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ABSTRACT. Statistical tests that detect and measure deviation from
the Hardy-Weinberg equilibrium (HWE) have been devised but are lim-
ited when testing for deviation at multiallelic DNA loci is attempted.
Here we present the full Bayesian significance test (FBST) for the HWE.
This test depends neither on asymptotic results nor on the number of
possible alleles for the particular locus being evaluated. The FBST is
based on the computation of an evidence index in favor of the HWE
hypothesis. A great deal of forensic inference based on DNA evidence
assumes that the HWE is valid for the genetic loci being used. We ap-
plied the FBST to genotypes obtained at several multiallelic short tan-
dem repeat loci during routine parentage testing; the locus Penta E ex-
emplifies those clearly in HWE while others such as D10S1214 and
D19S253 do not appear to show this.
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INTRODUCTION

The present report is the natural sequel to that of Montoya-Delgado et al. (2001) who
introduced an exact significance test for the Hardy Weinberg equilibrium (HWE), reconciling
Bayesian and frequentist ideas. For a complete description of the HWE, see Weir (1996).
The Bayes factor was used to define an order in the sample space, and the sampling
probability function utilized to compute the P value was the weighted likelihood average
(for every possible sample point) over ΠΗ, the null hypothesis subset of the parameter
space. This test was originally presented by Pereira and Wechsler (1993), and its use with
line integrals was discussed by Irony and Pereira (1995). The main limitations of this test
are its strong dependence on the stopping rule (a violation of the likelihood principle) and
on the parameterization being used. The present study presents a genuine Bayesian signif-
icance test, the full Bayesian significance test (FBST), introduced by Pereira and Stern
(1999). In fact, we describe the invariant version of the FBST presented by Madruga et al.
(2003).

A complete bibliographic discussion on the many HWE tests has been presented by
Montoya-Delgado et al. (2001). Here, we restrict ourselves to describing and to applying the
FBST to genotypes obtained at three multiallelic short tandem repeat (STR) loci: the locus
Penta E exemplifies those clearly in HWE, while others such as D10S1214 and D19S253 do
not.

The use of the FBST was applied here to define the loci that will be used for parentage
testing. Note that the sample size of this kind of database is not fixed beforehand. Hence, the
sample spaces were not completely defined, avoiding the use of frequentist methods.

Our study is based solely on the likelihood effectively obtained for any existing database
size. The prior we use is the non-informative uniform density in the natural parameter space,
making the likelihood the main element of our concerns. We understand the natural parameter
space to be the one where the prior is assessed. Here, for example, the vector of populational
genotype proportions is the natural parameter of interest. That is, suppose that there are m (a
positive integer) possible alleles. There will be in this case k=m(m+1)/2 possible genotypes.
The natural parameter space in this case is the simplex:

{(π
1
,…,πκ): π

i 
≥ 0 and π

i
+…+πκ=1} (Equation 1)

In the second section, we describe the likelihood, the hypothesis of interest, and the
probability distributions involved. Subsequent sections describe the FBST and illustrate it with
the case of biallelic loci, and review the hierarchical testing for multiple alleles as presented by
Montoya-Delgado et al. (2001). The last section presents the results for three multiallelic STR
loci: Penta E (Bacher et al., 2000), D10S1214 (Genbank accession number G08824) and D19S253
(Genbank accession number L13122).

DATA COLLECTION

Genomic DNA was obtained from unrelated, predominantly Caucasian individuals un-
dergoing paternity testing nationwide by Genomic Engenharia Molecular Ltda. Alleles were
amplified using fluorescently labeled primers, separated on DNA sequencing gels by electro-
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phoresis, and visualized using an automatic DNA sequencer. Allele sizing was performed by
running adjacent allelic ladders.

MODEL AND HYPOTHESIS

Let us consider the case of a locus with m possible alleles: a
1
, a

2
,…, a

m
. The popula-

tional relative frequency of genotype (a
i
,a

j
), i ≤ j =1, 2,…, m is denoted by 0 ≤ π

ij 
≤ 1. Since

each individual that enters the process of evaluation is classified in one of the k=m(m+1)/2
possible genotypes, and by denoting the absolute frequency of individuals with genotype (a

i
,a

j
)

as x
ij 
(a positive integer), the actual likelihood is given by

where π  = (π
ij
) and x =(x

ij
), i ≤ j =1,…, m are the parameter and the sample frequency

vectors, respectively.
For someone who will use only experimental information to assess his/her prior, the

Dirichlet is the appropriate class of distribution to obtain the prior. That is, if a priori π has a
Dirichlet distribution of order k with parameter d=(d

ij
), i ≤ j =1,…, m and d

ij
 > 0, a posteriori π

also has a Dirichlet distribution of order k but with parameter D = d+x. Note that for the
uniform case where d=1 (the unity vector), the posterior density is the normalized likelihood
that is the Dirichlet of order k with parameter x+1.

For the three databases that will be analyzed, the sample size is very large and the
uniform prior is used. In this case, a deep study of the posterior corresponds to a deep study of
the likelihood. This could go in the direction of the ideas of Fisher (1973).

To say that a locus is in HWE is to say that for any genotype (a
i
,a

j
) its populational

frequency satisfies

π
ij
=2σ

i
σ

j
 if i < j and π

ii
=(σ

i
)2 (Equation 3)

where 2σ
i 
=π

1i
+…+π

 (i-1)i
+2π

ii
+π

i(i+1)
+…+ π

im
.

Note that the dimension of the parameter space is k-1, and that the set of parameter
points that satisfy the hypothesis, ΠΗ, belongs to a subspace of dimension equal to m-1. Since
m-1 < k-1, this is a sharp hypothesis. The main objective of the FBST is to test this sharp
hypothesis.

Before ending this section, let us list some interesting quantities derived from the adop-
tion of Dirichlet priors.

i) The posterior mean of π
ij
 is e

ij
 = E{π

ij
x} = D

ij 
/1´D, where 1´D is the sum of the

components of D. (Equation 4)
ii) The posterior covariance matrix of π is Cov(πx)= (diag(e)-ee´)/(1´D+1), where

e is the vector (e
ij
). (Equation 5)

iii) The posterior mode is the vector M=(D -1)[(1´D) - k)]-1. (Equation 6)
iv) The maximum of the posterior inside the HWE hypothesis is the vector P=(p

ij
),

where, for D
i
= D

1i
+… +D

(i-1)i
+2D

ii
+D

i(i+1)
+…+D

im
 and 2p

i
=(1´D)-1D

i
, we have

p
ij
=2p

i
p

j
 for i < j and p

ii
 = (p

i
)2. (Equation 7)

(Equation 2)
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FBST for the HWE

Let π  (∈ Π ⊆ℜ k ) be the parameter vector of interest and L(πx) the likelihood
function associated with the observed data x, a standard statistical model. Under the Bayesian
paradigm, the posterior density,  f

x
(π), is proportional to the product of the likelihood and the

prior density, f(π). That is,

 f
x
(π)∝L(πx)f(π). (Equation 8)

The (null) hypothesis H states that the parameter π lies in the null set, ΠΗ ⊂ Π. Usually
the null set is defined by inequalities and equality constraints like the ones that define the HWE
presented in the previous section. As in the case of the HWE, we are particularly interested in
sharp (precise) null hypotheses, i.e., ΠΗ belongs to a subspace with smaller dimension than the
subspace where Π was defined. Note that for the HWE, dim(ΠΗ 

) = m-1< k-1=dim(Π).
(Equation 9)

The FBST value of evidence in favor of Η, Ev(Ηx), is defined as follows:
• Let r(π) be an arbitrary density function, called here reference density. Usually, when

working in the natural parameter space, we either take r(π) ∝ 1, i.e., the uniform
density, or the non-informative prior if one is available. The reference density should
not to be confused with the prior density, for the latter can be an informative density.

• Consider S
x
(π) = f

x
(π)/r(π) as the posterior surprise function relative to the reference

density r(π) and find the maximum inside the null set, a vector P∈ ΠΗ  such that ∀ π
∈ ΠΗ gives

S
x
(π) ≤ S

x
(P) = SΗ. (Equation 10)

• Define the highest relative surprise set (HRSS) as

TΗ={π∈Π  S
x
(π) > SΗ}. (Equation 11)

• The evidence against H is given by:

• Finally, the evidence in favor of H is given by

(Equation 12)

The surprise function has been discussed by Good (1983) and used by Evans (1997). In
both papers, the reference density is exactly equal to the prior density. In that case, the surprise
is related solely to the likelihood, avoiding the influence of the prior information. In our definition,
when using the uniform reference density and the prior both in the natural parameter space, this
prior information is highly considered even for complicated alternative parameterizations. The
role of the surprise function here is to make Ev(Ηx) explicitly invariant under suitable transfor-

(Equation 13)
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mations on the coordinate system of the parameter space. The proof of this fact is not difficult
and can be found in the study of Madruga et al. (2003).

The HRSS, TΗ, contains the points of the parameter space, Π, with higher surprise,
relative to the reference density, r, than any point in the null set ΠΗ. When r(π)=1, TΗ 

 is the
posterior highest density probability set tangential to the null set ΠΗ.

The evidence against Η, Ev(Ηx), gives an evaluation of the inconsistency between
the posterior and the null hypothesis, and its complement is what we call the evidence in favor of Η.
A large value of Ev(Ηx) indicates that the set of parameter points with higher density than the
null hypothesis has high probability. Hence, large (small) values of Ev(Ηx) disfavor (favor) Η.

The HWE is a good illustration of the statistical appropriateness of the FBST. It is a
non-linear hypothesis in a space of high dimension. Figure 1 illustrates the biallelic case showing
the null and the tangential sets. This case was first discussed by Pereira and Stern (1999).
Madruga et al. (2003) later showed, for a fixed sample size (the trinomial case), that the FBST
should be the most powerful test for the HWE. Also, Madruga et al. (2001) showed that the
FBST is a Bayesian test and thus a minimum risk (optimal) procedure.

Table 1 presents the figures for the biallelic case with sample size n = 10. We present it
here merely to give a flavor of the evidence calculus. For this example, we consider uniform
prior and reference densities, r(π) = ƒ(π) =1. Recall that

Figure 1. Hardy-Weinberg equilibrium and full Bayesian significance test (FBST).

(Equation 14)

and
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Several other applications of the FBST, details of its numerical implementation, sugges-
tive remarks regarding its epistemological implications, and an extensive list of references can
be found in the authors’ previous publications.

Hierarchical sequential testing for HWE

In the previous section, we presented a simple method for computing an evidence index
in favor of a sharp null hypothesis. Note that there is no restriction about dimensionality or
sample size. However, the computational work will increase exponentially with an increasing
number of alleles at a locus. For instance, for two alleles we have 3 genotypes, for 3 alleles we
have 6 genotypes, for 4 alleles we have 10 genotypes and for m alleles we have k = m(m+1)/
2 genotypes. To simplify this study we will use some of the Dirichlet properties. Let us review
them here.

Let Π be the simplex {(π
1
,…,π

k
)  π

I 
>0 & π

1
+…+π

k
=1} and define a random vector

π assuming values on Π with density function

Table 1. 100×[1-Ev(HWEx)] for n=10.

x3/10

1.0 99
0.9 100 06
0.8 97 22 01
0.7 89 50 05 00
0.6 79 80 20 02 00
0.5 58 99 50 11 01 00
0.4 38 94 84 38 09 01 00
0.3 20 68 100 78 38 11 02 00
0.2 08 36 78 100 84 50 20 05 01
0.1 02 12 36 68 94 99 80 50 22 06
0 00 02 08 20 38 58 76 89 97 100 99

x1/10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

where d = (d
1
,…,d

k
) is a vector of positive real numbers and Γ(a) is the gamma function

evaluated at point a >0. The random vector π is said to have a Dirichlet distribution of order k
with parameter d ∈ ℜk We denote this statement by π  ~ Dir

k
(d), and by x ~ y we mean that x

and y have the same distribution.

Property 1

Let y = (y
1
,…,y

k
) a random vector of k independent random variables and s = y

1
+…+y

k
.

(Equation 15)
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For i = 1,…,k, let y
i
 be gamma distributed with shape parameter d

i
 > 0 and scale parameter b

> 0. Then, by letting (1/s)y  = π and d=(d
1
,…d

k
), for any choice of b, we have (1/s)y  = π ~

Dir
k
(d). (Equation 16)

We will state the next property in the context of the HWE problem. However, it is a
very general property and uses Property 1 repeatedly in its proof. Here again, we define the
vectors π and D of order k as before; π = (π

ij
) and D=(D

ij
), i < j =1,…,m with k=m(m+1)/2.

Consider now the following appropriate notation:σ
1+

 =π
12

+…+π
1m

, π
1+

=(π
12

,…,π
1m

)(1/ σ
1+

),
σ

1~ 
= 1- π

11 
- σ

1+ 
, and π

1~
=(1/σ

1~
)π(1), where π(1) is the vector (π

ij
)

2≤i≤j≤m
. Also let D

1+ 
=

(D
12

,…D
1m

), D
1~

 = (D
ij
)

2≤i≤j≤m
. The sum of the components of these two vectors are denoted

by 1´D
1+ 

and 1´D
1~

 .

Property 2

The following two statements are equivalent
i) π ~ Dir

k
(D)

ii) The vectors (π
12 

; σ
1+ 

; σ
1~

), π
1+

 and π
1~

 are mutually independent and are distributed
as: (π

12 
; σ

1+ 
; σ

1~
) ~ Dir

3
(D

11
; 1´D

1+ 
; 1´D

1~
), π

1+
 ~ Dir

(m-1)
(D

1+
), and

π
1~

 ~ Dir
(k-m)

(D
1+

).

To prove these two important properties, one can use the techniques described by Basu
and Pereira (1982). The first property is an application of Basu’s theorems (Basu, 1982). The
second needs only simple algebraic uses of the first property.

The partition introduced by Property 2 is the basis of the method we will present in the
sequel. We follow the same practical ideas of Montoya-Delgado et al. (2001). Note that the
HWE only influences the vectors (π

12 
; σ

1+ 
; σ

1~
) and π

1~
.
 
The vector π

1+ 
is not affected by the

occurrence of HWE. Our procedure follows the steps below:

Step 1

Without loss of generality, call a
1
 the least frequent allele in the sample S in evaluation.

Step 2

Partition the sample S into three mutually exclusive sets:
S

11
, all individuals with genotype (a

1
,a

1
);

S
1+

, all individuals with genotype (a
1
,a

i
), i >1, and

S
1~

, all individuals with genotype (a
i
,a

j
), 2≤ i ≤ j.

Step 3

Apply the FBST to (π
12 

; σ
1+ 

; σ
1~

) ~ Dir
3
(D

11
; 1´D

1+ 
; 1´D

1~
). Note that number of

elements of each of these sets together with the prior parameters will produce the values of D
11

,
1´D

1+ 
, and 1´D

1~
 . If the value of Ev is large enough to decide against Η, declare the population

to be in disequilibrium in relation to allele a
1
. In this case, a

1
 is one of the alleles responsible for

this disequilibrium. If 1-Ev is large, declare that the population is in equilibrium.
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Step 4

If S
1~

 is composed of elements with only one allele involved, stop testing. If more than
one allele is involved in the elements of S

1~ 
, rename S

1~
 as S and go to Step 1.

With the procedure described, we will apply the FBST m-1 times and will have an idea
of which alleles are producing the disequilibrium. In the next section, we apply the method to
three sets of data: STR loci Penta E, D10S1214 and D19S253.

EXAMPLES

This section is devoted to the use of the method introduced in the previous sections. We
chose three STR loci to discuss the use of FBST in sequence as described before. The first
locus, Penta E, has m=20 possible alleles and k=210 genotypes and it is in HWE, since for all
alleles the evidence in favor of HWE is high. The second locus D10S1214 has m=47 and
k=1128. In this case, a large number of alleles are in disequilibrium, since the evidence in favor
of HWE is very small. The third example, D19S253, has m=14 and k= 105. Also in this case,
although having a small number of alleles, the evidence in favor of HWE is very small. Hence,
we believe that Penta E is in equilibrium while the other two loci are not. Here we consider the
prior and reference densities uniform.

Example 1: locus Penta E

Table 2 presents the results of the application of FBST for all alleles of Penta E. As we
can see, most of the alleles show substantial evidence in favor of Η, 1-Ev. Only when we test
alleles 7 and 12 do we obtain a number between 15 and 20%. This is not enough to reject HWE.
The conclusion is that this locus is in HWE.

Example 2: locus D10S1214

Table 3 presents the results of the application of FBST for all alleles of D10S1214. In
this locus we have 15 of 47 alleles in disequilibrium. The conclusion is that this locus is not in
HWE.

Example 3: locus D19S253

Table 4 presents the results of the application of FBST for all alleles of D19S253. In this
locus we have 5 of 14 alleles in disequilibrium. The conclusion is that this locus is not in HWE.

If the reader wishes to compare the results presented here with other testing tech-
niques, the original data can be found at http://www.ime.usp.br/~cpereira. A program for the
biallelic HWE is also available at this site.

FINAL REMARKS

This paper introduces the FBST to the biostatistics environment. The motivation for the
use of this test was the fact that the sampling space is not known in most cases since the
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stopping rule usually is not known. However, the FBST may be applied in any of the standard
statistical situations as seen in our list of published papers (Pereira and Stern, 1999, 2001a,b,c;
Irony et al., 2001; Stern and Zacks, 2002; Lauretto et al., 2003; Madruga et al., 2001, 2003;
Rodrigues, 2006).

Before we list properties of the FBST, we recall that here we use the power of Dirichlet
properties. These properties and their use may be found in Wilks (1968), Basu (1982), Basu and
Pereira (1982), and Irony et al. (2000). For Bayesian statistics background we recommend
Zellner (1971) and Press (1989).

In the applications discussed in this paper and in other previous papers, it is desirable or
necessary to use a test with the following characteristics:

• Be formulated directly in the natural parameter space.
• Take into account the full geometry of the null hypothesis as manifold (surface) em-

bedded in the whole space where the parameter space is defined.
• Have an intrinsically geometric definition, independent of any non-geometric aspect,

such as the particular parameterization of the manifold representing the null hypo-
thesis being evaluated.

• Be consistent with the Benefit of Doubt juridical principle (or Safe Harbor Liability
rule). That is, one should consider in the “most favorable way” the claim stated by the
hypothesis. Recall that TΗ is the set of all parameter points with higher posterior
density than the point in ΠΗ with maximum density. Our judgment of Η is based on the
value of the posterior probability of TΗ .

Table 2. Sequential full Bayesian significance test for Penta E.

Allele D
11

D
1+

D
1~

Total 1-Ev

24 1 22 4227 4250 99.84%
23 1 23 4203 4227 99.80%
6 1 21 4181 4203 99.87%

22 1 57 4123 4181 94.85%
21 1 68 4054 4123 91.23%
20 2 95 3957 4054 88.11%
19 3 125 3829 3957 70.36%
9 1 137 3691 3829 48.72%

18 5 181 3505 3691 62.82%
8 7 289 3209 3505 98.47%

16 9 303 2897 3209 99.91%
17 12 289 2596 2897 64.06%
14 18 345 2233 2596 66.31%
15 14 342 1877 2233 83.58%
5 13 313 1551 1877 67.31%

10 23 336 1192 1551 96.02%
13 51 394 747 1192 98.12%
11 55 302 390 747 92.03%

7x12 76 171 143 390 17.83%
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Table 3. Sequential full Bayesian significance test for D10S1214.

Allele D
11

D
1+

D
1~

Total 1-Ev

15 1 47 8007 8055 99.00%
13 1 47 7959 8007 98.99%
59 1 46 7912 7959 99.05%
58 1 46 7865 7912 99.04%
61 1 46 7818 7865 99.03%
17 1 48 7769 7818 98.87%
31 1 47 7721 7769 98.94%
57 1 49 7671 7721 98.76%
55 1 50 7620 7671 98.66%
56 1 50 7569 7620 98.65%
33 1 51 7517 7569 98.54%
32 2 50 7465 7517 23.40%
29 1 53 7411 7465 98.30%
16 1 52 7358 7411 98.39%
54 2 56 7300 7358 28.84%
30 1 58 7241 7300 97.66%
53 1 72 7168 7241 95.40%
52 1 80 7087 7168 93.63%
34 1 80 7006 7087 93.52%
28 1 82 6923 7006 92.93%
50 2 102 6819 6923 72.42%
18 6 105 6708 6819 0.06%
51 1 112 6595 6708 82.44%
35 2 125 6468 6595 90.18%
48 4 146 6318 6468 20.75%
36 2 152 6164 6318 99.73%
49 5 159 6000 6164 10.31%
27 8 171 5821 6000 0.27%
37 9 207 5605 5821 0.66%
47 7 251 5347 5605 0.32%
19 4 253 5090 5347 99.78%
38 10 298 4782 5090 22.51%
46 15 364 4403 4782 13.24%
39 16 360 4027 4403 11.52%
26 25 355 3647 4027 0.07%
45 21 354 3272 3647 2.29%
40 20 367 2885 3272 18.43%
20 21 344 2520 2885 12.61%
44 24 337 2159 2520 7.92%
41 36 358 1765 2159 0.80%
42 33 349 1383 1765 21.28%
21 55 305 1023 1383 0.03%
43 42 254 727 1023 1.32%
25 56 193 478 727 0.03%
23 68 138 272 478 0.03%

22x24 70 97 105 272 0.05%
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• Consider only the observed sample, respecting the likelihood principle, and allowing no
ad hocery, such as a positive prior probability on the precise hypothesis. Recall that
dim(ΠΗ) < dim(ΠΗ).

• Consider the alternative hypothesis in equal standing with the null hypothesis, in the
sense that increasing sample size should make the test converge to the right (accept/
reject) decision. Recall that for open-minded priors (positive densities for all possible
values of π), the posterior density converges to Pr(π = p) =1, where p is the true
value of π. In fact, ΠΗ converges to a single point, the true value of the parameter in
the case of an open-minded prior.

• Give an intuitive and simple measure of significance for the null hypothesis, ideally a
probability in the parameter space, 1-Ev in our case.

• Allow the construction of an optimal decision rule. The decision of rejecting Η when-
ever 1-Ev ≤ α for a fixed α, is in perfect harmony with the Bayesian decision theory
of Rubin (1987), as shown by Madruga et al. (2001). This decision rule, when a
stopping rule is well defined, is the most powerful test in the frequentist paradigm
(Madruga et al., 2003).

• Be invariant under alternative parameterizations. The original definition of the FBST
introduced by Pereira and Stern (1999) did not employ the reference density r. With
the introduction of r and the consideration of HRSS, the invariance problem was
solved.

The FBST has all these theoretical characteristics and has a straightforward computa-
tional implementation. It takes place entirely in the parameter space where the scientist as-
sesses his/her prior density. We call it natural parameter space while acknowledging that the
parameterization choice for the statistical model semantics is somewhat arbitrary.

We recall that the aim of most alternative parameterizations is to eliminate nuisance
parameters, which can be achieved by conditioning, marginalization, or integration. The latter is

Table 4. Sequential full Bayesian significance test for D19S253.

Allele D
11

D
1+

D
1~

Total 1-Ev

18 1 14 17905 17920 99.84%
5 1 13 17891 17905 99.80%

17 1 15 17875 17891 99.86%
16 2 30 17843 17875 4.19%
6 3 63 17777 17843 0.64%

15 2 270 17505 17777 99.95%
9 14 641 16850 17505 6.13%

10 21 1004 15825 16850 63.42%
8 41 1276 14508 15825 12.95%

14 68 1521 12919 14508 1.51%
11 299 3079 9541 12919 3.37%
13 558 3518 5465 9541 96.01%

7x12 891 2660 1914 5465 80.02%
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most often used when building tests with Bayes factors, a traditional Bayesian method intro-
duced by Jeffreys (1961), where a positive probability mass is assumed for ΠΗ, producing
Lindley’s paradox (Lindley, 1957). Usually, the hypothesis is projected onto a single point pro-
ducing great simplification (Lindley, 1988). Basu (1977) and Pereira and Lindley (1987) discuss
problems associated with these traditional methods. Usually, the natural parameter space allows
no space for these ad hoc methods. The FBST is in sharp contrast with these traditional schemes
of dimensional reduction. In fact the FBST preserves the natural parameter space in its full
dimensionality. This property is key for an intrinsic regularization mechanism in the context of
model selection (Pereira and Stern, 2001a,b).

Of course, there is a price to be paid for working with the full dimensionality of the
parameter space: a considerable computational workload. Computational difficulties can be
overcome with the use of efficient continuous optimization and numerical integration algorithms.
Large problems can also benefit from program vectorization and parallelization techniques. We
did not use these techniques here but instead employed a simplification of the problem using the
factorization of the posterior density. We believe that, by considering the Dirichlet model, its
factors following the HWE will imply the equilibrium in the whole space. Certainly, if one of the
factors is in disequilibrium, the whole space then will also be in disequilibrium.
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