transcription-polymerase chain reaction (RT-PCR) analysis. The co-
expression network based on 221 DE genes between retinoblastoma and 
normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of 
the network were evaluated. By assessing the centrality analysis of the co-
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expression network, 21 hub genes were identified, such as SNORD115-41, 
RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 
21 hub genes were differently expressed, including RASSF2 and CDCA7, 
and 5 were not differently expressed in retinoblastoma compared to 
normal controls. Pathway analysis showed that genes in 2 clusters were 
enriched in 3 pathways: purine metabolism, p53 signaling pathway, and 
melanogenesis. In this study, we successfully identified 16 hub genes 
and 3 pathways associated with retinoblastoma, which may be potential 
biomarkers for early detection and therapy for retinoblastoma. 
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INTRODUCTION

Retinoblastoma, which originates from the progenitors of retinal sensory cells, is the 
most common malignant tumor of the eye in children and accounts for about 2-3% of all pediatric 
malignancies (Villanueva, 2014). Its incidence is approximately 1 in 15,000-20,000 live births each 
year, and 60% of cases are unilateral (Aerts et al., 2006). The two most common symptoms of 
retinoblastoma are leukocoria and strabismus, and in addition, iris rubeosis, hypopyon, hyphema, 
buphthalmia, orbital cellulites, and exophthalmia may also be observed (Benavente and Dyer, 
2015). Diagnosis and treatment of retinoblastoma are based on these clinical symptoms and 
mainly comprise enucleation, external beam radiotherapy, and chemotherapy (Piña et al., 2012). 

The success rates in treatment of retinoblastoma vary, with developed countries having the 
highest success rates; however, most children with retinoblastoma in developing countries die as 
a result of late diagnosis and poor treatment compliance, which leads to extraocular dissemination 
and metastasis (Canturk et al., 2010). A recent retrospective series from China and preliminary data 
from a prospective multicenter study from Central America have shown a survival rate greater than 
80% in children with retinoblastoma whose families were at high risk of treatment abandonment if 
the child was given pre-enucleation chemotherapy (Luna-Fineman et al., 2012). Therefore, early 
detection and treatment of retinoblastoma is particularly important in developing countries.

Studies of retinoblastoma based on microarray analysis have determined genes involved in 
the molecular initiation and progression of the disease, which may lead the way in identifying potential 
molecular biomarkers for early detection of retinoblastoma (Villanueva, 2014). Chakraborty et al. 
(2011) and (Reis et al., 2012) identified deregulated genes in functional classes and suggested that 
the phosphoinositide-3-kinase/Akt/mammalian target of Rapamycin/ribosomal S6 kinase 1 signaling 
pathway was dysregulated in retinoblastoma. However, inconsistent results have been present due to 
multiple problems, including small sample size, measurement error, and different statistical methods 
(Ganguly and Shields, 2010). The overlap is very low for the most significantly dysregulated genes 
across multiple studies (Liang et al., 2012). Network-based approaches, particularly co-expression 
networks, offer an effective method to at least partially solve this discrepancy by identifying and 
connecting potential malignancy diagnostic molecular markers. Furthermore, we will gain insight into 
the important and targetable tumorigenic genes and pathways of retinoblastoma, many of which can 
be applied to its early detection and treatment (Thériault et al., 2014).

The objective of this paper is to identify hub genes and pathways associated with 
retinoblastoma using centrality analysis of co-expression networks and pathway-enrichment 
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analysis. To achieve this, we first constructed a co-expression network using weighted gene co-
expression network analysis (WGCNA) based on differentially expressed (DE) genes that were 
identified by the empirical Bayes approach. Secondly, clusters and degree centrality analysis of 
the co-expression network were performed. Clusters were obtained using the molecular complex 
detection (MCODE) algorithm and degree centrality was used to explore hub genes present in 
retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database. Finally, reverse transcription-polymerase chain reaction 
(RT-PCR) analysis was conducted to validate the results based on network analysis.

MATERIAL AND METHODS

Dataset selection

Microarray expression profiles of GSE24673 from the gene expression omnibus (GEO) 
database were selected for identifying DE genes of retinoblastoma. GSE24673, which was already 
deposited in GPL6244 (Affymetrix Human Gene 1.0 ST Array Platform), consisted of 2 normal 
healthy adult retina collected from cadaveric eyes and 3 retinoblastoma primary tumors. 

Identification of DE genes

DE genes between retinoblastoma patients and normal subjects were identified using the 
empirical Bayes approach in linear models for microarray data (LIMMA) package. The empirical 
Bayes approach is equivalent to shrinkage of the estimated sample variances towards a pooled 
estimate, resulting in far more stable inference when the number of arrays is small (Smyth, 
2004). The t-test was applied to estimate significance of DE genes between normal subjects and 
retinoblastoma patients according to the formula (1). The difference between the two groups was 
assessed by the difference of the means of expression level (equation 2) and normalized by the 
corresponding SD (equation 3).

of 

and

where ni was the number of repetitions of one condition and xij was the gene expression level 
measured in condition i repeated j times. 

The P value, which was obtained using the t-test, was tested multiple times by false-
discovery rate (FDR) correction based on the Benjamini & Hochberg algorithm. Only the genes 
which met our criteria (P < 0.01, |log2FoldChange| > 2) were selected as DE genes in this study.

Construction of the co-expression network

WGCNA has frequently been used to describe correlation patterns among gene expression 

(Equation 2)

(Equation 3)

(Equation 1)
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profiles (Zhang and Horvath, 2005). Using this method, our first step was to define a measure of 
similarity between the gene expression profiles. The n x n similarity matrix S = [sij] was transformed 
into the n x n adjacency matrix A = [aij], which encoded the connection strength between pairs 
of nodes. For each pair of genes (xi and xj), the similarity measured was represented by Sij. We 
defined the absolute value of the Pearson correlations (Sij = |cor(xi,xj)|) of an unsigned network 
taking on a value between 0 and 1. However, a signed co-expression measure between xi and xj 
was applied to preserve the sign of the correlation which was defined with a simple transformation 
of the correlation:

The adjacency function was used to determine the adjacency matrix A = [aij]. The most 
widely used adjacency function was the signum function, which implements “hard” thresholds 
involving the threshold parameter τ:

The hard threshold may lead to a loss of information; therefore a “soft” adjacency function 
was needed. For this, we used the power adjacency function: aij = |sij|β with the single parameter β. 

As for the overlap of two nodes, which reflects their relative interconnectedness, the 
topological overlap matrix (TOM; (TOM) Ω = [ωij]) provided a similarity measure. For a dissimilarity 
measure, the difference between 1 and this value was used (i.e, the topological overlap-based 
dissimilarity measure was defined as ijijd ù1ù −= ). In addition, the weight value threshold of the 
co-expression network was 0.7.

Analysis of the co-expression network

Degree centrality analysis

To evaluate DE genes in a biological network, the degree centrality of the network 
was computed. The degree of a node (gene or protein) is the average number of edges 
(interactions) incident to this node. The degree quantifies the local topology of each gene by 
summing up the number of its adjacent genes (Haythornthwaite, 1996). The degree C(v) of a 
node v was defined as:

This gives a simple count of the number of interactions of a given node. The genes at the 
top of the degree distribution (≥90% percentile) in the significantly perturbed networks were defined 
as hub genes.

(Equation 5)

(Equation 6)

(Equation 4)
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Sub-network analysis

In this paper, the MCODE algorithm was used to analyze a subset of the co-expression 
network (Bader and Hogue, 2003). Vertex weighting, complex prediction, and optional post-
processing were the three main stages of the MCODE algorithm. At the vertex weighting stage, all 
vertices based on their local network density were weighted using the highest k-core of the vertex 
neighborhood. Next, using the vertex weighted graph as input, a complex with the highest weighted 
vertex was seeded and moved outward from the seed vertex recursively. It included vertices in the 
complex whose weight was above a given threshold, which was a given percentage away from the 
weight of the seed vertex. In this way, the densest regions of the network were identified. In the third 
stage, complexes with a core less than 2 (graph of minimum degree 2) were filtered, and fluff and 
haircut options were run. The fluff option was used to increase the size of the complex according 
to a given fluff parameter between 0 and 1. Using the haircut option, the resulting complexes were 
2-cored, thereby removing the vertices which were singly connected to the core complex. When 
both options were performed, fluff was run first, followed by haircut. Clusters with the thresholds 
node density cutoff = 1, node score cutoff = 0.2, k-core = 2, and maximum depth = 100 were 
chosen for further analysis.

Pathway-enrichment analysis

Pathway-enrichment analysis of nodes from existing clusters of hub genes was conducted 
based on the KEGG database (Kanehisa and Goto, 2000). KEGG pathways with a P value less 
than 0.1 were selected according to the expression analysis systematic explored (EASE) test 
implemented in the database for annotation, visualization and integrated discovery (DAVID) 
(Grossglauser and Vetterli, 2003). The principle of EASE was used as follows: 

where n = a’ + b + c + d was the number of background genes; a’ was the number of genes in one 
gene set in the gene list; a’ + b was the number of genes in the gene list including at least one gene 
set; a’ + c was the number of genes in one gene list in the background genes; a’ was replaced with 
a = a’ - 1.

Validation of hub genes by RT-PCR analysis 

Samples from 10 patients with retinoblastoma were collected, and RNA was prepared 
from retinoblastoma cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The RNA was 
used in first-strand synthesis with the dT18 primer and was treated with 40 U/μL RNasin, 1X 
reverse transcriptase buffer, 4 mM dNTPs, and 5 U/μL AMV reverse transcriptase according to the 
manufacturer instructions (Invitrogen). For RT-PCR, each reaction contained 1X PCR Buffer I, 2.5 
U/µg High Fidelity Taq DNA Polymerase, 0.5 μM of each forward and reverse primer, and 4 mM 
dNTPs. The cDNA from each sample was used as template, with β-actin as an internal reference. 
Primer sequences to amplify the 21 hub genes are listed in Table 1. Conditions were as follows: 

(Equation 7)
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2 min at 94°C for predenaturation, followed by 35 cycles of 20 s at 94°C, 15 s at 60°C and 1 min 
at 68°C, and a final 7 min extension at 72°C. Products of the PCR reaction were analyzed by 
electrophoresis on 1.5% agarose gels and imaged using Quantity One Software (Bio-Rad, USA).

Table 1. Sequences of primers and RT-PCR product lengths for 21 candidate genes.

Gene                                                           Primers (5'-3')  Length (bp)

 Forward Reverse 

SNORD115-41 TGATGAGAACCTTCTATTGTCCTGA GGGCCTCAGCGTAATCCTAT   75
RASSF2 AAAAAGTTGGCACCATGGAC AGCCATAGGCTGGTGTGAAC 579
SNORD115-44 AGTGATGAGAACCTTCTATTGTCCT GGGCCTCAGCGTAATCCTATT   77
CCDC60 GATTCGACCCCATGTCCTCC TACAAGAAAGTTGGGTACCTCAGGG 201
CDCA7 TGGAGAACGTCTGCAGCAAT TACAAGAAAGTTGGGTATGCTTGC 382
UBE2T TGCAGAGAGCTTCACGTCTG GAGGGATGGTCTCCAAGCAC 305
NEK2 TGGCTCCATGACAGAAGCTG TTGTACAAGAAAGTTGGGTAAAAGA 540
PROX1 GAGGGTGGGAAAGGGGTTTT TCAAACGGCACTGAGCTTGT 204
HIST1H3B GACCGAGTTGCTGATTCGGA ACAAGAAAGTTGGCAACGC 251
NT5E TTTTGCACACCAACGACGTG TGGCCCATGCAATCCTTTTG 690
ELMOD1 AGCAGGTCCTGTCTGACTCT TACAAGAAAGTTGGGTACATGTTG 433
PAX6 CAGTATAAGCGGGAGTGCCC ATCGTTGGTACAGACCCCCT   81
ANK3 TGGGCCACTGCTTTGTTTTC GGCAGGGAATCATCACCCAA 693
TMEM123 AAGGGTTTGGTTCGGGGTTT TTGTGTGAGCAACAAAGGCG 225
CCDC141 CCAGGCTGCTGTCCAATGTA TGTGTATGTTGGGGGAGTGC 457
GEM GAGAAGGGAGAGAGTGGGAGT CTCGCTCGGTCTGTGATTGA 593
HIST1H1B ACGGCATTGCAAAACTTGCT AAAGGCCATTGCGCTCTTTG 247
TIAM2 TTTGCAGATCTGGGCGTGAT CCTCGTCCGTGTTCTTGTCA 256
SPP1 AGCAGAATCTCCTAGCCCCA ACGGCTGTCCCAATCAGAAG 467
SNORD115-14 TGAGAACCTTCTATTGTCCTGAAGA GGCCTCAGCGTAATCCTATTGA   71
NAAA GTGGCTCAAGACTCCAGAGG AAGAAAGTTGGGCACTCAGGG 224

RESULTS

Identification of DE genes

We obtained 221 DE genes, including 83 upregulated genes and 138 downregulated 
genes, between retinoblastoma patients and normal subjects. Specifically, SLC4A10 (P = 3.60e-12), 
FAIM2 (P = 5.65e-11), PAX6 (P = 6.57e-11), PVALB (P = 6.87e-11) and GABRG1 (P = 6.98e-11) were 
the most significant DE genes.

Co-expression network analysis  

The co-expression network of the 221 DE genes in retinoblastoma 221 DE genes 
constructed by WGCNA is shown in Figure 1. There were 210 nodes and 3965 edges in the 
co-expression network with a threshold weight of > 0.7. Genes in the 90th or greater percentile 
distribution in the network were defined as hub genes. By assessing degree centrality of the co-
expression network, we obtained 21 hub genes (Table 2), where SNORD115-41(degree = 135), 
RASSF2 (degree = 129), SNORD115-44 (degree = 127), CCDC60 (degree = 125) and CDCA7 
(degree = 125) were the top five hub genes.

We used the MCODE algorithm to analyze a subset of the co-expression network. 
When setting the node density cutoff to 1, the node score cutoff to 0.2, the k-core to 2, and the 
maximum depth to 100, five clusters were identified and are shown in Figure 2. We found that 
there were 9 hub genes in Cluster 1 (SNORD115-14, SPP1, CCDC141, GEM, ANK3, RASSF2, 
TMEM123, SNORD115-41 and SNORD115-44) and 12 hub genes in Cluster 2 (NT5E, NEK2, 
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CCDC60, PROX1, CDCA7, HIST1H3B, NAAA, UBE2T, PAX6, ELMOD1, TIAM2 and HIST1H1B). 
The number of hub genes in the two clusters was equal to the total hub genes obtained from the 
co-expression network. There were no hub genes present in Clusters 3, 4 or 5. 

Figure 1. Co-expression network of retinoblastoma based on 221 DE genes. There were 210 nodes and 3965 edges 
in the co-expression network, where nodes (circles) are genes and edges between nodes (gray lines) indicate the 
interaction of genes in the network. The darker blue genes represent hub genes.

Table 2. Hub genes in the co-expression network.

No. Gene Degree

  1 SNORD115-41 135
  2 RASSF2 129
  3 SNORD115-44 127
  4 CCDC60 125
  5 CDCA7 125
  6 UBE2T 114
  7 NEK2 108
  8 PROX1 103
  9 HIST1H3B   93
10 NT5E   93
11 ELMOD1   92
12 PAX6   90
13 ANK3   88
14 TMEM123   88
15 CCDC141   86
16 GEM   85
17 HIST1H1B   83
18 TIAM2   83
19 SPP1   83
20 SNORD115-14   82
21 NAAA   81
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Figure 2. Clusters of genes in co-expression network in retinoblastoma. A is Cluster 1, B is Cluster 2, C is Cluster 3, 
D is Cluster 4, and E is Cluster 5. Clusters were achieved using the conditions of node density cutoff = 1, node score 
cutoff = 0.2, k-core = 2, and maximum depth = 100.

Pathway-enrichment analysis

The KEGG database is a collection of manually drawn pathway maps for metabolism, 
genetic information processing, and environmental information processing, including signal 
transduction and various other cellular processes, and how these pathways are affected in human 
diseases. In this paper, KEGG pathway-enrichment analysis of genes in Clusters 1 and 2, which 
consisted of hub genes, showed that purine metabolism (P = 0.046), p53 signaling pathway (P = 
0.0499) and melanogenesis (P = 0.0962) were significantly affected pathways when the condition 
of P < 0.1 was applied. 

Validation of hub genes 

To confirm the results of network-based analysis and investigate key genes in 
retinoblastoma, the relative expression levels of 21 hub genes from the co-expression network 
were analyzed by RT-PCR (Figure 3). We found that 16 of the 21 hub genes were differently 
expressed in retinoblastoma compared to normal controls (RASSF2, CDCA7, UBE2T, PROX1, 
NT5E, ELMOD1, PAX6, CCDC141, GEM, TIAM2 and SPP1 with P < 0.001; SNORD115-41, 
SNORD115-44, HIST1H3B, HIST1H1B and SNORD115-14 with P > 0.05).
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Figure 3. Relative expression levels of 21 hub genes. The expressions of genes in retinoblastoma (gray bars) 
compared to normal controls (white bars) are shown and significance is indicated by P value: *0.01 < P < 0.05; **0.001 
< P < 0.01; and ***P < 0.001.

DISCUSSION

In this study, we identified important genes and pathways in retinoblastoma based on 
degree centrality analysis of a co-expression network and pathway-enrichment analysis. We 
identified 21 hub genes, such as SNORD115-41, RASSF2 and SNORD115-44, by conducting 
centrality analysis of the co-expression network and its 5 clusters according to the MCODE 
algorithm, respectively. In addition, RT-PCR was carried out to verify network-based results and 
to investigate genes differently expressed in retinoblastoma. Purine metabolism, p53 signaling 
pathway and melanogenesis were pathways significantly affected in retinoblastoma.

 RT-PCR analysis showed that 16 of the 21 hub genes identified in the co-expression 
network were differently expressed, including RASSF2 and CDCA7, while 5 were not differently 
expressed, including SNORD115-41 and SNORD115-44, in retinoblastoma compared to normal 
controls. This result was not entirely consistent with our network analysis but most of the hub genes 
were differently expressed in retinoblastoma patients. The probable reason for this was variations 
in samples, as the microarray data was downloaded from the GEO database while the RT-PCR 
was conducted by our group. Therefore, using network analysis and RT-PCR, we have identified 
16 potential biomarkers of retinoblastoma.  

RASSF2, Ras association domain-containing protein 2, is a pro-apoptotic Ras effecter 
that is frequently downregulated in human tumors by promoter methylation, histone deacetylation, 
and occasionally deletion (Donninger et al., 2007). Hesson et al. (2005) revealed that RASSF2 
inactivation correlated with activation of Ras in tumor cells. Furthermore, knocking down 
RASSF2 enhanced tumorigenesis, further proving that RASSF2 is an epigenetically inactivated 
tumor suppressor (Akino et al., 2005). It was shown that RASSF2 was widely expressed and its 
overexpression inhibited growth of tumor cell lines (Agathanggelou et al., 2005). More specifically, 
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RASSF2 inhibited cell growth and induced cell death when co-expressed with activated K-Ras 
(Agathanggelou et al., 2005). We conclude that RASSF2 is a tumor suppressor and might also be 
a potential biomarker for retinoblastoma. 

Cell division cycle associated 7 (CDCA7) was a recently identified target of myc-dependent 
transcriptional regulation and is a proto-oncogene that regulates the expression of hundreds of 
genes involved in cell cycle progression, adhesion, metabolism, and apoptosis (Guiu et al., 2014). 
CDCA7 induced colony formation and cell proliferation, indicating that it played an important 
role in tumor development (Tian et al., 2013). High levels of CDCA7 mRNA have been found in 
patients with acute myeloid leukemia and it was strongly upregulated in human hepatocellular 
carcinoma (Gill et al., 2013). There have been a few of studies focused on CDCA7 expression 
in retinoblastoma. For example, Goto et al. (2006) related CDCA7 expression with downstream 
components of a growth regulatory pathway that was also affected in retinoblastoma. In our work, 
we confirmed that CDCA7 is involved in retinoblastoma.

In this paper, we explored three significant pathways of retinoblastoma: purine metabolism, 
p53 signaling pathway and melanogenesis. P53 is a sequence-specific DNA-binding protein that 
promotes cell-cycle arrest or apoptosis in response to a variety of cellular stresses. The high 
frequency of p53 mutations in human cancer implies a central role for p53 in tumorigenesis, and 
the p53 signaling pathway has been described as a cellular surveillance mechanism for cancer 
prevention (Chakraborty et al., 2011). Molecular elucidation of p53 signaling unraveled novel 
signaling concepts, broadening our understanding of p53 function and illustrating the importance 
of p53 signaling in the pathogenesis and treatment of cancer (Stegh, 2012). In addition, Mirzayans 
et al. (2012) demonstrated that ionizing radiation triggered sequential waves in the p53 signaling 
pathway of human cancer. Retinoblastoma is a human malignant tumor and strongly linked to the 
p53 signaling pathway.

In conclusion, we successfully identified 21 hub genes and 3 pathways in retinoblastoma 
based on co-expression network analysis, and confirmed that 16 of the 21 hub genes were 
differently expressed in retinoblastoma using RT-PCR assays. These genes and pathways could 
be potential biomarkers for early detection and therapy for retinoblastoma.
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