

Genomic identification, phylogeny, and expression analysis of *MLO* genes involved in susceptibility to powdery mildew in *Fragaria vesca*

L.X. Miao¹, M. Jiang², Y.C. Zhang¹, X.F. Yang¹, H.Q. Zhang¹, Z.F. Zhang¹, Y.Z. Wang¹ and G.H. Jiang¹

¹Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China ²College of Life Science, Taizhou University, Linhai, Zhejiang, China

Correspondence author: G.H. Jiang E-mail: jgh2004267@sina.cn

Genet. Mol. Res. 15 (3): gmr.15038400 Received January 7, 2016 Accepted March 11, 2016 Published August 5, 2016 DOI http://dx.doi.org/10.4238/gmr.15038400

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. The *MLO* (powdery mildew locus O) gene family is important in resistance to powdery mildew (PM). In this study, all of the members of the *MLO* family were identified and analyzed in the strawberry (*Fragaria vesca*) genome. The strawberry contains at least 20 members of the *MLO* family, and the protein sequence contained between 171 and 1485 amino acids, with 0-34 introns. Chromosomal localization showed that the *MLO*s were unevenly distributed on each of the chromosomes, except for chromosome 4. The greatest number of *MLOs* (seven) was found on chromosome 3. A phylogenetic tree showed that the *MLOs* were divided into seven groups (I-VII), four

Genetics and Molecular Research 15 (3): gmr.15038400

of which consisted of *MLOs* from strawberry, *Arabidopsis thaliana*, rice, and maize, suggesting that these genes may have evolved after the divergence of monocots and dicots. Multiple sequence alignment showed that strawberry *MLO* candidates related to powdery mildew resistance possessed seven highly conserved transmembrane domains, a calmodulin-binding domain, and two conserved regions, all of which are important domains for powdery mildew resistance genes. Expressed sequence tag analysis revealed that the *MLOs* were induced by multiple abiotic stressors, including low and high temperature, drought, and high salinity. These findings will contribute to the functional characterization of *MLOs* related to PM susceptibility, and will assist in the development of disease resistance in strawberries.

Key words: Strawberry; MLO; Bioinformatics; Phylogenic relationship

INTRODUCTION

Powdery mildew (PM) is one of the most important diseases in plants. Four major PM causal agents have been identified in the family Rosaceae: *Podosphaera leucotricha, Sphaerotheca pannosa* var. persicae, *Podosphaera tridactyla*, and *Podosphaera aphanis* (syn. *Sphaerotheca macularis* f. sp *fragariae*) (Boesewinkel, 1979; Xiao et al., 2001; Foulongne et al., 2003; Turechek et al., 2004). PM in strawberry is caused by the obligate pathogenic fungus *S. macularis* f. sp *fragariae*, and affects leaves, flowers, and fruit (Amsalem et al., 2006). These four fungi cause similar PM symptoms (Pessina et al., 2014).

MLO (powdery mildew locus O) is a plant-specific gene family that has seven complete transmembrane domains (TM1-TM7) (Büschges et al., 1997; Devoto et al., 1999). In barley, recessive mutations in *MLO* genes confer durable broad-spectrum resistance to all known isolates of the barley PM fungus (Büschges et al., 1997), and were the first genes that are resistant to PM to be cloned (Piffanelli et al., 2004). Further research showed that *MLO* genes encode calmodulin-binding proteins, and that calmodulin binding increases the susceptibility of barley to PM (Kim et al., 2002b). *MLOs* in barley possess the dual function of the regulation of disease resistance and leaf cell death (Devoto et al., 2003). Although *MLOs* were first isolated as PM resistance genes in monocots (Büschges et al., 1997), some members of this family also play a role in modulating hosts' responses to PM in dicots, such as *Arabidopsis* (Consonni et al., 2006) and tomato (Bai et al., 2008). Therefore, *MLO* disease resistance genes are extensively involved in interactions between plants and PM.

Many studies have shown that *MLOs* only exist in plants. *MLOs* have been identified in six plant taxa, including *Arabidopsis*, maize, rice, and grapevine (Devoto et al., 2003; Liu and Zhu, 2008; Feechan et al., 2009). In addition, *MLOs* that modulate hosts' responses to PM have been cloned in several plant species. For example, *Arabidopsis AtMLO02, AtMLO06*, and *AtMLO12* exhibit significantly reduced susceptibility to *Golovinomyces orontii* and complete PM resistance (Consonni et al., 2006). In the tomato, the absence of *MLOs* increases PM resistance (Bai et al., 2008). Therefore, biologically active *MLOs* may be a general requirement for PM pathogenesis in higher plants.

Genetics and Molecular Research 15 (3): gmr.15038400

Recently, PM disease resistance has been reported in cucumber, wheat, and grapevine (Zhou et al., 2013; Alam et al., 2014; Lu et al., 2014; Zhang et al., 2014). In strawberry (*Fragaria* x *ananassa* Duchesne), cleaved amplified polymorphic sequence markers related to PM resistance have been developed (Heejeong et al., 2015), and interactions between strawberry and PM have been revealed using the RNA-seq method (Sun et al., 2015). Remarkably, the antisense expression of the peach *PpMlo1* gene confers cross-species resistance to PM in *Fragaria* x *ananassa* (Jiwan et al., 2013).

The availability of the strawberry genome sequence provides a good platform for our understanding of the structural characteristics and phylogenetic relationships of the MLO gene family at the whole-genome level. In this study, MLOs were identified by the integration of intron-exon structural characteristics, phylogenetic relationships, chromosome mapping, and expression analysis, which will provide the foundation for the further cloning of strawberry MLO (FvMLO) resistance genes.

MATERIAL AND METHODS

Datasets

Information regarding *FvMLO* family members was obtained from https://www.rosaceae.org/, *MLOs* from *Arabidopsis* were obtained from http://www.arabidopsis.org/, and *MLOs* from rice, grapevine, poplar, and sorghum were obtained from https://phytozome.jgi. doe.gov/pz/portal.html.

Identification of *MLO*s in strawberry and other model plants

Strawberry genome sequence data were downloaded from https://www.rosaceae. org/ to establish a local database using the BioEdit software. To identify *MLOs* in the strawberry, two methods were used to search the local database. Firstly, *MLOs* in the strawberry were identified using MLO protein sequences from two model plant species (*Arabidopsis thaliana* and rice) as a query using the BLASTP tool. The query sequences were taken from previously published data on these two plants (Devoto et al., 2003; Liu and Zhu, 2008). Secondly, the hidden Markov models profile of the MLO domain (PF03106) in the Pfam database (http://pfam.sanger.ac.uk/) was exploited for the identification of *MLOs* in the strawberry genome local database using HMMER 3.0 (http://hmmer.org/). The default parameters were used. Subsequently, all of the MLO protein sequences were analyzed to confirm the presence of an MLO domain using the SMART program (http:// smart.embl-heidelberg.de/).

Sequence alignment and phylogenetic tree construction

In order to analyze the evolutionary relationships between the members of the *MLO* gene family, MLO proteins from strawberry and *A. thaliana*, grapevine, tomato, and pea were constructed using a phylogenetic tree (Devoto et al., 2003; Bai et al., 2008; Feechan et al., 2009; Pavan et al., 2011). The ClustalX program in BioEdit was used for the multiple sequence alignment of the amino acid sequence of strawberry MLO proteins (FvMLO). The

Genetics and Molecular Research 15 (3): gmr.15038400

phylogenetic tree was constructed using the MEGA 5.0 software (Tamura et al., 2011), and was assessed using the bootstrap method (1000 iterations).

Structural analysis of *FvMLO*s

To ascertain the exon/intron positions and phases of the *FvMLOs*, we used the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/) to identify exon/intron structures using coding and genomic sequences (Guo et al., 2007).

Chromosomal localization and conserved motif analysis of *FvMLO*s

The chromosomal distributions of the *MLOs* were determined using the Strawberry Genome Annotation Project (https://www.rosaceae.org/), and were displayed using the MapDraw V2.1 software (Liu and Meng, 2003). Conserved motifs of the FvMLO protein were analyzed using MEME (http://meme-suite.org/), and the parameters were set as follows: the minimum length of the conserved motif was 15, the maximum length was 50, and the maximum conserved motif was 10.

Expression profiles of *FvMLO*s under different abiotic stressors

To investigate *FvMLO* expression profiles in stressed (low temperature, high temperature, drought, and high salinity) seedlings, the Genome Database for Rosaceae (http:// www.rosaceae.org/) was searched using the identified encoding sequences of the *FvMLOs*. Expressed sequence tags (ESTs) from the stressed seedlings were selected for analysis, and the nucleotide BLAST (BLASTn) program was used to search the ESTs that corresponded to the *FvMLOs* investigated in this study.

RESULTS

Identification of *FvMLO*s

We retrieved 20 *MLO* genes from the strawberry genome (FvMLO01-FvMLO20). Five of these may have been pseudogenes, as they encoded truncated proteins. The remaining 15 *MLOs* were between 1305 (FvMLO16) and 4458 (FvMLO14) bp in length, contained between 434 (FvMLO16) and 1485 (FvMLO14) amino acids, and weighed between 48.67 (FvMLO16) and 166.95 (FvMLO14) kDa. The isoelectric points of most of the MLO proteins ranged from 7 to 10, with the highest being 10.04 (FvMLO01) and the lowest 5.92 (FvMLO16) (Table 1).

The phylogenetic tree showed that the *FvMLOs* could be divided into three groups, A, B, and C, which contained 10, 3, and 7 members, respectively (Figure 1). The intronexon structural analysis revealed that changes in the number of introns varied, suggesting that structures among the members of this gene family are complex. Only three genes (*FvMLO04*, *FvMLO06*, and *FvMLO12*) contained three introns or less.

Genetics and Molecular Research 15 (3): gmr.15038400

Table 1. M	Table 1. Members of the FvMLO gene family.	ne family.					
Gene	Locus name	Transcript name	Genome position	ORF length (bp)	Dedi	Deduced polypeptide	
					Length (aa)	Mol. wt. (kDa)	Ы
FvML001	gene10166-v1.0-hybrid	mrna10166.1-v1.0-hybrid	Chr01:697457707892	2223	740	82.56	10.04
FvML002	gene13023-v1.0-hybrid	mrna13023.1-v1.0-hybrid	Chr01:70174137022793	1674	557	61.96	8.83
FvMLO03	gene14592-v1.0-hybrid	mrna14592.1-v1.0-hybrid	Chr01:78202897827918	2946	981	109.74	5.36
FvML004	gene10558-v1.0-hybrid	mrna10558.1-v1.0-hybrid	Chr02:1572438715725931	1545	514	58.11	9.02
FvML005	gene29770-v1.0-hybrid	mrna29770.1-v1.0-hybrid	Chr03:46608824663962	1617	538	61.61	8.96
FvMLO06	gene02364-v1.0-hybrid	mrna02364.1-v1.0-hybrid	Chr03:90335929034412	516	171	18.98	8.54
FvML007	gene31264-v1.0-hybrid	mrna31264.1-v1.0-hybrid	Chr03:95151639524099	1704	567	64.80	9.03
FvML008	gene03210-v1.0-hybrid	mrna03210.1-v1.0-hybrid	Chr03:1070755710713141	1644	547	61.76	5.97
FvMLO09	gene28541-v1.0-hybrid	mrna28541.1-v1.0-hybrid	Chr03:1710566017112982	1146	381	42.99	9.20
FvMLO10	gene10363-v1.0-hybrid	mrna10363.1-v1.0-hybrid	Chr03:2580295825816253	1353	450	50.09	90.6
FVMLOII	gene10346-v1.0-hybrid	mrna10346.1-v1.0-hybrid	Chr03:2583462725838931	1158	385	43.88	10.06
FvML012	gene29284-v1.0-hybrid	mrna29284.1-v1.0-hybrid	Chr05:1905956719060154	381	126	13.91	9.78
FvML013	gene29285-v1.0-hybrid	mrna29285.1-v1.0-hybrid	Chr05:1906023019062497	894	297	33.86	7.76
FvML014	gene31488-v1.0-hybrid	mrna31488.1-v1.0-hybrid	Chr05:2007514020093212	4458	1485	166.95	90.6
FvML015	gene31498-v1.0-hybrid	mrna31498.1-v1.0-hybrid	Chr05:2017126820174872	1596	531	60.20	9.21
FvML016	gene11028-v1.0-hybrid	mrna11028.1-v1.0-hybrid	Chr05:2049092520496890	1305	434	48.67	5.92
FvML017	gene09651-v1.0-hybrid	mrna09651.1-v1.0-hybrid	Chr06:85412018546252	1773	590	67.83	9.55
FvML018	gene09653-v1.0-hybrid	mrna09653.1-v1.0-hybrid	Chr06:85635018567082	1722	573	65.42	9.14
FvML019	gene23198-v1.0-hybrid	mrna23198.1-v1.0-hybrid	Chr07:1451749014520807	1524	507	58.05	8.88
FvML020	gene26428-v1.0-hybrid	mrna26428.1-v1.0-hybrid	Chr07:1637066416374969	1677	558	63.28	9.39
ORF = open 1	reading frame; aa = aminc	ORF = open reading frame; aa = amino acid; Mol. wt. = molecular weight; pI = isoelectric point	eight; pI = isoelectric point.				

Comprehensive analysis of MLO genes in strawberry

Genetics and Molecular Research 15 (3): gmr.15038400

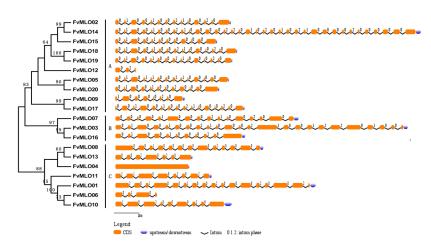
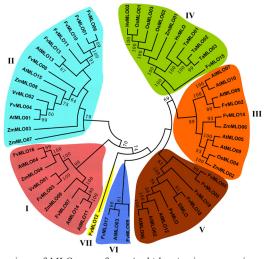


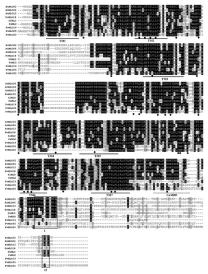
Figure 1. Phylogenetic analysis and intron/exon configurations of FvMLO genes. Introns and exons are drawn to scale, with the full transcript regions of their respective genes. Boxes and lines indicate exons and introns, respectively. 0, intron phrase 0; 1, intron phrase 1; 2, intron phrase 2.

Evolutionary relationships between MLOs in different plant species

The phylogenetic tree showed that *MLOs* could be divided into seven groups (I-VII), with each group containing a different number of *MLOs* (Figure 2). Group V contained the *Arabidopsis AtMLO02*, *AtMLO06*, and *AtMLO12* genes, which are a specific group of PM resistance functions, as well as a tomato PM resistance gene (*SIMLO*) and four *FvMLOs* (*FvMLO05*, *FvMLO18*, *FvMLO19*, and *FvMLO20*), suggesting that these genes may be candidate genes for resistance to PM.


The phylogenetic tree was also used to identify homologous genes, and contained six pairs of orthologous genes and five pairs of paralogous genes. The former included one from wheat, one from strawberry, and four from *A. thaliana*. The latter included two from *A. thaliana* and strawberry, one from barley and rice, one from strawberry and grapevine, and one each from rice and maize. The woody grapevine *MLOs* shared a common ancestry with the monocot maize and rice *MLOs*. Three plant taxa (strawberry, grapevine, and poplar) had orthologous genes, indicating a common ancestry. In addition, three groups (I, II, and III) contained *MLOs* from both monocots and dicots, suggesting that *MLOs* were present before the divergence of monocots and dicots.

Multiple sequence alignment


In order to analyze the sequence characteristics of MLO proteins that are related to PM susceptibility, a multiple sequence alignment of MLO proteins from strawberry, *Arabidopsis*, tomato, and pea was conducted (Figure 3) (Consonni et al., 2006; Bai et al., 2008; Pavan et al., 2011). All of the FvMLO proteins had seven highly conserved transmembrane domains (TM1-7), which is a significant feature of the *MLO* gene family (Devoto et al., 2003). A calmodulinbinding domain (CaMBD) that consists of an α -helix with 10-15 extended amino acids (Kim et al., 2002a,b) in the C-terminus is highly conserved in FvMLOs. Panstruga (2005) identified two other conserved regions in the C-terminus of MLO proteins (I and II), which

Genetics and Molecular Research 15 (3): gmr.15038400

play important roles in modulating PM infection. These two peptide domains were located at the end of the C-terminus. Peptide domain I is characterized by conserved serine and threonine residues, while peptide domain II contains the consensus sequence D/E-F-S/T-F. In this study, we found that the peptide domains I and II were poorly conserved in the strawberry.

Figure 2. Phylogenetic comparison of *MLO* genes from *Arabidopsis*, rice, grapevine, and strawberry. Numbers on the branches indicate the percentage of 1000 bootstrap replications that support the node (only values greater than 50% are presented).

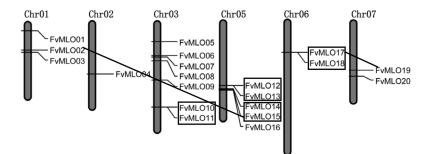


Figure 3. Multiple sequence alignment of MLO proteins from the *MLO* genes in Group V (Figure 1) in the strawberry, with selected MLO proteins involved in PM susceptibility in pea (PsMLO), tomato (SIMLO), and *Arabidopsis* (AtMLO02, AtMLO06, and AtMLO12). Positions of the seven transmembrane domains (TM1-TM7) inferred from the experimentally determined topology of HvMLO and the approximate position of CaMBD are indicated by lines under the sequences. Two conserved domains (I and II) within the highly polymorphic C-termini are highlighted.

Genetics and Molecular Research 15 (3): gmr.15038400

Chromosomal localization

In order to elucidate the chromosomal distribution of FvMLOs, we conducted *in silico* mapping. The FvMLOs were on six of seven chromosomes (Figure 4). There were no FvMLOs on chromosome 4, and only one (FvMLO04) on chromosome 2. Three and five FvMLOs were on chromosomes 1 and 5, respectively, and two were on each of chromosomes 6 and 7. The remainder was on chromosome 3.

Figure 4. Mapping of *MLO* genes on strawberry chromosomes. Chromosome numbers are indicated at the top of the chromosomes; those located on sequence scaffolds are not shown. Straight lines connecting the *MLO* genes indicate duplicated chromosomal segments; tandem duplicated gene clusters are indicated by boxes.

Segmental and tandem duplication played important roles in *MLO* family expansion during evolution (Cannon et al., 2004). In the present study, four pairs of genes (*FvMLO10* and *FvMLO11*, *FvMLO12* and *FvMLO13*, *FvMLO14* and *FvMLO15*, and *FvMLO17* and *FvMLO18*) exhibited tandem duplication (Figure 4). In addition, evidence of segmental genome duplication was found in the *FvMLO02* and *FvMLO17* chromosomal regions (Figure 4), which exhibited synteny with the surrounding genomic regions that contained *FvMLO15* and *FvMLO19*, respectively.

Conserved motifs of FvMLO proteins

The FvMLO proteins had 10 types of conserved motifs; four motifs contained over 40 amino acids (Motif 01, Motif 03, Motif 04, and Motif 06), and the remainder contained between 21 and 30 amino acids (Table 2). We analyzed the distributions of these conserved motifs (Figure 5), and found that most of the FvMLO proteins contained all motif types, but not three of them (FvMLO06, FvMLO11, and FvMLO12). The distributions of the conserved motifs were consistent with the phylogenic relationships between the FvMLO proteins.

In silico analysis of FvMLO expression using EST libraries

To evaluate the expression profiles of *FvMLOs* under different stressors, a BLAST search was performed using the *FvMLO* coding sequences in the Genome Database for Rosaceae. Only 11 predicted genes had corresponding ESTs in the database (Table 3). Of these, three (*FvMLO01, FvMLO10,* and *FvMLO11*) were induced by high salinity, four (*FvMLO03, FvMLO07, FvMLO09,* and *FvMLO19*) by low temperature, four (*FvMLO04, FvMLO12, FvMLO13,* and *FvMLO18*) by high temperature, and *FvMLO04* by high temperature and drought.

Genetics and Molecular Research 15 (3): gmr.15038400

Motif	Width	Best possible match		
Motif 01	44	QYGFDSCFMENIEYIIPRLVMGVFVQFLCSYSTLPLYAIVTQMG		
Motif 02	41	DPVVQPSDDHFWFNRPRWVLHLIHFILFQNAFEMAFFFWIW		
Motif 03	30	LEKIKEELMLLGFISLLLTVFQDPIAKICI		
Motif 04	43	CKKGKVPFVSYNGLHQLHIFIFVLAIFHVVYCCLTMALGMAKM		
Motif 05	29	CFFRQFYGSVTKVDYMTMRHGFINAHCA		
Motif 06	41	LEYTPTWAVATVCFVIVFISIIIEHGIHCLGKWLKRRRKKA		
Motif 07	27	NFDFHKYMKRSLEDDFKVVVGISPIMW		
Motif 08	21	GTKLQHIITQMAHEIAEKHNV		
Motif 09	28	SNMKKAIFDEHVQEGLKGWHKDAKKHQA		
Motif 10	28	EYQFSNDPNRFRYTHQTSFGKRHLKFWT		

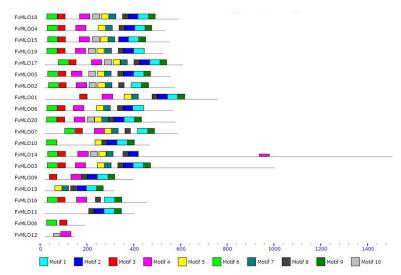


Figure 5. Motif structure of *MLO* genes in the strawberry.

Table 3. Expressed sequence tag (EST)-derived expression profiles of FvMLO genes in stressed seedlings.					
Name	High salinity	Low temperature	High temperature	Drought	
FvMLO01	+				
FvMLO02					
FvMLO03		+			
FvMLO04			+	+	
FvMLO05					
FvMLO06					
FvMLO07		+			
FvMLO08					
FvMLO09		+			
FvMLO10	+				
FvMLO11	+				
FvMLO12			+		
FvMLO13			+		
FvMLO14					
FvMLO15					
FvMLO16					
FvMLO17					
FvMLO18			+		
FvMLO19		+			
FvMLO20					

Genetics and Molecular Research 15 (3): gmr.15038400

DISCUSSION

In order to analyze the phylogenic relationships between *MLOs*, dicots, monocots, and woody plant *MLOs* were investigated in this study. According to a previous classification of *Arabidopsis MLOs*, *FvMLOs* could be divided into seven groups (I-VII). Only three groups (I, II, and III) contained *MLOs* from all of the species tested, indicating that the members of these three groups were more conserved than those in the remaining four groups. In addition, six pairs of orthologous genes and five pairs of paralogs were identified in the phylogenetic tree, suggesting a common ancestry of *MLOs* in these plant species. Six pairs of orthologous genes were in *Arabidopsis* with four pairs, as well as in wheat with one pair and strawberry with one pair; therefore, wheat, strawberry, and *Arabidopsis* have orthologous genes, indicating that *MLOs* underwent gene duplication after the divergence of the monocots and dicotsl.

Given that Group V, which included *Arabidopsis AtMLO02*, *AtMLO06*, *AtMLO12*, pea *PsMLO*, and tomato *SlMLO*, indicates the putative functions of *MLOs* in many plant species, we inferred that this group is significant for strawberry, as these *MLOs* are required for PM susceptibility (Consonni et al., 2006; Bai et al., 2008; Pavan et al., 2011). Therefore, this group may be dicot-specific. Four *MLOs* (*FvMLO05*, *FvMLO18*, *FvMLO19*, and *FvMLO20*) were in Group V, suggesting that they may be candidate PM resistance genes. In addition, in the multiple sequence alignment, these genes not only contained seven highly conserved transmembrane domains and the CaMBD domain of the *MLO* gene family, but also two conserved peptide regions (I and II) in the C-terminal.

At present, two types of gene duplication events have been identified during the evolution of gene families: tandem and segmental duplication. The former may result in a clustered occurrence of family members, whereas the latter may result in a scattered occurrence of family members (Schauser et al., 2005). Both types of duplication event were observed in this study, indicating that the expansion of the *FvMLO* family mainly resulted from segmental and tandem duplication.

Many sequences that are available from EST libraries (e.g., http://www.rosaceae.org/) can provide useful information regarding gene expression analysis. In this study, 12 ESTs were identified for 11 *FvMLOs*, and most of them were expressed under different stressors (Table 3), indicating that *FvMLOs* may be involved in plant growth and development. The large number of *FvMLOs* found in this study will provide useful information for further experimental verification.

In conclusion, we conducted a genome-wide identification and analysis of *FvMLOs* using bioinformatics. At least 20 *FvMLOs* were identified, and their structures, phylogenies, and sequence characteristics were analyzed. These results will provide a foundation for the breeding of strawberries that are resistant to PM.

Conflicts of interest

The authors declare no conflicts of interest.

ACKNOWLEDGMENTS

Research supported by the National Natural Science Foundation of China (Grant #31201613), the Young Talent Training Program of Zhejiang Academy of Agricultural Sciences (Grant #2015R05R08E01), and the New Cultivar Breeding Program of Zhejiang Province (Grant #2012C12904).

Genetics and Molecular Research 15 (3): gmr.15038400

REFERENCES

- Alam MA, Hongpo W, Hong Z and Ji WQ (2014). Differential expression of resistance to powdery mildew at the early stage of development in wheat line N0308. *Genet. Mol. Res.* 13: 4289-4301. <u>http://dx.doi.org/10.4238/2014.June.9.15</u> Amsalem L, Freeman S, Rav-David D, Nitzani Y, et al. (2006). Effect of climatic factors on powdery mildew caused by
- Sphaerotheca macularis f. sp. fragariae on strawberry. Eur. J. Plant Pathol. 114: 283-292. http://dx.doi.org/10.1007/ s10658-005-5804-6
- Bai Y, Pavan S, Zheng Z, Zappel NF, et al. (2008). Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of *mlo* function. *Mol. Plant Microbe Interact*. 21: 30-39. <u>http:// dx.doi.org/10.1094/MPMI-21-1-0030</u>
- Boesewinkel HJ (1979). Differences between the conidial states of *Podosphaera tridactyla* and *Sphaerotheca pannosa*. Ann. Phytopathol. 11: 525-527.
- Büschges R, Hollricher K, Panstruga R, Simons G, et al. (1997). The barley *Mlo* gene: a novel control element of plant pathogen resistance. *Cell* 88: 695-705. <u>http://dx.doi.org/10.1016/S0092-8674(00)81912-1</u>
- Cannon SB, Mitra A, Baumgarten A, Young ND, et al. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in *Arabidopsis thaliana*. *BMC Plant Biol.* 4: 10. http://dx.doi.org/10.1186/1471-2229-4-10
- Consonni C, Humphry ME, Hartmann HA, Livaja M, et al. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. *Nat. Genet.* 38: 716-720. <u>http://dx.doi.org/10.1038/ng1806</u>
- Devoto A, Piffanelli P, Nilsson I, Wallin E, et al. (1999). Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274: 34993-35004. <u>http://dx.doi.org/10.1074/jbc.274.49.34993</u>
- Devoto A, Hartmann HA, Piffanelli P, Elliott C, et al. (2003). Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J. Mol. Evol. 56: 77-88. <u>http://dx.doi.org/10.1007/s00239-002-2382-5</u>
- Feechan A, Jermakow AM, Torregrosa L, Panstruga R, et al. (2009). Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 35: 1255-1266. <u>http://dx.doi.org/10.1071/FP08173</u>
- Foulongne M, Pascal T, Pfeiffer F and Kervella J (2003). QTLs for powdery mildew resistance in peach×Prunus davidiana crosses: consistency across generations and environments. Mol. Breed. 12: 33-50. <u>http://dx.doi.org/10.1023/A:1025417507358</u>
- Guo AY, Zhu QH, Chen XL and Jing C (2007). GSDS: Gene structure display system. Heredity 29: 1023-1026.
- Heejeong J, Jaewook A, Haesuk Y, Minkeun K, et al. (2015). Development of cleaved amplified polymorphic sequence (caps) marker for selecting powdery mildew-resistance line in strawberry. *Korean J. Hort. Sci. Technol* 33: 722-729. http://dx.doi.org/10.7235/hort.2015.14133
- Jiwan D, Roalson EH, Main D and Dhingra A (2013). Antisense expression of peach mildew resistance locus O (*PpMlo1*) gene confers cross-species resistance to powdery mildew in *Fragaria x ananassa*. *Transgenic Res.* 22: 1119-1131. http://dx.doi.org/10.1007/s11248-013-9715-6
- Kim MC, Panstruga R, Elliott C, Müller J, et al. (2002a). Calmodulin interacts with MLO protein to regulate defence against mildew in barley. *Nature* 416: 447-451. <u>http://dx.doi.org/10.1038/416447a</u>
- Kim MC, Lee SH, Kim JK, Chun HJ, et al. (2002b). Mlo, a modulator of plant defense and cell death, is a novel calmodulinbinding protein. Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 277: 19304-19314. <u>http:// dx.doi.org/10.1074/jbc.M108478200</u>
- Liu Q and Zhu H (2008). Molecular evolution of the *MLO* gene family in *Oryza sativa* and their functional divergence. *Gene* 409: 1-10. <u>http://dx.doi.org/10.1016/j.gene.2007.10.031</u>
- Liu RH and Meng JL (2003). [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data]. *Yi Chuan* 25: 317-321.
- Lu M, Wang L, Zhang J, Sun S, et al. (2014). Molecular cytogenetic identification of a novel 1AL.1RS translocation line with powdery mildew resistance. *Genet. Mol. Res.* 13: 10678-10689. <u>http://dx.doi.org/10.4238/2014.December.18.10</u>
- Panstruga R (2005). Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. *Plant Mol. Biol.* 59: 485-500. http://dx.doi.org/10.1007/s11103-005-0353-0
- Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, et al. (2011). Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. *Theor. Appl. Genet.* 123: 1425-1431. <u>http://dx.doi.org/10.1007/s00122-011-1677-6</u>
- Pessina S, Pavan S, Catalano D, Gallotta A, et al. (2014). Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15: 618. http://dx.doi.org/10.1186/1471-2164-15-618
- Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, et al. (2004). A barley cultivation-associated polymorphism conveys resistance to powdery mildew. *Nature* 430: 887-891. <u>http://dx.doi.org/10.1038/nature02781</u>

Genetics and Molecular Research 15 (3): gmr.15038400

- Schauser L, Wieloch W and Stougaard J (2005). Evolution of NIN-like proteins in *Arabidopsis*, rice, and *Lotus japonicus*. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2
- Sun JJ, Wang ZY, Shen JY, Shen YZ, et al. (2015). Global transcriptome analysis and identification of differentially expressed genes after infection of *Fragaria vesca* with powdery mildew (*Podosphaera aphanis*). *Transcriptomics* 2: 106.
- Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
- Turechek WW, Carroll JE and Rosenberger DA (2004). Powdery mildew of apple. New York State Integrated Pest Management Program, Cornell University. http://www.nysipm.cornell.edu/factsheets/treefruit/diseases/pm/apple_ pm.pdf.
- Xiao CL, Chandler CK, Price JF, Duval JR, et al. (2001). Comparison of epidemics of botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. *Plant Dis.* 85: 901-909. <u>http://dx.doi.org/10.1094/PDIS.2001.85.8.901</u>
- Zhang J, Zhang Y, Yu H and Wang Y (2014). Evaluation of powdery mildew-resistance of grape germplasm and rapid amplified polymorphic DNA markers associated with the resistant trait in Chinese wild *Vitis. Genet. Mol. Res.* 13: 3599-3614. <u>http://dx.doi.org/10.4238/2014.May.9.3</u>
- Zhou SJ, Jing Z and Shi JL (2013). Genome-wide identification, characterization, and expression analysis of the *MLO* gene family in *Cucumis sativus*. *Genet. Mol. Res.* 12: 6565-6578. http://dx.doi.org/10.4238/2013.December.11.8

Genetics and Molecular Research 15 (3): gmr.15038400