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ABSTRACT. Two genetic linkage maps of cultivated maize inbred lines
and teosinte species were constructed. One population comprised 81 F,
individuals derived from a cross between maize inbred line B73 and
Zea mays ssp parviglumis, while the second consisted of 63 backcross
individuals from a cross of maize inbred line B73 with Z. mays ssp
diploperennis. In the B73 x Z. mays ssp parviglumis F, population, 172
simple sequence repeat (SSR) markers were mapped to 10 chromosomes,
which covered 2210.8 c¢cM. In the B73 x Z. mays ssp diploperennis
backcross population, 258 SSR markers were mapped to 10 chromosomes,
covering 1357.7 ¢cM. Comparison of the two maps revealed that the total
map length of Z. mays ssp diploperennis covers 1357.7 ¢M, which is
about 61.4% of that of Z. mays ssp parviglumis (2210.8 cM). Extensive
segregation distortion regions were found on chromosomes 1, 2, 3, 5,
6, 7, and 10 in the B73 x Z. mays ssp parviglumis F, population and
on chromosomes 1-5 and 8-10 in the B73 x Z. mays ssp parviglumis
backcross population. Segregation distortion analysis confirmed that the
segregation distortion ratio in the interspecific population B73 x Z. mays
ssp diploperennis was higher than in B73 x Z. mays ssp parviglumis.
We found that the recombination distances are highly variable in these
genetic crosses between cultivated and wild species of maize.
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INTRODUCTION

Maize (Zea mays L.) is an important food and forage crop planted worldwide. Re-
cently, maize breeding for high yield, robust quality, and disease resistance has become stag-
nant owing to the narrow genetic background of the maize germplasm. Therefore, exploring
varieties of the germplasm for excellent potential gene sources is becoming more and more
imperative.

Teosinte, the closest wild relative of maize, has been considered and used as a germ-
plasm resource for maize improvement to provide disease resistance and various favorable
agronomic traits (Cohen and Galinat, 1984). Because maize and teosinte have the same num-
ber of diploid chromosomes (2N = 2X = 20; with the exception of Zea perennis, a tetraploid
perennial teosinte), the fertile F, hybrids can be easily acquired by crossing maize and teo-
sinte. The gene flow moves from teosinte to maize via introgressive hybridization. During the
introgression, the chromosome fragment of teosinte introgresses into the maize chromosome
through repeated backcrosses (BC). The objective of BC breeding is to increase the recipient
genome content and decrease the donor genome content by repeated BC to the recipient line.
Two problems come to light during this process: foreground and background selection. A
series of theoretical and practical studies indicate that a molecular marker can resolve these
problems. The linkage maps show the genetic linkage relationship among different molecular
markers, and these markers can be used for genome-wide scanning. Combined with a physi-
cal map, molecular marker analysis can confirm that a chromosome fragment introgressed
from donor to recipient. Genetic maps provide important information for detailed genetic
analysis of qualitative and quantitative traits and have proven to be important tools for plant
improvement (Doerge, 2002).

During linkage map construction, recombination frequency and segregation distor-
tion are notable. Recombination frequency is a measure of genetic linkage and is used in the
creation of a genetic linkage map. Recombination rates are different among different parent
combinations. The map length of an interspecific hybrid has been recognized as being shorter
than that of an intraspecific hybrid (Doebley and Stec, 1991, 1993). Variability in recombina-
tion rates in maize was first reported in 1918 by Bregger and later confirmed using molecu-
lar markers (Tulsieram et al., 1992). Segregation distortion was first reported in maize by
Mangelsdorf and Jones (1926) based on a linkage between the gametophyte factor Gal and
the Su allele for starchy endosperm. At present, segregation distortion has been reported in
rice (Harushima et al., 1996; Xu et al., 1997; Matsushita et al., 2003), maize (Lu et al., 2002;
Sibov et al., 2003; Yan et al., 2003), barley (Konishi et al., 1992), grain sorghum (Pereira
et al., 1994), and tomato (Paterson et al., 1991), among other crops. Segregation distortion
may be related to the genetic background of the biparents. The segregation distortion ratio
in interspecific populations is confirmed to be higher than that in intraspecific populations,
that is, segregation distortion is prone to occur in interspecific populations. Further studies on
segregation distortion in plants will enhance our understanding of deviant gene segregation
during the introgression of target genes from wild species to cultivars.

In this study, we constructed two genetic linkage maps of maize x teosinte. One popu-
lation comprised 81 F, individuals of maize inbred line B73 x Z. mays ssp parviglumis, and the
other consisted of 63 BC individuals of B73 x Z. mays ssp diploperennis. The analysis of the
genetic linkage maps provided potential clues about the recombination frequency and segrega-
tion distortion of different genetic background combinations of maize and teosinte.
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MATERIAL AND METHODS
Material

Maize inbred line B73 was used as the maize parental line for genetic population con-
struction. Zea mays ssp parviglumis (P1 384061, abbreviated as parviglumis) and Z. mays ssp
diploperennis (P1 441931, abbreviated as diploperennis) were used as teosinte lines. B73 and
parviglumis were used to develop an F, mapping population. The F, was generated from the
cross between B73 and diploperennis, and F | plants were then used as female parents and B73
as the male parents in the genetic cross B73 x F, to generate the BC population. Zea mays ssp
parviglumis and diploperennis were planted in the greenhouse of Shanghai University. B73,
F,, and BC populations were planted in the spring of 2008 in the experimental field on the
Shanghai University campus. Eighty-two F, individuals and 63 BC individuals were randomly
selected as the mapping population.

The genomic DNA of the parents (B73, Z. mays ssp parviglumis, and Z. mays ssp
diploperennis) and 81 F, and 63 BC progeny were extracted for simple sequence repeat (SSR)
analysis using the cetyltrimethylammonium bromide method (Murray and Thompson, 1980).

Analysis of SSR markers

On the principle of bin site uniform distribution, SSR primers were selected from the
maize genetics and genomics database (http://www.maizegdb.org) published by the Univer-
sity of Missouri and were synthesized by the Shanghai Sango Biological Engineering Technol-
ogy & Services Co., Ltd. The polymorphic primers between B73 and parviglumis were used to
analyze the F, population, and the polymorphic primers between B73 and diploperennis were
used to analyze the BC population.

A polymerase chain reaction (PCR) system with a total volume of 10 puL. was made
with the following: 20 ng template DNA, 10 pM each primer, 200 pM dinucleotide triphos-
phates, 1X buffer, 1.6 mM MgCl,, and 0.5 U Taqg DNA polymerase. The PCR process included
5 min at 94°C followed by 30 cycles of 35 s at 94°C, 40 s at 56°C, and 1 min at 72°C, and a
final extension for 5 min at 72°C. The electrophoretic separation of the PCR products was car-
ried out with 8% polyacrylamide gel and 1X Tris-borate-ethylenediaminetetraacetic acid elec-
trophoretic buffer under the constant power of 80 W followed by ethidium bromide staining.

Genotypic statistics

Each locus of the F, progeny samples had three banding patterns. The patterns from
B73 and parviglumis were labeled 1 and 2, respectively, a heterozygous pattern was marked
with 3, and a deletion with 0. Each locus of the BC progeny samples had two banding patterns.
The patterns from B73 were labeled 1, the heterozygous pattern was labeled 3, and a deletion
was marked with 0.

Linkage analysis

A linkage analysis was made by using Mapmaker/EXP 3.0b (Lander et al., 1987) and
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setting threshold of log of odds (LOD) >4.0, the recombinant rates were converted into map
distances (cM) with the Kosambi function, and a linkage map was constructed using the map-
ping commands (Lander et al., 1987).

SSR marker segregation analysis

Segregation of each marker in the two populations was tested for goodness of fit to
the expected 1:2:1 (B73 x Z. mays ssp parviglumis F, population) and 1:1 (B73 x Z. mays ssp
diploperennis BC population) Mendelian segregation ratios using the y> analysis.

RESULTS AND DISCUSSION
Polymorphism analysis

A total of 713 SSR makers were screened between B73 and parviglumis, resulting
in 220 (30.9%) polymorphic markers. The polymorphic markers were then applied to the
F, population analysis. A total of 320 polymorphic markers were identified from 873 tested
SSR markers between B73 and diploperennis, and the polymorphic ratio was 36.6%. These
markers were used to analyze the BC population.

In this study, B73 and parviglumis are different subspecies of the Z. mays species;
however, B73 and diploperennis are different species of the genus Zea. The SSR analysis
showed that the polymorphic ratio between B73 and diploperennis was higher than that be-
tween B73 and parviglumis. The result implied that the sequence divergence between B73 and
parviglumis was less than that of B73 and diploperennis. Accordingly, parviglumis is consid-
ered to be more closely related to maize than are other types of teosinte (Doebley et al., 1984)
based on the relative genetic distances calculated from allozyme frequencies.

Map construction

According to the segregation data of the 220 polymorphic SSR markers, a genetic
linkage map of B73 x parviglumis was constructed, which included 11 linkage groups (10
chromosomes) and 172 SSR markers and spanned 2210.8 ¢cM (Figure 1). The longest linkage
group was 327.3 cM; the shortest was 76.1 ¢cM. The average genetic distance between two
neighboring loci was 12.8 ¢cM, and the distribution of markers on the chromosomes was rela-
tively even, without crowding in any region.

The 320 polymorphic markers were used for analyzing the BC population (B73 x
diploperennis). In the segregation analysis among the individual plants, 258 markers were
mapped into 10 linkage groups, which spanned 1357.7 ¢cM with an average genetic distance
between neighboring markers of 5.3 ¢cM (Figure 2). The longest distance was 198.1 cM; the
shortest was 76.1 ¢cM. Notably, the genetic distance between adjacent markers was 0 ¢cM in
some regions.

Molecular linkage maps have been constructed for some maize X teosinte crosses,
including Z. mays ssp x parviglumis (Doebley and Stec, 1993; Lauter and Doebley, 2002;
Briggs et al., 2007), Z. mays ssp x mexicana (Doebley and Stec, 1991), Z. mays ssp x huehu-
etenangensis (Mano et al., 2005a,b), Z. luxurians (Omori and Mano, 2007; Mano et al., 2008)
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and Z. mays ssp X nicaraguensis (Mano et al., 2007; Mano et al., 2009), and a diploperennis
x parviglumis cross (Westerbergh and Doebley, 2002). These linkage maps were constructed
with various molecular markers (such as restriction fragment length polymorphism, amplified
fragment length polymorphism, SSR, single-nucleotide polymorphism, and indels) based on
the genetic population (F, or BC mainly). Previously, two maps were constructed based on
the population of Z. mays ssp x parviglumis (Doebley and Stec, 1993; Briggs et al., 2007),
but no maps have been constructed based on the population of Z. mays ssp x diploperennis.
The population size, number of markers, and average distance of adjacent markers of B73 x
parviglumis are inferior to those of the W22 x parviglumis map constructed by Briggs et al.
(2007); however, as a base map, the B73 x parviglumis map could resolve the genetic linkage
relationship among markers. These markers can be used for genome-wide scanning during
introgressive hybridization.
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Figure 1. Genetic linkage map of B73 x Zea mays ssp parviglumis with SSR markers and the SDR distribution.
SDR = Segregation distortion region; ga and gams = gametophytic factors.
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Figure 2. Genetic linkage map of B73 x Zea mays ssp diploperennis with SSR markers and the SDR distribution.
SDR = Segregation distortion region; ga and gams = gametophytic factors.

Recombination frequency variability and recombination shrinkage

Comparing the genetic length of each chromosome of our two linkage maps, we found
that the genetic lengths of the chromosomes of B73 x parviglumis were longer than those of
B73 x diploperennis (except that of chromosome 5; Table 1). The length of chromosome 10 of
the B73 x diploperennis linkage map was only 39.7% the length of chromosome 10 of B73 x
parviglumis. The total map length of B73 x diploperennis covered 1357.7 cM, approximately
61.4% that of B73 x parviglumis (2210.8 cM). The data suggested that the recombination dis-
tances were variable among different genetic background combinations. The genetic distances
of all adjacent common markers of the B73 x diploperennis map were shorter than those of the
B73 x parviglumis map. Compared with those of B73 x parviglumis, the genetic distances of
bnlg1025-umc1147, umc1147-umc1085, umc1085-dupssr12, umc2025-umc1135, umc2305-
bnlgl118, and umc1778-umc1360 of B73 x diploperennis were shrunken dramatically (Table
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2). When we compared the B73 x diploperennis map with the SSR map of intermated B73 x
Mo17 (IBM) population (www.maizegdb.org), we found that the recombination shrinkage in
the B73 x diploperennis map was ubiquitous. For example, the genetic distances of all adja-
cent common markers, such as umc1386-umc1773, umc2050-umc1135, umcl1135-umcl1767,
umc1767-umc1489, and umc2152-umc1641 on chromosome 3 were shrunken (Table 3). The
phenomenon of recombination shrinkage was obvious in the B73 x diploperennis linkage map.

Table 1. Comparison of linkage map length between B73 x Zea mays ssp parviglumis and B73 x Z. mays ssp
diploperennis.

Chr.1 Chr.2 Chr.3 Chr.4 Chr.5 Chr.6 Chr.7 Chr.8 Chr.9 Chr. 10 Total

Total map length B73 x Z mays ssp parviglumis ~ 237.3 3273 216.7 249.5 193.7 179.5 237.8 229.8 95.0 208.2 2210.8
B73 x Z. mays ssp diploperennis  192.2 150.4 1959 126.2 198.1 113.5 113.8 108.7 76.1 82.8 1357.7
Average distance  B73 x Z. mays ssp parviglumis 138 117 127 125 113 109 138 153 98 16.8 128
B73 x Z. mays ssp diploperennis 7.1 43 44 48 7.6 5.7 39 64 59 4.1 5.3

Table 2. Genetic distances of adjacent common markers of B73 x Zea mays ssp parviglumis and B73 x Z. mays
ssp diploperennis map.

Marker Genetic distance (cM) Chromosome
B73 x Z. mays ssp parviglumis B73 x Z. mays ssp diploperennis
bnlg1025-umc1147 8.5 1.6 chr. 1
umc1147-umc1085 7.6 1.6 chr. 1
umc1085-dupssr12 14.9 0.0 chr. 1
umc1746-umc2101 2.6 0.0 chr. 3
umc1386-umc1506 6.9 6.6 chr. 3
umc2025-umc1135 5.4 0.0 chr. 3
umcl135-umc1844 11.8 11.8 chr. 3
umc1639-umc1594 8.4 7.0 chr. 3
umc1761-ZAG557 10.0 6.8 chr. 5
mmc0481-umc2305 1.3 1.6 chr. 5
umc2305-bnlg118 24.8 10.6 chr. 5
umc1666-umc1339 32 0.0 chr. 7
umc1799-umc1407 39 1.6 chr. 7
umc1778-umc1360 8.3 1.6 chr. 8

Table 3. Genetic distances of adjacent common markers on chromosome 3 of B73 x Zea mays ssp diploperennis
and SSR map of intermated B73 x Mo17 (IBM) population.

umc1386-umc1773 umc2050-umcl135 umcl135-umcl767 umcl767-umcl489 umc2152-umcl641

B73 x Z. mays ssp diploperennis 33cM 0.0 cM 0.0 cM 6.8 cM 6.8 cM
SSR IBM map 6.8 cM 1.5cM 1.4 cM 17.6 cM 152 cM

Previous research has found that the recombination levels in maize-teosinte hybrids
are equivalent to those in maize-maize hybrids, indicating that the maize and teosinte genomes
are similar (Emerson and Beadle, 1932). Contrastingly, Coe et al. (1990) have confirmed that
the recombination between adjacent molecular markers in a maize-teosinte F, population often
appears smaller than that between the same markers in a maize-maize F, population. A reduc-
tion of map length has been previously recognized in interspecific or wide cross-hybridiza-
tions of plants, including maize-teosinte crosses (Doebley and Stec, 1991, 1993; Williams et
al., 1995). Recombination frequencies were different among different parental combinations.

Genetics and Molecular Research 11 (1): 693-706 (2012) ©FUNPEC-RP www.funpecrp.com.br



G. Wang et al. 700

It has been recognized that the map length of an interspecific hybrid is shorter than that of an
intraspecific hybrid. In Z. mays maps, recombination decreases progressively in the following
order: maize X maize > maize x Z. mays ssp parviglumis > maize X Z. mays ssp mexicana in the
F, generation (Doebley and Stec, 1991, 1993). Comparison of the two map lengths convinced
us that the map length of an interspecific hybrid (B73 x diploperennis) is shorter than that of
an intraspecific hybrid (B73 x parviglumis).

The maize mapping studies suggest that the recombination rate heterogeneity among
genetic backgrounds is under polygenic control. A study by Tulsieram et al. (1992) suggested
that cis-factors potentially influence recombination rates. The first explanation for recombina-
tion shrinkage was based on the assumption that base-sequence homology determines where
crossing-over will occur (Borts and Haber, 1987). Based on the theory of homologous recom-
bination, we can deduce that genetic crossovers are more likely to occur between sequence-
identical homologues in homozygous regions than between sequence-divergent strands in het-
erozygous regions (Williams et al., 1995). The analysis of the a/ gene suggests that sequence
divergence can convert both a transcribed gene hot spot and an untranscribed gene hot spot
into average spots or cold spots (Yao and Schnable, 2005). Compared with that of the B73 x
parviglumis linkage map, the map length of B73 x diploperennis is obviously shrunken. The
greater sequence divergence uncovered through SSR analysis may be one reason for the re-
combination shrinkage in the B73 x diploperennis linkage map.

Earlier studies have proven that recombination shrinkage increases the quantity of
DNA and number of genes transmitted as a unit, reducing the precision at which individual
genes (or traits) can be selected for. Reduced recombination in such regions may contribute
greatly to maintaining trait associations by “linkage drag” or “genetic hitchhiking” (Birky Jr.
and Walsh, 1988). Linkage drag will be a barrier to using exotic maize germplasm in maize
breeding programs. From this perspective, parviglumis is better than diploperennis as a donor
in BC breeding of maize.

Segregation distortion

Forty-eight (21.8%) of 220 SSR markers in the B73 x parviglumis map indicated
distorted segregation (Table 4). Nine segregation distortion regions (SDRs) were identified,
distributed on all seven chromosomes except chromosomes 4, 8, and 9 (Figure 2). In B73 x
diploperennis, 144 (45.0%) polymorphic SSR markers showed aberrant segregation ratios
(Table 5). A total of 116 (80.6%) markers were located in putative SDRs. Thirteen SDRs were
identified, distributed on eight chromosomes of maize except chromosome 6 and 7. The SDRs
were unevenly distributed over 10 chromosomes. Chromosomes 3, 4, 8, and 9 had one SDR.
Chromosomes 1, 2, and 5 had two SDRs, and chromosome 10 had three SDRs. In a compari-
son of the two maps, SDR2, SDR3, SDR4, SDRS, and SDR9 of B73 x parviglumis overlapped
with SDR1, SDR3, SDRS5, SDR11, and SDR12 of B73 x diploperennis.

Segregation distortion has frequently been found during the construction of genetic
linkage maps. Segregation distortion for molecular markers in populations derived from wide
crosses involving crop plants and their wild relatives is a common phenomenon (Doebley and
Stec, 1991; Harushima et al., 1996). In tomato, Paterson et al. (1991) reported that 48 of 70
(68%) markers at 21 distinct regions had distorted ratios in a cross with a related wild species.
Inrice, Xu et al. (1997) found chromosomal regions associated with marker-segregation distor-
tion in six segregating populations. Bonierbale et al. (1988) has reported segregation distortion
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for eight regions in a cross between potato and a related species. In maize, Wendel et al. (1987)
have observed that 11 of 17 (65%) segregating allozyme loci showed significant segregation
distortion in an F, population. Gardiner et al. (1993) detected chromosomal regions associated
with segregation distortion on chromosomes 1, 2, 3, and 5. In 2002, Lu et al. detected a total of
18 regions associated with segregation distortion on all of 10 maize chromosomes. In this study,
8 and 13 SDRs were detected in the B73 x parviglumis and B73 x diploperennis linkage maps,
respectively. The B73 x diploperennis linkage map displayed more SDRs and SDR markers
than the B73 x parviglumis map did. Population type (BC) and size (63 individuals) of the B73
X diploperennis map explain the higher segregation distortion. In addition, the result shows
indirectly that segregation distortion is prone to happen in interspecific populations.

Table 4. Chi-square test for segregation distortion of markers in B73 x Zea mays ssp parviglumis F, population.

Marker Chromosome bin Genotype Pvalue  Chromosome location (Y/N)

B73  parviglumis  Heterozygote  Deletion

Umc2083 1.05-1.06 15 14 52 0 0.0377 Y
Umc1988 1.06 15 14 52 0 0.0337 N
Bnlg1025 1.07 13 13 55 0 0.0056 Y
Dupssr12 1.08 10 13 58 0 o Y
Umc1085 1.08 10 25 46 0 0.0295 Y
Umc2047 1.09 68 0 13 0 ok N
Umc1064 1.11 29 13 39 0 0.0401 Y
Umcl1553 1.11 30 16 35 0 0.0421 Y
Umcl1459 2.05 12 13 55 1 0.0038 Y
Umcl755 2.06 34 17 30 0 0.0019 Y
Umc2129 2.07 38 0 43 0 ok N
Umcl1633 2.08 66 0 11 4 o N
umc1746 3.00 22 0 59 0 ok N
Umc2101 3.00 28 12 41 0 0.0421 Y
Umc1746 3.00 29 13 39 0 0.0401 Y
Umc1886 3.01 21 9 51 0 0.0111 Y
Umcl1057 3.02 29 10 42 0 0.0110 Y
phi374118 3.02 29 0 52 0 ok Y
Umc1386 3.04 24 0 56 1 ok Y
Umc1504 3.04 24 6 51 0 0.0021 Y
Umcl167 3.05 26 10 45 0 0.0257 Y
Umcl674 3.06 31 16 34 0 0.0219 Y
Umc2050 3.07 26 11 44 0 0.0459 Y
Umc2152 3.09 28 9 39 5 0.0097 N
Umcl1329 4.06 34 18 29 0 0.0016 N
Umc2139 4.09 67 0 14 0 ok N
Umc2179 5.01 13 16 52 0 0.0342 Y
Mmc0121 5.01-5.02 15 7 59 0 ok Y
Umcl1462 6.05 21 11 49 0 0.0489 Y
Bmcl154 6.05 26 11 44 0 0.0459 Y
Umc2170 6.06 64 0 16 1 ok N
Umcl1545 7.00 71 0 10 0 ok N
Umc1068 7.02 15 13 53 0 0.0201 Y
Umc1684 7.03 32 7 42 0 ok Y
Umc1324 7.03 44 0 37 0 ok Y
phi420701 8.00 39 0 42 0 ok N
phil00175 8.03 21 11 49 0 0.0489 Y
Umc1268 8.07 30 27 24 0 0.0011 Y
phi233376 8.09 19 10 52 0 0.014 Y
Umc1596 9.01 67 0 14 0 o N
phi052 10.02 27 0 54 0 ok Y
Umc1576 10.02 27 9 45 0 0.0111 Y
phi059 10.02 15 8 56 2 ok Y
Umc1047 10.03 35 0 46 0 ok Y
phi323152 10.05 23 8 50 0 0.0067 Y
phi035 10.06 18 0 63 0 ok Y
**P <0.001.
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Table 5. Chi-square test for segregation distortion of markers in B73 x Zea mays ssp diploperennis BC population.

Marker Chromosome bin Genotype P value Chromosome location (Y/N)
B73 Heterozygote Deletion
Phi308707 1.10 41 22 0 0.016 Y
Umc2189 1.10 40 23 0 0.003 Y
Umcl147 1.07 40 23 0 0.032 Y
Umcl706 1.07 40 22 1 0.023 Y
Umc1356 1.07 40 21 2 0.016 Y
Umcl122 1.07/1.06 45 17 1 Hk Y
Umcl1281 1.06 42 21 0 0.008 Y
Umc1748 1.06 43 20 0 0.003 Y
Umcl035 1.06 41 22 0 0.016 Y
Umcl123 1.06 42 21 0 0.008 Y
Umc2083 1.05-1.06 43 20 0 0.003 Y
Umc2025 1.05 43 19 1 0.002 Y
Bnlg1866 1.03 45 18 0 ok Y
Umcl1073 1.03 42 21 0 0.008 Y
Umc1403 1.03 42 21 0 0.008 Y
Bnlg1007 1.02 43 20 0 0.003 Y
Umc1071 1.01 40 23 0 0.032 Y
Umcl363 1.01 40 23 0 0.032 Y
Umc1282 1.01 40 23 0 0.032 Y
Bnlg1887 2.06 23 40 0 0.032 Y
Bnlg1267 2.07/2.08 20 41 2 0.007 Y
Umcl536 2.07/2.08 19 44 0 0.001 Y
mmc0191 2.07/2.08 19 43 2 0.002 Y
dupssr25 2.08 12 51 0 Hk Y
Bmc1233 2.08 12 51 0 *k Y
Bmcl316 2.08 11 52 0 *k Y
Bnlg1746 2.08 6 56 1 wk Y
Umcl516 2.08 5 58 0 ok Y
Bmc1520 2.09 5 58 0 ok Y
Umcl256 2.09 5 58 0 ok Y
Umc2077 2.09 5 58 0 ok Y
Umc1394 3.01 40 23 0 0.032 Y
Umcl814 3.02 43 20 0 0.003 Y
Bmcl1144 3.02 44 19 0 0.001 Y
Bmc1325 3.02/3.03 44 19 0 0.001 Y
Bmc1523 3.02/3.03 44 19 0 0.001 Y
Bmc1647 3.02 44 15 1 *k Y
Umc2369 3.03 44 16 3 wk Y
Umc1965 3.04 41 22 0 0.016 Y
Umcl351 3.04 42 20 1 0.005 Y
Umcl425 3.04 42 20 1 0.005 Y
Umc2033 3.04 44 19 0 0.001 Y
Bmc1452 3.04 40 23 0 0.032 Y
Umc2259 3.03 45 18 0 wk Y
Umc2258 3.03 45 18 0 Hx Y
phi036 3.04 43 20 0 0.003 Y
Umc1729 3.04 43 20 0 0.003 Y
Umc1386 3.04 43 15 5 Hx Y
Umc1773 3.04 44 19 0 0.001 Y
Umc1504 3.04 44 19 0 0.001 Y
Umc1350 6.07 45 18 0 wk Y
Umcl174 3.05 45 18 0 ok Y
Umc1300 3.05 45 18 0 ok Y
Umcl158 3.05 45 18 0 ok Y
Bnlg2241 3.06 44 19 0 0.001 Y
Bnlgl1063 3.06 41 22 0 0.016 Y
Bmc1350 3.08/8.07 42 21 0 0.008 Y
Umc1644 3.06 39 23 1 0.043 Y
ncl35 4.01 44 19 0 0.001 Y
Umcl276 4.01 44 19 0 0.001 Y
Umc1757 4.01 45 18 0 wk Y

Continued on next page
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Table 5. Continued.
Marker Chromosome bin Genotype P value Chromosome location (Y/N)
B73 Heterozygote Deletion

Umc1294 4.02 49 14 0 ok Y
Umc2150 4.02 46 17 0 Hx Y
Umc1288 4.02 44 19 0 0.001 Y
Umc1821 4.03/4.04 40 22 1 0.023 Y
phi021 4.03 43 18 2 0.001 Y
Umcl652 4.04 43 20 0 0.003 Y
Umc1303 4.05 45 18 0 ok Y
Bnlg1265 4.05 44 19 0 0.001 Y
Umcl031 4.05 45 16 2 wk Y
Umc1896 4.05 46 17 0 o Y
Umc1945 4.06 46 17 0 wk Y
Umc2391 4.06 45 18 0 Hox Y
Bnlg2291 4.06 42 20 1 0.005 Y
Umcl651 4.07 43 18 2 0.001 Y
Umc2009 4.08 41 22 0 0.016 Y
zag557 5.03 41 22 0 0.016 Y
Umc2164 5.05 43 19 1 0.002 Y
Bmc2323 5.04 43 20 0 0.003 Y
Umc1687 5.05 43 20 0 0.003 Y
Umc1348 5.05 40 22 1 0.023 Y
Umec2111 5.05 41 20 2 0.007 Y
Umc1822 5.05 42 21 0 0.008 Y
Umcl557a 5.03 40 23 0 0.032 Y
Umcl155 5.05 43 19 1 0.002 Y
Bnlg1237 5.05/5.06 42 21 0 0.008 Y
phi087 5.06 42 21 0 0.008 Y
Umcl524 5.06 48 15 0 wk Y
Umc1019 5.06 40 23 0 0.032 Y
mmc0481 5.06 41 22 0 0.016 Y
Umc1941 5.06 42 21 0 0.008 Y
Umc1680 5.06 42 21 0 0.008 Y
Umc2013 5.07 45 18 0 ok Y
Bmc2305 5.07 46 17 0 wk Y
Bnlgl18 5.07 27 35 1 0.001 Y
Umc1072 5.07 44 19 0 0.001 Y
Umc2143 5.08 43 19 1 0.002 Y
Umc1592 8.01 42 21 0 0.008 Y
Bmc1194 8.01/8.02 42 21 0 0.008 Y
Bmc2235 8.02 41 22 0 0.016 Y
Umc1913 8.02 40 23 0 0.032 Y
Umc1034 8.02/8.03 40 23 0 0.032 Y
Umc1778 8.03 40 23 0 0.032 Y
Umc1904 8.03 40 23 0 0.032 Y
Umcl1562 8.05 40 23 0 0.032 Y
Umcl724 8.06 42 21 0 0.008 Y
Bmc1525 9.07 39 23 1 0.043 Y
zct128 9.07 40 23 0 0.032 Y
Umc1942 9.07 40 23 0 0.032 Y
phi052 10.02 39 23 1 0.043 Y
phi059 10.02 40 23 0 0.032 Y
Umc1345 10.03 41 22 0 0.016 Y
Umc2067 10.03 41 22 0 0.016 Y
Umc1785 10.03 39 22 2 0.031 Y
phi084 10.04 41 22 0 0.016 Y
Umcl272 10.04 42 21 0 0.008 Y
Umc2163 10.04 42 21 0 0.008 Y
Umc1648 10.04 43 20 0 0.003 Y
Umc1930 10.04 42 21 0 0.008 Y
phi301654 10.04 43 20 0 0.003 Y
Umcl1061 10.06 40 23 0 0.032 Y
umc1993 10.06 40 23 0 0.032 Y
**p <0.001.
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In many plant species, the most commonly reported genetic factors associated with
distorted segregation ratio occur at the gamete and zygote level. In maize, the most com-
monly reported genetic factors associated with distorted segregation ratio are gametophytic
factors (ga; Mangelsdorf and Jones, 1926; Burnham, 1936; Jain, 1967; Neuffer et al., 1997).
In maize, four of 14 SDRs detected in the linkage map of an elite hybrid (Zong x 87-1)
were located in regions in which gamete genes were reported (Yan et al., 2003); only three
of 18 SDRs were detected close to the locations of five known ga factors (Lu et al., 2002).
In the B73 x parviglumis linkage map, SDR3 was located near the gams| allele, SDR5 was
located near the ga7 allele, and SDR6 overlapped with the gal0 allele (Table 6; see Figure
1). In the B73 x diploperennis linkage map, SDR3 was located near the gams! allele, SDR6
overlapped with the gal allele, and SDR7 overlapped with the ga2 allele near the gal0 al-
lele (see Table 6; see Figure 2). These SDRs could reasonably be attributed to the presence
of ga factors in the linkage group. The locations of other SDRs detected in both linkage
maps in our studies nearly overlap with previously identified SDRs (Lu et al., 2002; Yan
et al., 2003; see Table 6). Nevertheless, these SDRs had no correlation with the ga factors
and lack a clear explanation. The results suggest that there may be other genetic reasons for
segregation distortion.

Table 6. Segregation distortion regions (SDRs) distribution.

Lu.etal. Location (bin) Yanetal. Location (bin) parviglumis  Location  diploperennis ~ Location — Gametophytic

(2002) (2003) factors location
SDR1.1 1.02-1.04 SDR1-1 1.03-1.04 SDR1 1.05-1.07 SDR2 1.10
SDR1.2 1.05-1.08 SDR1-2 1.06-1.08 1.07-1.08 SDRI1 1.02-1.07
SDR1.3 1.09-1.11 SDR2 1.11
SDR2.1 2.01-2.02
SDR2.2 2.03-2.05 SDR3 2.05-2.06 gams] (Bin2.04)
SDR2.3 2.07-2.09 SDR2-1 2.06-2.08 SDR3 2.07-2.08
SDR4 2.08-2.09
SDR3.1 3.04-3.05 SDR3-1 3.05-3.05 SDR4 3.00-3.05 SDRS 3.02-3.06
SDR3.2 3.06-3.07 SDR3-2 3.05-3.05 SDR5 3.06-3.07 ga7 (Bin3.09)
SDR4.1 4.02-4.05 SDR4-1 4.05-4.06 SDR6 4.01-4.08  gal (Bin4.02)
SDR4.2 4.09-4.11 SDR4-2 4.05-4.06
SDR5.1 5.05-5.07 SDR5-1 5.03-5.04 SDR6 5.01-5.02 SDR7 5.03-5.05  gal0 (Bin5.00-5.02)
SDR8 5.06-5.08  ga2 (Bin5.04-5.05)
SDR6.1 6.05-6.07 SDR6-1 6.01 ga*-GFS1994 (chr6)
SDR6-2 6.04-6.05 SDR7 6.05
SDR7.1 7.01-7.03 SDR7-1 7.00-7.01 SDR8 7.03
SDR7-2 7.02
SDR&.1 8.02-8.03 SDR9 8.01-8.03
SDR8.2 8.05-8.08
SDRO.1 9.01-9.04 SDR9-1 9.02 SDR10 9.07 ga8 (Bin9.02)
2a*-94-764 (chr9)
SDR10.1  10.02-10.04 SDR10-1  10.01-10.02 SDR9 10.01-10.03 SDR11 10.02-10.03
SDR12 10.03-10.04
SDR10.2  10.06-10.07 SDR13 10.04-10.06
gams2 (unknown)
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